-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
69 lines (58 loc) · 2.48 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import model
import tensorflow as tf
from pipeline import input_pipeline
import shutil
import os
import data
from tqdm import tqdm
TRAINING_DATASET = '/media/lsmjn/56fcc20e-a0ee-45e0-8df1-bf8b2e9a43b2/tfrecords/NGII_training.tfrecords'
VALIDATION_DATASET = '/media/lsmjn/56fcc20e-a0ee-45e0-8df1-bf8b2e9a43b2/tfrecords/NGII_validation.tfrecords'
BATCH_SIZE = 8
NUM_EPOCHS = 20
def train(d, batch_size, epoch):
#Set directory for tensorboard and trained model
TB_DIR = '/home/lsmjn/Drone-Deconv/tb'
TRAINED_MODEL_DIR = 'trained_model'
'''
try:
shutil.rmtree(TB_DIR)
shutil.rmtree(TRAINED_MODEL_DIR)
except Exception as e:
print(e)
os.makedirs(TB_DIR)
os.makedirs(TRAINED_MODEL_DIR)
'''
#Set saver and merge
saver = tf.train.Saver()
merged = tf.summary.merge_all()
#Get steps per epoch
steps = data.get_steps_per_epoch(batch_size, 'training')
#Start Training
with tf.Session() as sess:
train_writer = tf.summary.FileWriter(TB_DIR + '/train', sess.graph)
test_writer = tf.summary.FileWriter(TB_DIR + '/test')
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
k = 0
for i in range(0, epoch):
print('epoch # %d' % i)
for j in tqdm(range(0, steps)):
sess.run(d.train_step, feed_dict={d.am_testing: False})
if k % 100 == 0:
summary, _ = sess.run([merged, d.train_step], feed_dict={d.am_testing: False})
train_writer.add_summary(summary, k)
summary, _ = sess.run([d.xe_valid_summary, d.cross_entropy_valid], feed_dict={d.am_testing: True})
test_writer.add_summary(summary, k)
k = k + 1
coord.request_stop()
coord.join(threads)
save_path = saver.save(sess, "/home/lsmjn/Drone-Deconv/trained_model/Drone_Deconv.ckpt")
print('Model saved in file: %s' % save_path)
train_writer.close()
if __name__ == '__main__':
x_batch_train, y_batch_train = input_pipeline(TRAINING_DATASET, BATCH_SIZE, NUM_EPOCHS)
x_batch_validation, y_batch_validation = input_pipeline(VALIDATION_DATASET, BATCH_SIZE, NUM_EPOCHS)
d = model.Deconv(x_batch_train, y_batch_train, x_batch_validation, y_batch_validation, num_of_class=3)
train(d, BATCH_SIZE, NUM_EPOCHS)