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Abstract

Developing error-free programs is a challenging and difficult task. Researchers at
Microsoft Research have developed the DASH algorithm to verify that Windows
NT device drivers are free of errors and have presented the algorithm in the DASH
article [A2]. DASH is able to identify errors, by concretely executing a given
program and to prove it as correct by refining a model of the program. The DASH
article is compact, and the goal of this thesis is to uncover undescribed details
by implementing a subset of DASH and then present the algorithm in detail. We
also investigate whether the DASH algorithm has unknown weaknesses.

We have implemented two subsets of DASH. The first can analyze single-
procedure integer programs and the second is an extension with interprocedural
analysis. The implementation process was guided by test programs of increasing
complexity, for which the implementation must determine whether the test
programs contain errors or not.

We have found numerous details and special cases that were not disclosed in
the DASH article. We have presented solutions to these cases and incorporated
them into our presentation of DASH. Furthermore, we have also found example
programs where DASH keeps refining the model infinitely. Our implementation
is able to analyze programs written in a limited subset of Java. The limited
subset includes static methods with integer arithmetic. Our implementation
is released to the general public, unlike DASH, based on the assessment that it
would be helpful for others that wish to understand DASH1.

1Public repository: https://github.com/foens/dash
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Resumé

Udvikling af fejlfrie programmer er både en udfordrende og vanskelig opgave.
Forskere hos Microsoft Research har udviklet DASH algoritmen for at kunne
verificere at Windows NT drivere er fejlfrie og har beskrevet algoritmen i DASH
artiklen [A2]. DASH kan identificere fejl ved at afvikle et program konkret og
kan bevise at det er korrekt ved at forfine en model over programmet. DASH
artiklen er kompakt og formålet i dette speciale er at finde ubeskrevne detaljer
ved at implementere en delmængde af DASH og derefter præsentere algoritmen i
detaljer. Vi undersøger også om DASH algoritmen har ukendte svagheder.

Vi har implementeret to delmængder af DASH. Den første kan analysere
heltals programmer med kun én procedure, og den anden er en udvidelse med in-
terprocedural analyse. Implementeringsprocessen blev styret af testprogrammer
med stigende kompleksitet, hvor implementeringen skulle afgøre om testpro-
grammerne indeholdte fejl eller ej.

Vi har fundet adskillige detaljer og særtilfælde, som ikke fremgik af DASH
artiklen. Vi har præsenteret løsninger til disse tilfælde og tilføjet dem i vores
præsentation af DASH. Derudover har vi også fundet eksempler på programmer
hvor DASH forfiner modellen i en uendelighed. Vores implementering er i stand
til at analysere programmer skrevet i en begrænset delmængde af Java. Den
begrænsede delmængde inkluderer statiske metoder med heltalsaritmetik. Vores
implementering er frit tilgængelig for offentligheden, i modsætning til DASH, ud
fra en vurdering af at det kan være behjælpeligt for andre der vil forstå DASH2.

2Offentligt repository: https://github.com/foens/dash
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Chapter 1

Introduction

Software writing is a daunting task. The computer is mindless in the sense that
it can only do what it is told, therefore all software programmers must go into
absolute detail in how the program behaves. When software misbehaves, it can
crash the program or corrupt data, which will leave the end user in disarray.
This reflects badly on the software programmer or company that produced the
program. When drivers crash, they do not only crash the program, they crash
the complete operating system, which may require a reboot. Since such crashes
are highly problematic, drivers often undergo rigorous reviews. Such reviews can
be done manually by having a person check the code for errors or, more recently,
software tools have emerged that can automatically check certain properties of
the code.

DASH is such an algorithm that can automatically check safety properties
by both concretely executing and abstractly analyzing a given C-program [A2].
It uses an under-approximation for finding errors and an over-approximation
to prove the absence of errors. DASH executes the code both concretely and
symbolically to maintain its abstractions. Concrete executions expand the
under-approximation while refinements of the over-approximation make it more
precise. An error is reported whenever an error state is reached by concrete
execution, and the program has been validated whenever the over-approximation
cannot reach the error state. DASH is developed by Microsoft to check safety
properties in Windows NT device drivers. An example of a safety property
could be that locks are acquired and released correctly. If safety properties are
defined thoroughly and algorithms such as DASH are used, it is highly unlikely
that device drivers crash the operating system.

The authors of DASH have described their implementation in the DASH journal
article [A2]. Articles can be compact, simplistic, and straight to the point, with
the result that some details may be missing. When reading such an article,
the reader can often convince himself that implementing such an algorithm
is straightforward. However, it can be the case that non-disclosed problems
arise when implementing an algorithm since all details must be handled. Often
articles only point out how superior their algorithms are whereas shortcomings
are often not described. Such shortcomings are hard to find unless one knows
the intricate details of the algorithm being described.
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In this thesis, we seek to describe the DASH algorithm in detail and investigate
whatever corner cases we might strike. To do so, we implement the DASH
algorithm in Java such that it can analyze a limited subset of Java.

1.1 Thesis statement

What challenges are there in implementing the DASH algorithm for
a restricted subset of Java?

Expanding the thesis statement raises some questions:

• First of all, how does DASH work? The paper where DASH is described is
compact and the authors leave out a lot of details [A2]. What are these
details and how can they be addressed? We believe that implementing
DASH is an effective strategy for finding these details. Conversely, by
writing pseudocode that incorporates the missing details, we believe it
may be possible to obtain a cleaner and more complete algorithm.

• When reading about DASH, it seems like a wonderful algorithm. The
DASH article does not describe any weaknesses, so is it possible to find
interesting examples of programs for which DASH gives up?

• DASH has been developed by Microsoft to verify NT device drivers, which
are usually simpler than ordinary C programs. Can DASH be implemented
to handle standard Java constructs? For example, DASH has support for
structs as used in the programming language C, but how could one support
Java objects? Java also includes an enormous and complex Standard
Library, should it be mocked or analyzed by DASH?

1.2 Method

We seek to answer the above questions by using a method inspired by test-driven
development [B8]. We start by constructing the smallest possible program,
and then construct an implementation that answers correctly on it. The first
program we want to answer correctly on is shown in Figure 1.1a. The program
contains no code, and it is simple to implement a version of DASH that answers
correctly by always answering that a program is correct. However, when the
implementation also needs to answer correctly on a second test program seen in
Figure 1.1b, much more work is needed. Implementing DASH correctly for these
two programs is nontrivial, as it requires us to load the program, instrument
it and execute a test that reaches the error statement. We will continue along
this methodology by adding increasingly complex test programs and have our
implementation answer correctly on them. In this way, our methodology is
heavily inspired by test-driven development.

We seek to uncover implementation details not described in DASH by im-
plementing increasingly larger subsets of DASH for a realistic programming
language:

4



void testNoError ( )
{

}
(a) First test program

void t e s tE r r o r ( )
{

e r r o r ;
}

(b) Second test program

Figure 1.1: (a) shows the first test program we want our DASH implementation
to analyze. The program never fails as there is no code in it. An implementation
could answer correctly by always stating that a given program is correct. When
we introduce (b), we force ourselves to write much more code to check whether
an error statement is reached. The reason is that an implementation of DASH
needs to run a concrete test that reaches the error statement, and this requires a
good deal of infrastructure. Thus, implementing a version of DASH that answers
correctly on both these programs is nontrivial.

• A version of DASH that is able to analyze simple integer programs without
any kinds of dependencies and without any procedure calls.

• A version of DASH that is able to analyze integer programs with procedure
calls.

These implementations should be able to analyze small integer programs and
find subtle errors in them. The small programs will be presented throughout
this thesis together with the DASH implementations.

We leave it as future work to add support for Java objects, exceptions and
types such as booleans and doubles.

1.3 Outline
We describe the terminology and work leading to the DASH algorithm in Chap-
ter 2 after which we present DASHint, a DASH algorithm able to analyze a single
procedure that performs integer arithmetic in Chapter 3. In Chapter 4, we
present DASHcall which extends DASHint with interprocedural analysis. Chap-
ter 5 describes the implementation details for implementing DASH in Java to
analyze a limited subset of Java programs. In Chapter 6, we describe what
future work could be conducted. We conclude in Chapter 7.
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Chapter 2

DASH Background

DASH [A2] is an algorithm that can check safety properties. DASH builds on
the SYNERGY algorithm [A5], which combines testing and verification methods.
While SYNERGY only analyzes a single C-procedure without pointers, the DASH
algorithm can analyze interprocedural programs with pointers.

In this chapter we start by describing the concepts used in DASH, what
safety properties are, what a property checker does and two broad classes of
techniques used by property checkers, namely testing and verification. SYNERGY
is then described, which is an algorithm that uses a combination of testing and
verification techniques. Finally, a small introduction to DASH is provided at the
end of the chapter.

2.1 Temporal safety properties

Safety properties specify that something bad does not happen in a program.
Examples for which are deadlock detection, releasing a lock that has not been
acquired or closing a file that has already been closed. Many such safety properties
can conceptually be detected by a finite state machine that runs besides the
program and observes what the program does.

As an example we will use the lock acquire/release safety property that
specifies that locks should not be doubly acquired or released – i.e. calls
to acquire() and release () should be interleaved, always starting with a call to
acquire(). These requirements are captured by the finite state machine shown in
Figure 2.1a. The machine will start in the UNLOCKED state. When the program
makes a call to acquire() the state machine will follow the edge to the LOCKED
state. If the program acquires the lock again without releasing it, the machine
will end up in the ERROR state, which captures that the safety property has
been violated.

An example program, borrowed from SLAM [A1], can be seen in Figure 2.1b.
The program is meant to process interrupt requests in a Windows device driver.
The external variable is shared among many threads and locks are required to
enforce mutual exclusion while altering the state of the variable. The lock is
acquired only in line 3 and released in line 8 and 14. It is not directly evident
that this program satisfies the locking safety property. Property checkers, which

7



UNLOCKEDstart

LOCKED

ERRORacquire()

rele
ase(

)
release()

acquire()

acquire(), release()

(a) Finite state machine ϕlock

1 void example ( ) {
2 do {
3 acqu i r e ( ) ;
4 nOld = n ;
5 r eques t = ex t e rna l . l i s tHead ;
6 i f ( r eque s t 6= null ) {
7 ex t e rna l . l i s tHead = r . next ;
8 r e l e a s e ( ) ;
9 // do s t u f f not needing l o c k

10 . . .
11 n++;
12 }
13 } while ( nOld 6= n)
14 r e l e a s e ( ) ;
15 }

(b) Example program Pex

void example ( ) {
s t a t e = UNLOCKED;
do {

i f ( s t a t e == UNLOCKED) s t a t e = LOCKED;
i f ( s t a t e == LOCKED) s t a t e = ERROR;
acqu i r e ( ) ;
nOld = n ;
r eque s t = ex t e rna l . l i s tHead ;
i f ( r eque s t 6= null ) {

ex t e rna l . l i s tHead = r . next ;
i f ( s t a t e == LOCKED) s t a t e = UNLOCKED;
i f ( s t a t e == UNLOCKED) s t a t e = ERROR;
r e l e a s e ( ) ;

// do s t u f f not needing l o c k
. . .
n++;

}
} while ( nOld 6= n)
i f ( s t a t e == LOCKED) s t a t e = UNLOCKED;
i f ( s t a t e == UNLOCKED) s t a t e = ERROR;
r e l e a s e ( ) ;

}
(c) Combined program and finite state machine Pex ◦ ϕlock

Figure 2.1: Checking the safety property “a lock is not acquired or released
two times in row”, can be determined by using the finite state machine ϕlock
depicted in (a). State machines can be described using the SLIC specification
language [B7]. Each time either acquire () or release () is called the finite state
machine changes its internal state. If the ERROR state is reached, the safety
property has been violated. An example program Pex seen in (b) uses locks for
mutual exclusion. The program shown in (c) shows that the finite state machine
ϕlock and the program Pex can be combined to a single program Pex ◦ ϕlock, and
checking the safety property is converted to a reachability test of the statement
state = ERROR.

8



int abs ( int a )
{

i f ( a < 0)
a = −a ;

assert a >= 0 ;
return a ;

}

Figure 2.2: Java example stating a safety property using an assert statement.

will be described in the next section, can check if a given program P satisfies a
safety property ϕ.

The program shown in Figure 2.1c is a combination of the finite state machine
ϕlock in Figure 2.1a and the original program Pex in Figure 2.1b and we denote
the combined program as Pex ◦ ϕlock. Notice that the state machine has been
embedded into the program. The problem of checking if a safety property ϕ
is satisfied by a program P can thus be converted to a reachability test in the
combined program P ◦ ϕ:

P satisfies ϕ ≡ It is impossible to reach the ERROR state in P ◦ ϕ

Such a translation is routinely completed in property checkers such as the
SLAM [A1] and BLAST [A3] tools. In a Java program one could use assert e
statements to state safety properties. The assert e statement can, in the context
of safety properties, be seen as syntactic sugar for if (! e) state = ERROR. An
example Java program using an assert statement can be seen in Figure 2.2.
Figure 2.2 actually contains a subtle bug1.

If we want to specify that no NullPointerExceptions are allowed to happen
in a Java program, we would instrument the program such that all accesses of
an object o, like o.var or o.method(), would have the check assert o != null added
before it. Then it is the property checker’s job to verify that objects cannot be
null when accessed.

The next section describes property checkers and techniques used to imple-
ment them.

2.2 Property checker

A property checker is a program that is able to check if a given safety property
is satisfied. If a property checker is sound, it means that whenever it reports
a violation of a safety property it is an actual violation, however it may not
be able to find all violations. If a property checker is complete, it will report
all actual violations, but may also report false positives. It is desirable for a
property checker to be both sound, complete, and always halt, since then all
violations are reported and none of them are spurious.

For any real programming language and safety property the property checking
problem is easily seen to be undecidable using Rice’s theorem: the language

1 PassInteger.MIN_VALUEtoabsanditwillreturnthesamevalueduetooverflow.
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void f oo ( int x , int y )
{

i f ( x 6= y )
i f (2x == x+10)

assert fa l se ;
}

Figure 2.3: Low probability to reach an error state using random testing.

is Turing complete and the properties are non-trivial [B9]. This implies that
a given property checker cannot answer correctly on all programs. A property
checker must thus be unsound, incomplete or may not terminate with an answer
for some programs.

Property checkers usually use algorithms that can be divided into two broad
categories: testing and verification. Testing tries to violate the safety property
by running the program concretely, with some input parameters, and observe if
any of the safety properties are violated. Verification tries to construct a proof
that shows a safety property cannot be violated. Each of these techniques have
strengths and weaknesses. The techniques are described below.

2.3 Testing

As described above, testing tries to execute the program concretely and observe
if any of the safety properties are violated. The tests executed can be seen as an
under-approximation of the programs state space, since the possible program
state of course includes the state space found executing the tests. Since it is an
under-approximation technique it is not always possible to verify that the safety
properties are never violated. However, when a safety property is reported as
violated, there are no false positives since it was found during concrete execution
and therefore testing is sound but not complete.

Random testing is a technique where a program is executed with random
input. Intuitively, random testing has poor code coverage and certain program
points have a very low probability to be exercised. An example of such a
program can be seen in Figure 2.3, which has been borrowed from DART [A4].
To violate the assert statement the random testing tool has to pick x = 10 and
y 6= 10, which is unlikely given the vast amount of possible input values. Given
that integers are 32 bits large, there are 232 · 232 possible input values. Since
only values with x = 10 and y 6= 10 reaches the error, there are 1 · (232 − 1)
input values which will violate the assert statement. Assuming a uniform
distribution, there is only a 2.328 · 10−10 probability to pick one of these input
values. Another problem with random testing is that many different tests may
exercise the exact same program path. This is redundant and hurts performance.
In Figure 2.3 there are three classes of inputs that executes different program
paths: those with x = y, those where x 6= y∧ 2x 6= x+ 10 and lastly those where
x 6= y ∧ 2x = x+ 10. Running anything more than three concrete test runs will
thus result in redundant executions.

DART [A4] and CUTE [A6] improve the situation. Instead of randomly gen-
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erating input, they try to generate input that directs their execution towards
unvisited branches of the code. They accomplish this by executing the program
both concretely and symbolically, which they termed concolic execution. Sym-
bolic execution works by abstractly interpreting the program using symbolic
variables in place of concrete values. They record branch conditions that they
meet, try to negate one of them and use a constraint solver to generate a new
input that may reach an unvisited branch. In this way they are able to easily
find the error in Figure 2.3.

Using concolic execution raises code coverage considerably, however, most
of the time 100% coverage cannot be achieved. There are multiple reasons for
not reaching full code coverage. For example, programmers often use defensive
programming to catch bugs early, however, most of the time the error conditions
cannot be triggered due to the program being correct. Also notice that if
assert e statements are treated as if (! e) state = ERROR then programs which
are correct can never reach full code coverage. Also, in complex programs, the
path constraint generated cannot be solved automatically. For example, solving
sha256(x) == y would be very hard if y has a specific value. The hashing function
sha256 is specifically created such that it is hard to find an input x that leads to
a specific output y.

2.4 Verification

Verification is a method that strives to provide a proof that a given safety
property cannot be violated. Verification tools try to generate an abstraction of
the program that shows it is free of errors. Such a model of a program must
contain all executions possible in the program, if some executions are missing
those could be the ones that lead to an error.

Concretely, a model could be a control flow graph containing predicates
about the state of variables at each program point. An example model for the
code in Figure 2.3 can be seen in Figure 2.4. Execution starts in START and ends
if the ERROR or EXIT statements are reached. Edges correspond to statements
and nodes simply record predicates about the state of the program variables at
that point. It can be seen that the model records that when node 1 is reached,
the variables x and y must be different. It is not possible to verify that ERROR
is unreachable since the underlying code from Figure 2.3 indeed contains an
error.

A tool could try to construct a precise model of the program, a model
that contains a path if and only if that path is possible in the program. Such
models tend to capture too many constraints about the program, some of which
might not be needed to check a given safety property. Since model checking in
general is undecidable we know that such models are often too complex to verify.
Instead, verification tools tend to create over-approximate abstractions that are
simpler but contains executions that are not possible in the actual program. If it
is possible to show that an over-approximate abstraction is error-free, then the
program must also be error-free, since the program is contained in the model.

If, however, the model includes a path that leads to an error, it is uncertain
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0
START

1
x  y

if x  y

4

 if x = y

2
 x  y ∧ 2x = x+10  

 if 2x = x+10

 if 2x  x+10

3
ERROR

if true if false

5
EXIT

return 0

Figure 2.4: Abstraction that models the code in Figure 2.3. The condition inside
assert false has been negated and a special ERROR node has been added. Notice
that node 4 cannot limit the values of x nor y since many executions paths with
different valuations of the variables join there.

if it signals a real error or if the path exists because the model is too coarse. If
such paths are reported as errors, some of them can be spurious: verification
is complete but usually not sound. Verification tools usually start with a very
coarse abstraction and then try to refine it by pruning spurious paths that leads
to an error.

The tools SLAM [A1] and BLAST [A3] take verification to the next level.
They both start with a coarse abstraction of the program. The tools then search
for paths leading to errors in their abstract model of the program. If no such
paths exist, they are done. However, when a path exists in their abstractions,
they check if that path is feasible in the original program by executing the path
symbolically and using a constraint solver to validate the constraints generated.
If the path is feasible, they have found a true error. If the path is not feasible,
then their abstractions are too coarse and they refine their abstractions with
new predicates. Such tools are both sound and complete, but unfortunately
will not always halt with an answer. Both SLAM and BLAST have small sources
of unsoundness and incompleteness in them. For example, BLAST does not
model integer overflow, some infeasible paths cannot be proved as such by their
decision procedures, and SLAM uses a logical model of memory where pointer
arithmetic is ignored.

2.5 Synergy

SYNERGY is a predecessor to DASH and builds on lightweight symbolic exe-
cution and testing from CUTE and verification methods as used in SLAM and
BLAST. SYNERGY maintains both an under-approximation like CUTE but also
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maintains an over-approximation of the program like SLAM and BLAST. The over-
approximation is used to guide what tests to execute while the tests guide which
refinements of the abstraction are to be made. In a sense the two techniques
work together in synergy, thereby the algorithm’s name.

The algorithm first finds a path to an error in the over-approximation and
then tries to create concrete input to the procedure-under-test such that at least
one unexplored step in the path is executed. If SYNERGY is not able to generate
such input, it removes the path from the over-approximation. If SYNERGY is
able to move at least a single step forward, it concretely executes the program
and thereby increases the under-approximation. SYNERGY is able to analyze
single-procedure C programs with integer variables and arithmetic.

2.6 DASH

DASH [A2] builds on the ideas of SYNERGY [A5]. DASH can additionally handle
interprocedural programs with pointers and has a more efficient implementation.
As in SYNERGY, DASH maintains an over- and under-approximation of the
program being tested.

There are three possible outcomes of executing DASH on a program instru-
mented with a safety property: 1) DASH never halts and executes forever, 2)
DASH halts and reports that the safety property is violated and 3) DASH states
that the program never violates the safety property. If DASH reports that the
safety property is violated, then DASH has found a concrete execution the causes
a safety property violation. If DASH reports that the safety property is never
violated then the over-approximation is a proof thereof, since the states violating
the property are no longer present in the over-approximation. This implies that
DASH is both sound and complete, if it terminates.

Our presentation of the DASH algorithm is fundamentally different from the
original presentation in the DASH article [A2]. Our presentation tries to remove
points of confusion while also adding missing details that are not described
properly in the article.

To run DASH on a program instrumented with a safety property, as was
described in Section 2.1, one constructs the initial over-approximate abstraction
and runs DASH on it. The abstraction of the program is initially equivalent
to the control flow graph of the program where variables are not constrained
yet. When given the abstraction, DASH will perform the same operations as
SYNERGY does. It will first try to find a path in the abstraction that leads to an
error. It will check if the path is feasible in the original program at least one step
beyond a so-called frontier. If the path is feasible, it will be executed concretely
and DASH will detect if an error was reached during execution. If the path is not
feasible, the over-approximation will be refined to remove the infeasible path.
If DASH is not able to find a path to an error in the over-approximation, the
program satisfies the safety property.

DASH as presented by the DASH article can load test input for concrete
executions when starting up, such that the under-approximation can be kick-
started. In this presentation this technique has been left out as it only serves as
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an optimization.
Our presentation of DASH is broken up into two implementations:

1. DASHint is an implementation that can handle a single procedure which is
allowed to take integer arguments, perform integer arithmetic but it is not
allowed to call other procedures. DASHint is essentially equivalent to the
SYNERGY algorithm.

2. DASHcall is an extension of DASHint that can also handle calls to other
procedures. Only the main procedure may use the error statement. This
limitation can be rectified by using global variables and checking them in
the main procedure. See Section 4.6 for how this could be done.

We describe each of these implementations separately, starting with DASHint
in Chapter 3. DASHcall is explained in Chapter 4.
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Chapter 3

Analyzing integer programs
with DASHint

This chapter presents the DASHint algorithm, which is able to analyze single
procedure integer programs and thus constitutes a subset of the DASH algorithm.

DASHint is divided into multiple procedures that together implement the
DASHint algorithm. The main procedure of DASHint is DashLoop. It calls other
procedures which in turn may again call other procedures. Figure 3.1 shows the
call hierarchy for each procedure of the DASHint algorithm and in which section
the procedure is described.

The next sections describe what types of programs DASHint handles and the
key region graph data structure. Afterwards the algorithm itself is presented
starting with the DashLoop procedure. Then all sub procedures of DashLoop
are described, excluding ExtendFrontier and its sub procedures, which has been
given their own sections because of their importance. After all of the procedures
used by DASHint have been explained, we perform a complete walk through
of how DASHint analyzes the example procedure abs introduced in Chapter 2.
Finally, we describe key problems encountered and changes we have made to
implement DASHint in Section 3.8.

DashLoop
Section 3.3

FindAbstractErrorPath
Section 3.3.1
ConvertToRegionTraceWithAbstractFrontier
Section 3.3.2
ExtendFrontier
Section 3.4

ExecuteSymbolic
Section 3.5
IsSAT
Section 3.4.1
RefinePred
Section 3.6

WP
Section 3.6.1

RunTest
Section 3.3.3
IsErrorRegionReached
Section 3.3.4
RefineGraph
Section 3.3.5

Figure 3.1: Overview over called procedures in DASHint. The procedures are
listed in call order. For example DashLoop calls ExtendFrontier before RunTest.
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〈expr〉 ::= 〈operand〉
| ’-’ 〈operand〉
| 〈operand〉 〈binop〉 〈operand〉

〈binop〉 ::= ’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’~’ | ’ˆ’ | ’|’ | ’&’ | ’�’ | ’�’ | ’≫’

〈cond〉 ::= ’true’
| ’false’
| 〈operand〉 〈cond-op〉 〈operand〉

〈cond-op〉 ::= ’==’ | ’6=’ | ’<’ | ’>’ | ’≤’ | ’≥’

〈operand〉 ::= 〈identifier〉
| 〈constant〉

Figure 3.2: Grammar showing the allowed forms for expressions and conditionals.

3.1 Program structures supported by DASHint

This section describes in detail what types of programs DASHint analyzes and
what are assumed about them.

DASHint analyzes programs instrumented with error statements that are
executed whenever a desired safety property has been violated. Thus the safety
property itself is never passed to DASHint and the objective is instead to ensure
that no error statements are reachable. This type of program transformation
was presented in Chapter 2, Figure 2.1.

The program P is restrained to a single procedure where the following
statements are allowed:

• Assignments of the form v := e where v is a local variable and e is an
expression.

• Conditionals of the form if c goto l where c is a conditional expression and
l is a program location.

• An error statement.

The return statement is allowed but seen as no-operation statement. Expres-
sions and conditionals are restricted to simple forms and a grammar is given in
Figure 3.2. The expressions and conditionals are constrained, such that they
are side effect free and cannot be nested.

Nested expression or expressions with side effects can be rewritten to simple
expressions by introducing new temporary variables. The while and for loop
constructs can be desugared into if c goto l and goto l statements. Simple goto l
statements can be modeled using if true goto l.

The example procedure abs from Figure 2.2, here reproduced as Figure 3.3a,
functions as a running example program for explaining DASHint. Notice that
the program is not written in a form that DASH can analyze. Translating it to a
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int abs ( int a )
{

i f ( a < 0)
a = −a ;

assert a ≥ 0 ;
return a ;

}

(a) DASHint example
procedure abs.

int abs ( int a )
{

i f a ≥ 0 goto l 1 ;
a = −a ;

l 1 :
i f a ≥ 0 goto l 2 ;
e r r o r ;

l 2 :
return a ;

}
(b) Desugared version of abs.

Figure 3.3: (a) shows the abs procedure in a non-desugared version. (b) shows
the same procedure but desugared into a form that DASHint accepts.

version that can be analyzed is straightforward since the if statement can easily
be converted to an if c goto l statement and the assert statement is analogues
to an if with an error statement inside. The raw desugared version, which can
be analyzed by DASH, is shown in Figure 3.3b.

3.2 Region Graph
A region graph is the central data structure used by DASH. It models both the
over-approximation and under-approximation of the reachable state space. A
region graph is essentially the same as the example abstraction mentioned in
Section 2.4 used by verification tools, but with the added feature that it also
contains concrete executions that represent the under-approximation. In the
DASH paper the under-approximation is contained in a separate data structure
called a forest. We chose to embed the states from the forest directly into the
region graph, due to frequent lookup of which states that are contained in a
region.

A region graph is a set of nodes and edges. Nodes are called regions and
model a set of states that satisfy the predicate that is attached to the region.
Edges between nodes are labeled with the program statements. Initially the
region graph is equivalent to the control flow graph for the program. The first
region is called the initial region, which is the region that exists before any
statements have been executed. If a region has an outgoing edge labeled with
an error statement, the region is termed an error region. Our regions keep the
edges with an error statement, but these could have been removed and concrete
execution would have to halt if an error region was reached.

When creating a region graph, if c goto l statements become two edges with
assumes, one with assume c and the other with assume ¬c. When presenting the
graphs, the following conventions apply:

• Regions are displayed as boxes, and edges between them correspond
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to potential program state transitions. Regions initially have a unique
identification number assigned but it is only used for presenting the graphs.
Edge labels correspond to statements in the program.

• For assume c statements, only the condition c is written as edge labels to
preserve space. To distinguish them from other edge labels, the condition
c is written with a blue font.

• The initial region is colored gray. The special error regions, the regions
before an error statement, are colored red. Regions and edges that cannot
be reached from the initial region are colored yellow. Unreachable error
regions are colored light red.

• A region models all states that satisfies the attached predicate. An
example predicate could be a > 0. Predicates are shown below the region
identification number. If the region predicate is true, which is trivially
satisfied by all states, it is omitted for brevity.

• Regions can have concrete states attached to them originating from a
concrete execution of the procedure. The list of states are shown in
curly braces {. . . }, with individual states in square brackets [. . . ]. They
constitute the under-approximation maintained by DASH. A number #n
represents how many statements have been executed before reaching the
state. An example state could be #3[a 7→ 0]. Without #n it can be hard
to distinguish states inside a loop from each other.

Figure 3.4a shows the initial region graph for the abs procedure presented in
Figure 3.3a. Notice that the region graph is identical to the control flow graph
of the program.

Figure 3.4b shows the region graph after a test has been executed and the
concrete states have been added to the region graph. It can be seen that abs was
called with a 7→ 0. It can also be seen that the error region has not been reached
by the test, since the error region contains no states. The concrete states of a
particular concrete execution are linked together as a doubly-linked list. It is
therefore possible to find both the parent and child state of a particular state.

Formally, let Σ be the state space for a procedure P . It contains all the
different valuations of the variables known by P . Program state can be altered
when statements are executed which naturally defines a function →: Σ → Σ
from one state to another for P .

The region graph models equivalence classes of states Σ', such that states in
an equivalence class are thought to have the same properties. An example could
be that all states with x > 0 are modeled to be in the same equivalence class.
Figure 3.4c shows how such equivalence classes can be expressed in the region
graph. Region 2 has been split into two. One with the predicate a < 0 and
the other with the negation a ≥ 0. The region with the predicate a ≥ 0 cannot
enter the error region 3, since an edge has been removed. The edge would have
been labeled with an assume a < 0 statement, which cannot be satisfied under
the condition a ≥ 0.
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(c) With predicates, splitting
region 2

Figure 3.4: (a) shows the initial region graph for the abs procedure seen in
Figure 3.3a. (b) shows how states from a concrete execution are added to the
region graph. It can be seen that abs was called with a 7→ 0. (c) shows how
equivalence classes of states are modeled in the graph, here by splitting region 2.

Edges in the region graph correspond to possible state changes between
equivalence classes and we denote the edges →': Σ' × Σ'.

When DASH begins execution, the region graph is equivalent to the control
flow graph of the program and all regions contain the single predicate true,
which allows any variable to take any value. Whenever the DASH algorithm
refines the abstraction, a region is split into two using a predicate that is suitable
for refinement. The main algorithm, including refinement, will be explained in
the following sections.

3.3 The main loop

DashLoop is the main loop of DASHint and pseudocode is provided in Algo-
rithm 3.1. It takes a procedure P and a region graph G as input and will return
pass or fail depending on whether an error region is reachable. If it reports a
failure, it will also return the input values needed to reach the error region. In
case the program passes, the refined region graph will be returned as proof of
the error region being unreachable.

DashLoop starts by calling FindAbstractErrorPath to find an abstract error
path τ in the region graph G that leads to an error region. Whenever we refer to
a path or write τ it is the abstract error path returned by FindAbstractErrorPath
we are referring to. If FindAbstractErrorPath is unable to find a path that leads
to an error region, then the graph G proves that no error state is reachable in
P since G is an over-approximation of P . If a path is found, then ConvertToRe-
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Algorithm 3.1 DashLoop(P,G = 〈Σ',→'〉)
Returns:
(fail, t), where t is a list of input values for reaching error; or
(pass, G), where G is a proof that the error cannot be reached.

1: loop
2: τ := FindAbstractErrorPath(G)
3: if τ = no-path then
4: return (pass, G)
5: end if
6:
7: τc := ConvertToRegionTraceWithAbstractFrontier(τ,G)
8: 〈t, ρ〉 := ExtendFrontier(τc, P )
9: if t 6= unsat then
10: G := RunTest(t, P,G)
11: if IsErrorRegionReached(G) then
12: return (fail, t)
13: end if
14: else
15: G := RefineGraph(ρ, τc, G)
16: end if
17: end loop

gionTraceWithAbstractFrontier finds the last region in the abstract error path τ
with a concrete state. This region is denoted Sk−1. The state found in Sk−1 is
followed back to the initial region and this leads to the trace 〈S0, . . . , Sk−1〉 that
constitutes the first part returned by ConvertToRegionTraceWithAbstractFrontier.
The last part of the trace is the region in τ right after Sk−1 which we denote
Sk. The edge between Sk−1 and Sk is termed the frontier. The new trace
τc = 〈S0, . . . , Sk−1, Sk〉, returned by ConvertToRegionTraceWithAbstractFrontier,
is created in this way such that the trace leading up to the frontier is known to
be feasible. If the trace is found infeasible, it must be because of the frontier
edge. Whenever we refer to a trace or use the symbol τc, then we are referring
to the trace returned by ConvertToRegionTraceWithAbstractFrontier.

The next step is to attempt to extend the frontier by finding a test input
that will cross the frontier edge when executed concretely. This will bring
us at least one step closer to the error region and to showing that the error
region is reachable. The ExtendFrontier procedure attempts to find such test
input, but if such a test does not exist, it finds a predicate that can be used to
refine the region graph, such that the current trace τc is eliminated from G. If
ExtendFrontier finds a test input, then it will return the pair 〈t, true〉, where t is
the input values that will push execution over the frontier edge. RunTest is used
to execute the test on an instrumented version of P , where for each executed
statement the concrete state of the variables is saved in the reached region. An
updated region graph is returned from RunTest, with the new concrete states
added.

If an error region is reached during concrete execution, then RunTest has
added a state to it. The procedure IsErrorRegionReached returns true if there is
an error region that contains a concrete state. If IsErrorRegionReached returns
true then the input values t must be the input that led to the error being reached.
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Sk-1
ρk-1

Sk

−→
Sk-1

k-1∧
Sk-1

k-1∧¬

Sk

Figure 3.5: Refinement process of region Sk−1, which contains the region predicate
ρk−1, using the refinement predicate ρ. Notice that the region with ¬ρ added has
the edge to region Sk removed.

This is evident since the error regions are checked after each RunTest invocation,
and thus before RunTest was called with t, the error regions did not contain
any states. Therefore the concrete state must have arisen because of the latest
RunTest invocation with t as input.

Even if the test did not reach the error region sought by the path τ , the
frontier has been advanced and concrete states will have come closer to the
error region. Given that FindAbstractErrorPath uses a deterministic graph search
algorithm, which is not a requirement, the same abstract path will be found in
the next iteration of DashLoop. However ConvertToRegionTraceWithAbstract-
Frontier will find a longer trace where the frontier has been pushed forward.
Remember that the last test crossed the last frontier, and therefore a state
was added to region Sk. This pushes the next frontier found by ConvertToRe-
gionTraceWithAbstractFrontier forward by at least one region and in this way
progress is achieved.

If ExtendFrontier is not able to find a test input, then it returns a suitable
refinement predicate ρ. The definition of a suitable refinement predicate is
provided in Section 3.6, but the basic property is that it excludes the current
trace τc and if the predicate is not satisfied at region Sk−1 then region Sk cannot
be reached. RefineGraph refines the region graph by using these properties of the
refinement predicate. Specifically it splits region Sk−1 into two. One which has
the refinement predicate ρ added and one with the negation ¬ρ added. Because
of the properties that ρ has, the region with ¬ρ added cannot reach Sk and
therefore the edge to Sk is removed. The refinement process of splitting region
Sk−1 into two can be seen in Figure 3.5 and is also explained in greater detail
in Section 3.6.

The resulting graph is a better approximation of the program. The graph
reflects that to follow the edge (Sk−1, Sk) then ρ must be satisfied. DashLoop
starts the next iteration and tries to find a new abstract error path to the error
region, since the current one has now been eliminated.

DashLoop has now been described. We now begin to describe the procedures
that DashLoop calls, starting with FindAbstractErrorPath.
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path 〈0, 2, 3〉
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Figure 3.6: (a) shows the region graph for the abs procedure in Figure 3.3a where
abs has been called with the concrete input a 7→ 0 and concrete states have been
added to the graph. (b) shows the abstract error path with dashed red lines found
by FindAbstractErrorPath. (c) shows the path converted to a trace. The part that
follows a concrete execution is shown with green edges while the frontier edge is
shown in red.

3.3.1 FindAbstractErrorPath

The goal of FindAbstractErrorPath is to find a path in the region graph G from
the initial region to an error region. If the error regions are unreachable, then the
special value no-path is returned. The DASH article does not describe how the
path should be found. It could be implemented using a standard breadth-first
search from the initial region, stopping when an error region is encountered.

One could also use a depth-first search, and this should not make a difference
to how DASH works. However, for a developer, it is most beneficial to describe
the shortest path leading to an error, instead of a longer one involving irrelevant
operations.

Figure 3.6a shows the region graph for the abs procedure after an initial
test has been executed, without reaching the error region. The path 〈0, 2, 3〉 is
shown in Figure 3.6b using dashed red edges (- - -). It is the shortest abstract
error path found by FindAbstractErrorPath using a breadth-first algorithm. By
convention, whenever we present a path in a region graph, the path is always
shown using dashed red edges.

The path is converted by ConvertToRegionTraceWithAbstractFrontier to a
trace that follows a concrete execution. We describe ConvertToRegionTraceWith-
AbstractFrontier in the next section.
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3.3.2 ConvertToRegionTraceWithAbstractFrontier

ConvertToRegionTraceWithAbstractFrontier is responsible for converting an ab-
stract error path τ into a trace that follows a concrete execution for as long as
possible, and then takes one extra step in the direction of the abstract error
path. This is completed by finding the last region in τ that contains a state,
which we name Sk−1 for the region and sk−1 for the particular state. If the
region contains multiple states, then the newest one is chosen. The reason for
picking the newest state is described in Section 3.8.7.

The parent relationship of sk−1 is used to search backwards to the initial
region and the execution trace 〈s0, . . . , sk−1〉 is obtained. It is assumed that
one can find the regions which the states are attached to, such that the trace
〈S0, . . . , Sk−1〉 of regions can be obtained. This is the part of the trace that
follows a concrete execution. Notice that 〈S0, . . . , Sk−1〉 might not follow the
path taken by τ , which we describe in Section 3.8.6. Next the frontier edge is
added, by adding region Sk, which is the region located after region Sk−1 in
the abstract path. The trace τc = 〈S0, . . . , Sk−1, Sk〉 is returned. The frontier is
unexplored in the sense that no concrete test have ever crossed that particular
edge in the abstraction.

Figure 3.6c shows the trace τc = 〈0, 2, 3〉 found when the path shown in
Figure 3.6b is converted. The part of the trace 〈S0, . . . , Sk−1〉 that follows a
concrete execution is shown using green edges while the frontier (Sk−1, Sk) is
shown in red. The path τ , from which τc is created, is nearly always longer
than τc. The only case where they have the same length, is when Sk is an error
region and Sk−1 already contains a state from a concrete execution. In the cases
where the path is longer than the trace, the remaining part of the path, the part
from region Sk to the error region, is shown using red dashed edges (- - -) to
aid the reader in where the path τ sought to reach. Thus, the reader should
remember that when a trace τc is depicted in a figure, then the dashed lines are
not part of the trace.

The reason that DASH converts an abstract error path into a region trace
with a frontier is because then it is known that the part of the trace that follows
a concrete execution is feasible. Thus DASH knows that region Sk−1 is reachable.
If DASH finds that the whole trace is infeasible, then DASH knows that it is the
frontier edge that made it infeasible. Then the frontier is refined by RefineGraph,
as explained later in Section 3.3.5, such that the trace τc is excluded from the
region graph and the abstraction is made more precise.

The first time an abstract error path τ is converted to a trace τc there are
no regions in G that has been reached by concrete execution. For this case
ConvertToRegionTraceWithAbstractFrontier assumes that there is a concrete state
in the initial region, even though there is not. The trace τc does then only
contain the frontier edge, which is the first edge contained in the path τ . This
assumption is not problematic since all test executions start in the initial region
and therefore trivially reaches it.
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3.3.3 RunTest

RunTest is responsible for executing a procedure P concretely and record the
concrete states for each executed statement. RunTest is given a list of input
values t, the procedure P and the graph G. It runs a concrete test on P with t
as input. During execution the state of the variables is recorded and added to
the graph G. The concrete states are later used to check if the test reached an
error region and to compute traces as described in Section 3.3.2.

The states can be recorded by executing an instrumented version of P and
recording concrete values of variables at each program point. Alternatively one
could simulate the code and then record the state at each step in the simulator.

Common for both solutions are that they need to follow the concrete execution
in the region graph to insert the states in the correct regions. For example, if
execution is at a region which has multiple outgoing edges, RunTest needs to
figure out what edge the current concrete execution takes. Since the equivalence
classes modeled are disjoint there is only a single edge that can be traversed. To
check if an assume c edge is traversable, the conjunction of the region predicate
and the condition c has to evaluate to true by inserting the concrete values of
all variables into them. For assignment edges the state needs to be updated
first and then the region predicates can be evaluated, to find the single one that
evaluates to true.

The implementation of DASH in YOGI used a simulator to both concretely
execute tests and to perform symbolic execution, whereas our Java implemen-
tation uses an instrumented version to execute the test [A2]. We describe our
RunTest implementation in Section 5.4.

3.3.4 IsErrorRegionReached

IsErrorRegionReached is responsible for checking if an error region has been
reached. IsErrorRegionReached takes as input the region graph G. It then runs
through all regions and checks if a concrete state has been added to an error
region, in which case the error region has been reached. If a state is found in
an error region then the procedure returns true, otherwise it returns false. The
pseudocode for IsErrorRegionReached is shown in Algorithm 3.2. Notice that the
syntax let 〈_, states〉 = S is used to unpack region S into its region predicate
and its contained states. However, an underscore _ is used to denote that the
region predicate is unused for this particular procedure.

To prevent an expensive search through all regions an actual implementation
should maintain a set of error regions and only loop through that particular set
to check if one of them contains a newly added state. Another solution could be
to let RunTest report if an error region was reached during execution. RunTest
could do this be setting a flag if it adds a state to an error region.

3.3.5 RefineGraph

RefineGraph is responsible for altering the region graph such that a trace τc that
was found infeasible, i.e. test input could not be generated for it, is removed from
the graph and therefore from the over-approximation. A suitable refinement
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Algorithm 3.2 IsErrorRegionReached(G = 〈Σ',→'〉)
Returns:
true, if a test has reached an error region; or
false, if no test has.

1: for S ∈ Σ' do
2: let 〈_, states〉 = S
3: if IsErrorRegion(S) ∧ states 6= ∅ then
4: return true
5: end if
6: end for
7: return false

predicate is used to refine the region graph. How the suitable refinement
predicate is obtained is described in Section 3.6.

RefineGraph takes as input an infeasible trace τc, a suitable refinement
predicate ρ and the region graph G to refine. The pseudocode for RefineGraph
is given in Algorithm 3.3.

Algorithm 3.3 RefineGraph(ρ, τc = 〈S0, . . . , Sk−1, Sk〉, G = 〈Σ',→'〉)
Returns: 〈Σ',→'〉, the refined region graph.
1: let 〈ρk−1, states〉 = Sk−1
2:
3: if k = 1 then . Initial region refinement
4: return 〈Σ',→' \(S0, S1)〉
5: end if
6:
7: Σ∗' := Σ' \ {Sk−1} . Remove Sk−1
8: →∗':=→' \{(S, Sk−1) | S ∈ Parents(Sk−1)}
9: →∗':=→∗' \{(Sk−1, S) | S ∈ Children(Sk−1)}
10:
11: ρ∗k−1 := Simplify(ρk−1 ∧ ¬ρ)
12: S∗k−1 := 〈ρ∗k−1, states〉
13: Σ∗' := Σ∗' ∪ {S∗k−1} . Insert S∗k−1
14: →∗':=→∗' ∪{(S, S∗k−1) | S ∈ Parents(Sk−1)}
15: →∗':=→∗' ∪{(S∗k−1, S) | S ∈ Children(Sk−1)}
16:
17: ρ∗∗k−1 := Simplify(ρk−1 ∧ ρ)
18: S∗∗k−1 := 〈ρ∗∗k−1, ∅〉
19: Σ∗' := Σ∗' ∪ {S∗∗k−1}
20: →∗':=→∗' ∪{(S∗∗k−1, S) | S ∈ Children(Sk−1)}
21: if IsSAT(ρ∗∗k−1) 6= unsat then . Add incoming edges if ρ∗∗k−1 is satisfiable
22: →∗':=→∗' ∪{(S, S∗∗k−1) | S ∈ Parents(Sk−1)}
23: end if
24:
25: →∗':=→∗' \{(S∗k−1, Sk)} . Remove frontier edge from S∗k−1
26: return 〈Σ∗',→∗'〉

Lines 3-5 handle the special case of refining the initial region. We first
describe the general refinement idea and will come back to this special case
afterwards.

The general idea is to split the region before the frontier edge, such that the
equivalence class modeled by that region is split into two: one class that will
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not enter the region after the frontier and one class that might enter it. This
is completed by using the given suitable refinement predicate ρ. RefineGraph
creates two new regions that contain the same predicate as the original, but
where one region has ρ added and one has ¬ρ added. Thus the equivalence
class is split into two. The frontier edge is removed from the region that has ¬ρ
added as that edge is now impossible to follow, because of the properties of ρ.

More formally, a refinement at the frontier edge (Sk−1, Sk) is completed by
splitting region Sk−1 into two. Let ρk−1 be the region predicate of Sk−1 and let
states be the concrete states attached to the region. We can then write region
Sk−1 as Sk−1 = 〈ρk−1, states〉. When region Sk−1 is split, two new regions are
created: S∗k−1 = 〈ρk−1∧¬ρ, states〉 and S∗∗k−1 = 〈ρk−1∧ρ, ∅〉. Notice that region
S∗k−1, which has ¬ρ added as a predicate, contains all the concrete states that
was attached to region Sk−1. The reason for this is that RefinePred, as described
in Section 3.6, computes a refinement predicate that moves all the concrete
states to S∗k−1. The two new regions replace the region Sk−1 that was split. The
refinement process was depicted in Figure 3.5, when DashLoop was described.

Lines 7-9 in the pseudocode remove the split region Sk−1 from the region
graph. Lines 11-15 create and insert region S∗k−1. Lines 17-23 insert region S∗∗k−1.
As can be seen in lines 11 and 17, the predicates attached to the new regions are
simplified. We elaborate on how these predicates are simplified in Section 3.8.3.
Simplification is optional but can be used to keep the predicates concise.

In some cases there are no states that can satisfy the predicate ρk−1∧ρ added
to region S∗∗k−1. Thus the equivalence class that is modeled is empty. In other
words the predicate ρk−1 ∧ ρ is unsatisfiable and thus equivalent to false. This
is detected in line 21 with a call to IsSAT, which returns unsat if the predicate
is unsatisfiable. For this case we add the region to the graph but refrain from
adding incoming edges. The region is thus carved out of the graph and becomes
unreachable. Had we added the incoming edges then FindAbstractErrorPath
would be able to find a path through the region. Without this check some
programs are refined infinitely, as we describe in Section 3.8.3. We could have
removed the region altogether, however, we keep it as it makes it easier to
interpret a series of graphs when regions are not disappearing.

Refinement of the initial region

We have had troubles with how DASH, as described in the DASH article, handles
refinements of the initial region. We elaborate on this in Section 3.8.10.

When RefineGraph refines an outgoing edge from the initial region, the edge
is removed without splitting the initial region. This is completed in lines 3-5 in
the RefineGraph pseudocode.

In general, if there exists only one path that can reach an edge, and have
it as the frontier, then if the path is found infeasible, the edge can be removed
altogether. Since no other paths can lead to it, no harm has been made by
removing it. If another path could lead down to the edge, then that path may
lead to a different state that could allow the edge to be traversed. We require
that only one path leads to the initial region, and then removing the edge when
refining the initial region is a valid refinement.
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There are cases where the initial region may be reached by more than one
trace. For example, when the initial region is part of a loop, a trace could reach
the initial region by taking x iterations of the loop. Thus more than one trace
lead to the initial region. For such cases we could hoist the initial region by
constructing a dummy initial region above with an assume true edge leading to
the original initial region.

Refinement example

Figure 3.7 provides an example of refinement. Figure 3.7a shows the trace
τc = 〈0, 2, 3〉 that is being analyzed. The trace is found to be infeasible due to
two inconsistent assumptions on the edges, and region 2 is split in two. The
result of the split is seen in Figure 3.7b. The two regions, marked with red
borders, are those that were created from the split of region 2. The refinement
predicate ρ = a<0 was used to perform the split and it is placed on one of the
regions while the negation ¬ρ = a≥0 is placed on the other region. The region
with ¬ρ added has had the frontier edge removed. Thus there is no edge from it
to region 3 anymore.

The trace τc = 〈0, 2:a<0〉 found in the refined graph can be seen in Fig-
ure 3.7c. Since there are two regions with region number 2 we disambiguate
the regions by additionally specifying the region predicate using the syntax
regionNumber:predicate. The new trace passes through the region with ρ
added. As can be seen, the frontier edge has been pushed one step backwards
in the trace compared to the trace in Figure 3.7a.

3.4 ExtendFrontier
ExtendFrontier takes as input a trace τc constructed by ConvertToRegionTrace-
WithAbstractFrontier and the procedure P . It either returns a test input that
follows τc, which effectively advances the frontier closer to the error region, or
if such a test input does not exist, it returns a suitable refinement predicate
that is used by RefineGraph to eliminate the trace from the region graph. The
pseudocode for ExtendFrontier is given in Algorithm 3.4.

ExtendFrontier starts by having the trace τc symbolically executed by calling
ExecuteSymbolic. The call results in the path constraint φ, that models the
requirements for executing the trace τc up to and including the frontier in the
program P . The path constraint is passed to a SAT solver with a call to the
IsSAT procedure. The SAT solver attempts to find values for all the variables
referenced in the constraint, such that the path constraint φ is satisfied. If the
SAT solver succeeds in finding such values, then those are assigned to t. The
test input t includes all the arguments needed to call P such that the trace τc is
executed. The test input t is returned as 〈t, true〉.

If the SAT solver was unable to satisfy the constraint then unsat is re-
turned by IsSAT. The procedure RefinePred is then called to compute a suitable
refinement predicate ρ, which is returned as 〈unsat, ρ〉 from ExtendFrontier.

The smaller sub procedure IsSAT is described next whereas the larger Exe-
cuteSymbolic is described in Section 3.5. RefinePred is described in Section 3.6.
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(c) New trace

Figure 3.7: (a) shows an example region graph before refinement. DASH tries
to find a test that crosses the frontier marked with the red edge into the error
region but the trace is infeasible and the graph is refined. (b) shows that region
2 has been split and ρ = 0 < a has been added to right region and ¬ρ has been
added to the left region. (c) shows the trace found in the next iteration. The
frontier edge has been pushed backwards.

Algorithm 3.4 ExtendFrontier(τc, P )
Returns:
〈t, true〉, if the frontier can be extended; or
〈unsat, ρ〉, if the frontier cannot be extended
1: φ := ExecuteSymbolic(τc, P )
2: t := IsSAT(φ, P )
3: if t = unsat then
4: ρ := RefinePred(τc)
5: else
6: ρ := true
7: end if
8: return 〈t, ρ〉

3.4.1 IsSAT

IsSAT takes as input the path constraint φ and the procedure P . It then tries
to find an assignment of values to the variables in the constraint, such that
the constraint is satisfied. This is completed by using a theorem prover. The
DASH implementation in YOGI and our own implementation of DASH use the Z3
theorem prover1.

If the constraint can be satisfied, then the values of all the variables are
extracted and returned. If the constraint cannot be satisfied, then unsat is
returned to signal that no assignment to the variables could satisfy the constraint.

Sometimes the parameters of procedure P are not mentioned in the path
1Z3 can be found at http://z3.codeplex.com/
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constraint φ. This occurs when a parameter has not been used in any assume
statements in the trace. However, an argument value is required for RunTest to
be able to concretely execute P . For this case, IsSAT is given the procedure P
such that it can find the missing parameters and give them a default value of
zero.

3.5 ExecuteSymbolic
ExecuteSymbolic is responsible for executing a trace τc symbolically and thereby
computing the path constraint φ, that should be feasible if and only if it is
possible to execute τc, including the frontier, in P . ExecuteSymbolic maintains
two pieces of information:

• A map S from symbolic variables to symbolic expressions. The notation
S := S [f 7→ q] overwrites S ’s entry for f , such that f now has the value q.

• A path constraint φ, which accumulates individual path constraints and
region predicates that are encountered during symbolic execution of τc.

The pseudocode for ExecuteSymbolic is provided in Algorithm 3.5. The
algorithm has two main parts: 1) initialization (lines 1-3) and 2) execution of the
trace τc (lines 4-13). As can be seen, the auxiliary sub procedure SymbolicEval
is called throughout the code. The next section describes SymbolicEval and
thereafter the two main parts of ExecuteSymbolic are presented in detail.

Algorithm 3.5 ExecuteSymbolic(τc = 〈S0, . . . , Sk〉, P )
Returns: φ, the path constraint for reaching and crossing the frontier
1: let 〈ρ0,_〉 = S0
2: S := [v 7→ v0 | v ∈ params(P )]
3: φ := SymbolicEval(ρ0, S)
4: for i = 0 to k − 1 do
5: op := Op(Si, Si+1)
6: match op
7: case(v := e):
8: S := S [v 7→ SymbolicEval(e, S)]
9: case(assume c):
10: φ := φ ∧ SymbolicEval(c, S)
11: let 〈ρi+1,_〉 = Si+1
12: φ := φ ∧ SymbolicEval(ρi+1, S)
13: end for
14: return φ

3.5.1 SymbolicEval
SymbolicEval takes two arguments, where the first is an expression, which can
be a region predicate, a conditional expression, or an arithmetic expression. The
second argument is the symbolic map S which functions as is the environment that
the first argument is to be evaluated under. The return value is a symbolically
evaluated expression.
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Example arguments to SymbolicEval could be the region predicate or condi-
tional expression a > 2 and the map S = {a 7→ 4}. In this example SymbolicEval
will replace a with 4, returning the predicate 4 > 2.

An arithmetic example could be the expression x + 1 and the map S =
{x 7→ (a+ 4) ∗ 3}. When the expression is symbolically evaluated it becomes
(a+ 4) ∗ 3 + 1. Thus, SymbolicEval simply substitutes variables mentioned in an
expression with their symbolic expressions in the map S .

3.5.2 Initialization of symbolic execution

Initialization of ExecuteSymbolic is completed by the lines 1-3 in Algorithm 3.5.
The region predicate ρ0 is unpacked from region S0 in line 1. An initial symbolic
variable v0 are assigned to each of the input variables v ∈ params(P ) in line 2.
Line 3 assigns the symbolically evaluated region predicate of S0 to the path
constraint φ. Notice that in DASHint, the predicate attached to region S0 is
always true due to how RefineGraph handles refinement of the initial region
described in Section 3.3.5. However, in DASHcall initial regions can have non-true
predicates assigned to them, and we therefore symbolically executes them in
DASHint as well.

3.5.3 Executing the trace τc
The for loop in lines 4-13 is responsible for executing τc, which includes the
frontier. If the statement is an assignment statement v := e, then e is evaluated
by SymbolicEval and the resulting expression is used to update the symbolic map
S for the variable v. This occurs in lines 7-8. Lines 9-10 detect if the statement
is an assume c statement, in which case the condition c is symbolically evaluated
by SymbolicEval and the result is added to the path constraint φ. Additionally,
all region predicates on the path are evaluated and added to the path constraint
φ in line 12.

The path constraint φ is returned in line 14. At this point φ is the full path
constraint for following the complete trace τc. One should notice that if the
frontier edge in τc is not included in φ, then φ is guaranteed to be satisfiable.
The reason is that the trace τc up until the frontier follows a concrete execution,
which assures that the path constraint is satisfiable. An example of symbolic
execution is presented in the next section.

3.5.4 Examples of symbolic execution

This section contains two examples for symbolic execution. The first example
emphasizes what the symbolic map S contains and how it is updated. The
second example executes a trace and constructs the path constraint φ for it.

Symbolic map example

The first example is the symbolic execution of the code in Figure 3.8a. Figure 3.8b
contains a table describing the symbolic map after each statement. The first
entry in the table shows the initialization of the symbolic map S . The parameter
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1 int i n c ( int a )
2 {
3 int q := a ;
4 int r := q + 1 ;
5 return r ;
6 }

(a) Example program

Line number S after executing statement
2 (initialization) {a 7→ a0}
3 {a 7→ a0, q 7→ a0 }
4 {a 7→ a0, q 7→ a0, r 7→ a0 + 1 }
5 {a 7→ a0, q 7→ a0, r 7→ a0 + 1 }

(b) Memory map S

Figure 3.8: (a) shows an example program and (b) shows the contents of the
symbolic memory map S after each line has been symbolically executed.

0 {#0[a 0], #0[a -1]}

1 {#1[a -1]}

a < 0

2 {#1[a 0], #2[a 1]}
a  0

a  0

5 {#3[a 0], #4[a 1]}

a := -a

2
a < 0

a := -a

3

4 {#2[a 0], #3[a 1]}

error

return a

a  0

a < 0

a  0

Figure 3.9: The trace used as an example to show symbolic execution. The green
part of the trace comes from following a concrete execution whereas no concrete
states have crossed the red frontier statement. The red dashed line originates
from the abstract error path, from which the trace was generated and is included
only to show the direction the path was headed.

a is given the initial symbolic variable a0. When the assignment in line 3 is
executed, the symbolic map is updated by adding the mapping q 7→ a0. When
executing r := q + 1, the symbolic map is updated again such that r 7→ a0 + 1.
Notice that q was symbolically executed, inserting the value a0 in its place.

Symbolically executing a trace

This example will symbolically execute a trace in the abs procedure. The trace
executed is τc = 〈0, 1, 2:a<0〉, as shown in Figure 3.9.

First, initialization is performed. The first step is to initialize the symbolic
map S with initial symbolic variables for each parameter. The abs procedure
only takes a as an input parameter. The symbolic map S is therefore initialized
to {a 7→ a0}. The next step is to symbolically evaluate the region predicate for
region 0, which is true. After symbolic evaluation the expression is still true,
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which is the value φ is initialized to in line 3 of ExecuteSymbolic.
The first iteration of the for loop starts by executing the green edge (0, 1),

which includes an assume a < 0 statement. Symbolically evaluating the expres-
sion yields a0 < 0. The expression is added to the path constraint φ which
becomes true ∧ a0 < 0. The last step of the for loop is to symbolically evaluate
the region predicate from region 1, which is true and adding it to φ yields true
∧ a0 < 0 ∧ true.

The second iteration of the for loop executes the edge (1, 2:a<0) with the
assignment a := −a. SymbolicEval symbolically evaluates the expression −a,
which results in −a0 and assigning it to a updates the symbolic map S such
that it becomes {a 7→ −a0}. The region predicate a < 0 is then symbolically
evaluated to −a0 < 0 and added to φ. The final path constraint φ returned
by ExecuteSymbolic is true ∧ a0 < 0 ∧ true ∧ − a0 < 0. Simplifying the
path constraint φ, by removing the redundant true predicates from it, yields
a0 < 0 ∧ −a0 < 0. This captures the constraints that need to be satisfied by a
given value for a0 if the trace seen in Figure 3.9 is to be followed.

3.6 RefinePred

RefinePred is called by ExtendFrontier when the path constraint φ for a trace τc
has been found unsat. Thus the trace is infeasible and RefinePred’s task is to
find a suitable refinement predicate that can be used by RefineGraph.

RefinePred takes as input the trace τc that has been found infeasible. This
implies that the frontier could not be crossed. RefinePred must find a suitable
refinement predicate ρ that eliminates any future concrete executions along τc.
The refinement predicate is used to split region Sk−1, the region before the
frontier, into two new regions S∗k−1 and S∗∗k−1 as described in Section 3.3.5. The
pseudocode for RefinePred is provided in Algorithm 3.6. Lines 4-8 provide a
loop optimization, which is explained in Section 3.6.3.

Algorithm 3.6 RefinePred(τc = 〈S0, . . . , Sk−1, Sk〉)
Returns: ρ, a suitable predicate for refinement.
1: let 〈_, statesk−1〉 = Sk−1
2: let 〈ρk,_〉 = Sk
3: op := Op(Sk−1, Sk)
4: if op matches assume c then
5: if k > 1 ∧ ∀s ∈ statesk−1 : Eval(¬ρk, s) = true then
6: return ρk
7: end if
8: end if
9: return WP(op, ρk)

A suitable predicate ρ must have the following characteristics with respect to
the trace τc, that has the frontier edge (Sk−1, Sk), before it is a good candidate
for a refinement predicate:

1. All concrete executions that follow τc must satisfy ¬ρ∧ρk−1 at Sk−1. Sk−1
is the region before the frontier and ρk−1 is the region predicate of Sk−1.
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2. It is not possible to reach the region after the frontier Sk for any execution
that reaches S∗k−1, which has the predicate ¬ρ ∧ ρk−1. Therefore the edge
between S∗k−1 and Sk can be removed.

Ignoring the loop optimization in lines 4-8, RefinePred always returns the
weakest precondition computed by the procedure WP. The next section describes
how the weakest precondition ρwp is computed. After having introduced the
weakest precondition we argue that ρwp is a suitable predicate.

3.6.1 Weakest precondition computed by WP

The goal of the WP procedure is to compute the weakest precondition for a
postcondition p and an operation op. It has two properties:

• It is a precondition, such that if ρwp = WP(op, p) holds before op then p
holds after op has been executed.

• It is the weakest of all preconditions, such that for all other preconditions
P ′ that holds for op and p, then P ′ implies ρwp.

There are only two possible operations in DASHint, namely assignments v := e
and assume c statements.

For assignments, WP is calculated by replacing the assigned variable v in p
with e, which is written as p[e/v]. Calculating the weakest precondition for the
assignment x := 4 with the postcondition z > x proceeds like:

WP(x := 4, z > x) −→ (z > x)[4/x]
−→ z > 4

For assume c statements, the condition c is added to p: WP(assume c, p) =
c ∧ p. For example:

WP(assume x > 4, x < 10) −→ x > 4 ∧ x < 10

Notice that the DASH article uses a special procedure WPα where aliasing
is considered. DASHint does not support pointers and therefore aliasing cannot
occur which simplifies WP considerably.

The pseudocode for WP is shown in Algorithm 3.7. We argue in the next
section that the weakest precondition ρwp is a suitable predicate.

Algorithm 3.7 WP(op, p)
Returns: ρwp, the weakest precondition for op, such that p evaluates to true after executing
op.
1: match op
2: case(v := e):
3: return p[e/v]
4: case(assume c):
5: return c ∧ p
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3.6.2 The weakest precondition is a suitable predicate

The classical weakest precondition ρwp can be used as a suitable predicate:

1. We know that no execution of τc is able to cross the frontier since we
were not able to find a test input with the SAT solver in ExtendFrontier.
Assume for contradiction that there exists an execution in τc that satisfies
ρwp at Sk−1, then that execution would be able to cross the frontier, by
the definition of ρwp. The SAT solver would then have found the input,
but the SAT solver did not find such an input. Therefore no concrete
execution in τc satisfies ρwp and consequently all concrete executions that
follow τc must satisfy ¬ρwp at region Sk−1.

2. Let s be a state that satisfies ¬ρwp and let ρk be the region predicate on
region Sk. Assume for contradiction that ρk is satisfied after executing
the frontier operation op, when in the state s. Let then Ps be a predicate
that is only satisfied by s. Ps is then a precondition for op and ρk, due
to the assumption that s satisfies ρk after having executed op. Since
Ps is a precondition, and ρwp is the weakest precondition, then by the
definition of a weakest precondition, Ps implies ρwp, which means that s
must satisfy ρwp. This is a contradiction, since we assumed that s satisfied
¬ρwp. Therefore no state can satisfy ¬ρwp and satisfy ρk after executing
op, which was the frontier operation. The result is that there are no
possible transitions from region Sk−1, with the predicate ¬ρwp added, to
region Sk.

The definition of suitable predicates mentions the region predicate ρk−1 from
region Sk−1. However, ρk−1 has been left out of the argumentation for ρwp since
any state that reaches Sk−1 must trivially satisfy ρk−1 because it is the region
predicate.

The predicate ρwp, computed by the procedure WP, is therefore a suitable
predicate and can be returned for use in RefineGraph.

3.6.3 RefinePred loop optimization

As seen, the weakest precondition for an assume c statement WP(assume c, p)
is c ∧ p. During refinement of a loop, the condition of the loop or any other
condition inside the loop will thus always be added for each round of the loop
that the trace follows. However, there are properties where the work performed
inside the loop is irrelevant for the safety property being checked. DASH may
try more and more iterations of the loop to reach the safety property, but as
mentioned, sometimes the loop is irrelevant for the safety property. This can
keep DASH refining infinitely as we describe in Section 3.8.8.

To overcome this special case, DASH uses a trick. When computing the
refinement predicate for an assume c statement, DASH tries to see if the region
predicate ρk from region Sk is strong enough to be used as a refinement predicate.
It thus tries to see if the assume condition c can be ignored.

Checking if the region predicate is strong enough is performed by evaluation.
DASH checks if each of the concrete states contained in Sk−1 satisfies the condition
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¬ρk. If this is the case, then the region predicate may be able to satisfy the first
condition of a suitable predicate. Only the currently known states in Sk−1 are
checked to see if they are moved to S∗k−1 with ¬ρk, and thus not all states that
can be obtained by following the trace τc are guaranteed to be moved. Thus
the region predicate is not guaranteed to be a suitable predicate. The second
condition of a suitable predicate is satisfied. No state that satisfies ¬ρk is able
to satisfy ρk. Thus, the region after the frontier cannot be reached from S∗k−1
with ¬ρk added.

The loop optimization is disallowed when refining an outgoing edge from
the initial region. The reason why is described in Section 3.8.9. The loop
optimization could also result in an infinite refinement loop in DASHcall, if the
loop optimization is allowed on the initial region. This problem is described in
Section 4.7.1.

The requirements for using the loop optimization is checked in RefinePred
lines 4 and 5, and if satisfied the region predicate is returned in line 6.

There are of course cases where the assume c condition is required for the
analysis. If this is the case, then DASH will find it at a later point. This is
evident since if the same edge becomes a frontier at a later point, then a state
must exist in the region before it. The state must satisfy the region predicate
ρk that was previously returned by the loop optimization. Thus, this time
the region predicate ρk cannot be strong enough to move all states to S∗k−1.
RefinePred cannot use the loop optimization and is forced to use the weakest
precondition returned by WP wherein the assume condition is added.

3.7 Complete example
At this point all the procedures that DASHint uses have been presented. This
section describes in detail how the abs procedure, shown again for convenience in
Figure 3.10a, is analyzed by DASHint. As should already be evident, abs contains
an overflow error where passing the smallest value of an integer to abs will result
in an error.

Initially the DASH algorithm starts by constructing the region graph for the
abs procedure. The resulting graph is shown in Figure 3.10b.

3.7.1 First iteration – Execute a test

DASHint starts by trying to find an abstract error path to an error region and finds
τ = 〈0, 2, 3〉 which is depicted in Figure 3.10c as red dashed lines. The abstract
error path τ is converted by ConvertToRegionTraceWithAbstractFrontier to a
trace τc that follows a concrete execution trace. Such a concrete execution does
not yet exist and as a special case, ConvertToRegionTraceWithAbstractFrontier
returns the trace τc = 〈0, 2〉 where the initial region 0 is assumed to have a
concrete state even though it does not. The trace is depicted in Figure 3.10d.
Notice that the dashed red line is not part of τc, but it shows the path from
which τc was generated.

At this point DASHint calls ExtendFrontier with the trace τc which in turn
calls ExecuteSymbolic. ExecuteSymbolic starts by assigning all input variables a
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int abs ( int a )
{

i f ( a < 0)
a = −a ;

assert a ≥ 0 ;
return a ;

}

(a) abs procedure

0

1

a < 0

2

a  0

5

a := -a

3

4

error

return a

a < 0

a  0

(b) Initial

0

1

a < 0

2

a  0

5

a := -a

3

4

error

return a

a < 0

a  0

(c) Error path

0

1

a < 0

2

a  0

5

a := -a

3

4

error

return a

a < 0

a  0

(d) Trace

0 {#0[a 0]}

1

a < 0

2 {#1[a 0]}

a  0

5 {#3[a 0]}

a := -a

3

4 {#2[a 0]}

error

return a

a < 0

a  0

(e) First test

0 {#0[a 0]}

1

a < 0

2 {#1[a 0]}

a  0

5 {#3[a 0]}

a := -a

3

4 {#2[a 0]}

error

return a

a < 0

a  0

(f) Error path

0 {#0[a 0]}

1

a < 0

2 {#1[a 0]}

a  0

5 {#3[a 0]}

a := -a

3

4 {#2[a 0]}

error

return a

a < 0

a  0

(g) Trace

0 {#0[a 0]}

1

a < 0

2 {#1[a 0]}
a  0

a  0

2
a < 0

a  0

5 {#3[a 0]}

a := -a a := -a

3

4 {#2[a 0]}

error

return a

a  0

a < 0

a  0

(h) Refinement

0 {#0[a 0]}

1

a < 0

2 {#1[a 0]}
a  0

a  0

2
a < 0

a  0

5 {#3[a 0]}

a := -a a := -a

3

4 {#2[a 0]}

error

return a

a  0

a < 0

a  0

(i) Trace

0 {#0[a 0]}

1

a < 0

2 {#1[a 0]}
a  0

a  0

5 {#3[a 0]}

a := -a

2
a < 0

a := -a

3

4 {#2[a 0]}

error

return a

a  0

a < 0

a  0

(j) 4th iteration

0 {#0[a 0], #0[a -1]}

1 {#1[a -1]}

a < 0

2 {#1[a 0], #2[a 1]}
a  0

a  0

5 {#3[a 0], #4[a 1]}

a := -a

2
a < 0

a := -a

3

4 {#2[a 0], #3[a 1]}

error

return a

a  0

a < 0

a  0

(k) 5th iteration

0 {#0[a 0], #0[a -1], #0[a -2147483648]}

1 {#1[a -1], #1[a -2147483648]}

a < 0

2 {#1[a 0], #2[a 1]}
a  0

a  0

5 {#3[a 0], #4[a 1], #5[a -2147483648]}

a := -a

2 {#2[a -2147483648]}
a < 0

a := -a

3 {#3[a -2147483648]}

4 {#2[a 0], #3[a 1], #4[a -2147483648]}

error

return a

a  0

a < 0

a  0

(l) Error region reached

Figure 3.10: Example graphs for the abs procedure.
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symbolic free variable, such that the symbolic map contains the mapping a 7→ a0.
When symbolically executing τc it evaluates the assume a ≥ 0 statement and
inserts a0 in place of a. Thus ExecuteSymbolic returns the predicate φ = a0 ≥ 0.
No region predicates are added since these are all true.

DASHint now needs to check if the predicate φ can be satisfied. It uses a SAT
solver via the IsSAT call. Since a0 ≥ 0 is satisfiable IsSAT returns a valuation of
the variables, and in this case it returns [a0 7→ 0]. This makes ExtendFrontier
return with the result 〈[a0 7→ 0], true〉.

DashLoop checks whether the test input could be generated by ExtendFrontier,
and in this case it could. The test input [a0 7→ 0] is given to RunTest, which runs
an instrumented version of abs that records the concrete states found during
execution.

RunTest starts by adding the initial state to the first region. From the initial
region it is possible to transition to either region 1 or region 2. RunTest looks at
the assume statements and the region predicates in the regions and evaluates
the predicates. Since only a ≥ 0 evaluates to true, the next region that RunTest
transitions to must be region 2. RunTest continues the execution by finding the
regions that are reached and adding the concrete state to them, which results in
Figure 3.10e. Since a test was executed IsErrorRegionReached is called to check
if the error region was reached during testing. It returns false since no states
are attached to the error region. This concludes the first iteration.

3.7.2 Second iteration – Infeasible trace refined

We are now at a point where DASHint have expanded the under-approximation
of the program by executing a concrete test. As we shall see in this iteration,
the under-approximation dictates where the graph is refined by having moved
the frontier forward.

DASHint starts by finding the same abstract error path as in the first iteration,
which is depicted in Figure 3.10f. The only difference is that this graph contains
concrete states, and this affects how ConvertToRegionTraceWithAbstractFrontier
creates the trace τc. The first region with states, found by searching backwards in
the abstract error path, is region 2. The concrete execution that leads to region 2
is spliced together with the step 〈2, 3〉 which is the frontier, yielding τc = 〈0, 2, 3〉
depicted in Figure 3.10g. The green part follows a concrete execution while the
red edge is the frontier. Notice that the frontier has been pushed forward by
the RunTest execution made in the first iteration.

At this point DASHint calls ExtendFrontier which in turn calls ExecuteSymbolic.
The initial value a0 is then added for the input variable a such that the symbolic
map contains a 7→ a0. The first step in the trace adds a0 ≥ 0 to φ and the second
step adds a0 < 0. These predicates are clearly in conflict and IsSAT therefore
returns unsat signaling that the predicates are unsatisfiable. The trace τc was
therefore infeasible and no input could be generated that would follow it. Since
the path leading up to the frontier is certainly feasible, as it followed a concrete
execution, we know that it is the frontier edge that made the trace infeasible.
At this point RefinePred is called to generate a refinement predicate. RefinePred
calls WP with the assume a < 0 statement and region 3, which is the region
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after the frontier edge. WP now finds the weakest precondition for the region
predicate true in region 3, that holds when executing the statement assume
a < 0. In this case the weakest precondition is the assume statement predicate,
namely ρ = a < 0. Notice that the loop optimization mentioned in Section 3.6
was not used in this case, since the region predicate for region 3 was true, which
is not strong enough to be used as a refinement predicate.

The predicate ρ found by RefinePred is returned to DashLoop which calls
RefineGraph. RefineGraph splits region 2 into two new regions, one with ρ added
and one with the negation ¬ρ added. The region with ¬ρ keeps all concrete
states from region 2 and the edge between it and region 3 is removed. The
resulting graph can be seen in Figure 3.10h.

3.7.3 Third iteration – Refinement

The graph has been refined and an infeasible trace has been removed, however
there are still paths that lead to the error region. We have shown the path, the
trace and the resulting region graph for the first two iterations of DASHint. For
brevity the next iterations will only show the trace.

The path found by the procedure FindAbstractErrorPath is τ = 〈0, 2:a<0, 3〉
that is converted to the trace τc = 〈0, 2:a<0〉 depicted in Figure 3.10i. This
trace is infeasible since the first edge contains an assume a ≥ 0 and the predicate
in region 2 specifies a < 0, which is the negation. For this case WP returns
a < 0 ∧ a ≥ 0 as the refinement predicate, which is equivalent to false. The
loop optimization is not attempted to be used by RefinePred, since the edge
is going out from the initial region. However, when refining the initial region,
as performed by RefineGraph, the edge is simply removed and the refinement
predicate is not used. The refined graph, with the frontier edge removed, can
be seen in Figure 3.10j. Notice that the trace and path for the next iteration is
also shown.

3.7.4 Fourth iteration – Execute a test

In this iteration, ConvertToRegionTraceWithAbstractFrontier returns the trace
τc = 〈0, 1〉 shown in Figure 3.10j. ExecuteSymbolic returns the path constraint
φ = a0 < 0, which originates from the assume a < 0 statement between the
regions.

When the path constraint is given to IsSAT it returns the solution [a0 7→ −1]
which will cross the frontier. Afterwards, DASH calls RunTest that runs the
concrete test. When RunTest reaches region 1, the statement a := −a is executed
and a becomes 1. Therefore RunTest ends up in region 2:a≥0, which leads away
from the error region. This is not a problem, since we only required the test
to reach the region after the frontier. The resulting graph, where RunTest has
completed its execution, can be seen in Figure 3.10k. The error region has not
been reached by concrete execution and therefore DASH continues to the next
iteration.
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3.7.5 Fifth iteration – Reach the error region

The previous iteration executed a test which added a concrete state to region
1 that results in the frontier being pushed forward. The trace found is τc =
〈0, 1, 2:a<0〉, which is depicted in Figure 3.10k.

The trace is symbolically executed by passing it to ExecuteSymbolic. Notice
that this exact trace was used as an example for symbolic execution in Sec-
tion 3.5.4. The path constraint φ generated in the example, and thus for this
trace, is a0 < 0 ∧ −a0 < 0.

When the path constraint is given to IsSAT it finds the solution [a0 7→
−2,147,483,648], which is the smallest possible value of an 32 bit integer vari-
able. One would think that −(−2,147,483,648) is positive with the value of
2,147,483,648, but the constraint requires that it is negative. The problem is that
the largest possible value an integer variable can take is one less of 2,147,483,648.
The expression −a0 actually overflows with exactly one, such that −a0 = a0.
Thus a0 7→ −2,147,483,648 is a valid solution.

Calling RunTest executes the test and the resulting graph is shown in Fig-
ure 3.10l. It can be seen that the error region now contains a concrete state
and IsErrorRegionReached thus returns true, making DASH report that the error
region is reachable with an input value of −2,147,483,648.

This concludes the complete example and the description of DASHint. DASHint
is able to prune edges from the graph, such that it is not possible to reach the
error region, and the program is then correct, or it might be able to direct a test
such that the error region is reached, in which case the program violates the
safety property with which it was instrumented. The last option is that DASHint
keeps analyzing forever.

The next sections describe the challenges and modifications we have made
while implementing DASHint.

3.8 Challenges and modifications

This section describes challenges we have encountered while implementing
DASHint and what modifications we have made to it compared to how DASH is
presented in the DASH article [A2].

3.8.1 Combined data structure: Region graph

Our presentation of DASH uses a region graph for both the over- and under-
approximation. The DASH article keeps the concrete states in a so-called
forest. The reason that they term it a forest, is probably because they have
nondeterminism in their programs and as such two executions with the same
input variables may follow different execution paths. Since our programs do not
contain any non-determinism we do not need a forest.

When converting an abstract error path to a trace we need to find the last
region that contains a concrete state. This means that if we kept states in a
separate data structure we would somehow need to know which region a given
state belongs to. It therefore did not make sense to keep them divided from
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each other. Our presentation has been simplified significantly by having states
directly attached to the regions in the region graph.

In fact, without non-determinism, it does not make sense to execute a test
with the same input values more than once, and therefore we have an error-check
in our implementation that makes sure that when executing a test, then the test
has never been executed before.

3.8.2 Ambiguity: Using Si both for regions and predicates

The DASH article uses Si both as a region, as in a trace S0, . . . , Sn, and as
a predicate as in S0 ∧ ρ. This is evident when looking at the use of Si in
Algorithm 3.8 and Algorithm 3.9. Since this is sometimes confusing we have
removed such ambiguities from our presentation. Instead we explicitly unpack
our regions Si to retrieve the region predicate ρi, or the states statesi, using the
syntax:

let 〈ρi, statesi〉 = Si

3.8.3 RefineGraph: UNSAT regions have incoming edges removed

The DASH article refines the region graph directly inside the DashLoop procedure.
We have extracted the relevant pseudocode and presented it in Algorithm 3.8.
Remember that states are not attached to the graph in the original DASH article,
and as such their algorithm does not move the states.

Algorithm 3.8 RefineGraphoriginal(ρ, τc = 〈S0, . . . , Sk−1, Sk〉, G = 〈Σ',→'〉)
Returns: 〈Σ',→'〉, the refined graph.
1: Σ' := (Σ' \ {Sk−1}
2: ∪{Sk−1 ∧ ρ, Sk−1 ∧ ¬ρ}
3: →' := (→' \{(S, Sk−1) | S ∈ Parents(Sk−1)})
4: \{(Sk−1, S) | S ∈ Children(Sk−1)}
5: →' := →' ∪{(S, Sk−1 ∧ ρ) | S ∈ Parents(Sk−1)}
6: ∪{(S, Sk−1 ∧ ¬ρ) | S ∈ Parents(Sk−1)}
7: ∪{(Sk−1 ∧ ρ, S) | S ∈ Children(Sk−1)}
8: ∪{(Sk−1 ∧ ¬ρ, S) | S ∈ (Children(Sk−1)\{Sk})}
9: return 〈Σ',→'〉

The pseudocode in Algorithm 3.8 is very specific in how the edges of the graph
are updated. Nevertheless the graph is not refined like shown in Algorithm 3.8
in their DASH implementation.

We have found, by personal correspondence with the authors of DASH that
they deviate from their pseudocode in two fundamental ways:

1. They simplify region predicates when the predicate is altered.

2. If a region predicate is equivalent to false they remove the region from the
graph.

We have added those missing details to our RefineGraph pseudocode as
presented earlier in Algorithm 3.3.
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A question that rises is how DASH simplifies the predicates. According to the
authors they use a simplifying routine in the Z32 theorem prover to discover if a
predicate is equivalent to false. However, there are two such routines, one which
is a fast bottom-up rewriter and a second much more expensive implementation
called ctx-solver-simplify. The first can perform simple rewrites while the other is
much more powerful and will simplify more complex predicates3. We have found
that the first implementation is not good enough to simplify the predicates to
false where needed, so they must be using the second. The DASH article is very
clear in that it uses only one SAT call for each iteration. However, simplifying
a predicate using ctx-solver-simplify is so slow, nontrivial and complex that we
believe such a call is computationally equivalent to a SAT call. We have, in our
implementation, frequently observed that ctx-solver-simplify is as slow as many
of our SAT calls. Timing information is provided in Section 5.7.

The pseudocode in Algorithm 3.3 for RefineGraph calls a Simplify routine,
but also uses the IsSAT routine to check if the predicate is equivalent to false.
In our implementation we use ctx-solver-simplify for the Simplify operation. We
do this since we have found that the ctx-solver-simplify routine has been able to
simplify all predicates we have seen to false whenever IsSAT says a predicate is
unsatisfiable. However, the pseudocode uses the IsSAT call since the contract
for a satisfiability checker is to return unsat when a predicate cannot be solved.
It is not clear if ctx-solver-simplify will always return false when a predicate is
unsatisfiable. In our implementation we check that if ctx-solver-simplify does
not simplify to false, then IsSAT has a solution to the predicate. The price is a
significant slowdown of our implementation, but since this study is not about
speed, we have kept it as an assertion.

3.8.4 Confusing terminology: ordered path and unused parts

The DASH article uses the term ordered path τo about what we call the region
trace with abstract frontier τc, or in short form the trace τc. We never found a
reason to why they call τo ordered. It is a list of regions that follows a concrete
execution and regions from the rest of the abstract error path, but that does
not make it ordered. We have therefore chosen to use the term trace instead.

We also slightly altered what a trace is. The DASH article has an ordered
path τo = 〈S0, . . . , Sk−1, Sk, . . . Sn〉 which is a concatenation of regions that
follow a concrete execution 〈s0, . . . , sk−1〉 and the rest of the abstract error
path 〈Sk, . . . , Sn〉. However, only the frontier edge from the abstract error path,
located at (Sk−1, Sk), is used by DASH. We found it confusing to create a trace
where the last part 〈Sk+1, . . . , Sn〉 is never used, and as such we have chosen
to only include the single edge that becomes the frontier. This has simplified
the pseudocode in that we do not need to call an auxiliary Frontier procedure
to determine where the frontier edge is located in τo. The frontier edge in our
trace τc is always the last edge.

2Z3 can be found at http://z3.codeplex.com/
3Answer by Z3’s author on http://stackoverflow.com/a/14058292/477854
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3.8.5 ExecuteSymbolic: assignments added to path constraints

The original version of ExecuteSymbolic, altered to how we present pseudocode,
can be seen in Algorithm 3.9. Notice that they do not have local variables, only
heap pointers. There are multiple differences between this code and how we
presented ExecuteSymbolic in Algorithm 3.5. First of all they execute the trace
up until the frontier in one loop and then execute the frontier statement for
itself. We also need to do this in the DASHcall algorithm, which is presented
in Chapter 4. They return two predicates φ1 and φ2, but they are only used
together in the call to IsSAT. There is no technical reason to keep them apart.
However, for presentation purposes it could be helpful to point out to the reader
that φ1 is a constraint that can always be solved, since it originates from a
concrete execution, but together with φ2 it might be unsatisfiable. We joined
them together such that φ = φ1 ∧ φ2.

Algorithm 3.9 ExecuteSymbolicoriginal(τc = 〈S0, . . . , Sk〉, P )
Returns: 〈φ1, S , φ2〉.
1: S := [v 7→ v0 | ∗v ∈ inputs(P )]
2: φ1 := SymbolicEval(S0, S)
3: φ2 := true
4: i := 0
5: while i 6= k − 1 do
6: op := Op(Si, Si+1)
7: match op
8: case(∗m=e):
9: S := S [SymbolicEval(m, S) 7→ SymbolicEval(e, S)]
10: case(assume c):
11: φ1 := φ1 ∧ SymbolicEval(c, S)
12: i := i+ 1
13: φ1 := φ1 ∧ SymbolicEval(Si, S)
14: end while
15: op := Op(Sk−1, Sk)
16: match op
17: case(∗m := e):
18: φ2 := φ2 ∧ ∗(SymbolicEval(m, S)) = SymbolicEval(e, S)
19: S ′ := S [SymbolicEval(m, S) 7→ SymbolicEval(e, S)]
20: case(assume c):
21: φ2 := φ2 ∧ SymbolicEval(c, S)
22: S ′ = S
23: φ2 := φ2 ∧ SymbolicEval(Sk, S ′)
24: return 〈φ1, S , φ2〉

The predicate that the authors of DASH gives to IsSAT is µ = φ1∧S∧φ2 where
every entry in the symbolic map S is seen as an equality predicate. Because
the map S is from before the frontier edge has been symbolically executed, they
add the equality predicate for frontier assignments in line 18 in Algorithm 3.9.
It makes no sense to include S when we only consider local variables, and as
such the constraint we give to IsSAT is µ = φ1 ∧ φ2 which is equivalent to
our definition of φ. We have not yet discovered why S in µ is needed, but
from personal correspondence with the authors, we believe it is related to heap
aliasing constraints.
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3.8.6 Problem: Should the trace τc follow the path τ

The quote below is from the DASH article and it explains how they convert what
we call an error path into a trace, which is what ConvertToRegionTraceWithAb-
stractFrontier does:

“The auxiliary function GetOrderedAbstractTrace converts an arbi-
trary abstract trace τ into an ordered abstract trace τo. This works
by finding the last region in the abstract trace that intersects with
the forest F , which we call Sf . The algorithm picks a state in this
intersection and follows the parent relation back to an initial state.
This leads to a concrete execution s0, s1, . . . , sk−1 that corresponds
to an abstract trace S0, S1, . . . , Sk−1 where Sk−1 = Sf . By splicing
together this abstract trace and the portion of the abstract error
trace from Sf to Sn, we obtain an ordered abstract error trace. It
is crucial that the ordered abstract error trace follows a concrete
execution up to the frontier, as this ensures that it is a feasible trace
up to that point.”4

From the quote it seems rather clear that to convert an error path to a trace
one goes backwards in the path and finds the first region that contains a concrete
state. However, we have seen instances where the trace found s0, s1, . . . , sk−1
does not follow the error path S0, S1, . . . Sn.

A small example is shown in Figure 3.11. The path found in Figure 3.11b is
τ = 〈0, 1, 3, 4〉 while the trace follows a different route τc = 〈0, 1, 2, 1, 3, 4〉 shown
in Figure 3.11c. It seems counterintuitive that the trace follows a different set
of edges compared to the path from which it is constructed.

We were in doubt if the trace should always follow the path from which
it was constructed. It led us to implement at version where the traces always
followed the path. However, the implementation failed in numerous of our test
cases due to timeouts and this is also evident for the path in Figure 3.11b. If
the trace needs to follow the path, we can only generate a trace τc = 〈0, 1, 3〉
where the frontier is the edge (1, 3). However, the trace is clearly infeasible,
since it is not possible to take zero iterations of the while loop. Eventually the
DASH algorithm will have refined the region graph such that a trace to the error
region 4 can be created. However, if we change the while condition from i < 1
to i < 1000, then the algorithm becomes painfully slow. In this case it needs
to refine the graph so many times, that only a trace that takes 1000 iterations
of the loop leads to the error region. If we allow the trace to follow a path
different from the abstract error path, then we can immediately generate a test
by choosing the state that exists in region 3. This observation allows us to
conclude that the trace τc is allowed to follow a different path compared to the
error path τ .

4Page 8 in DASH [A2]
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void f oo ( int a )
{

int i = 0 ;
while ( i < 1)

i = i + 1 ;
assert ( a < 0 ) ;

}

(a) Example code

0 {#0[a 0]}

1 {#1[a 0, i 0], #3[a 0, i 1]}

i := 0

6 {#6[a 0, i 1]}

2 {#2[a 0, i 0]}

i := (i + 1)i < 1

3 {#4[a 0, i 1]}

i  1

4

5 {#5[a 0, i 1]}

error

return

a < 0

a  0

(b) Error path τ

0 {#0[a 0]}

1 {#1[a 0, i 0], #3[a 0, i 1]}

i := 0

6 {#6[a 0, i 1]}

2 {#2[a 0, i 0]}

i := (i + 1)i < 1

3 {#4[a 0, i 1]}

i  1

4

5 {#5[a 0, i 1]}

error

return

a < 0

a  0

(c) The trace τc found

Figure 3.11: (a) shows a small example where the code has been borrowed from
SYNERGY and altered. (b) shows a path in the region graph where one test with
a 7→ 0 has been executed. The trace found is shown in (c). Notice that the trace
does not strictly follow the path in (b).

3.8.7 Problem: Which state to pick when creating traces

The previous section described that when converting an abstract error path
to a trace, one searches back in the path to find the first region that contains
concrete states. The DASH authors wrote the following about choosing a state
in that region:

“The algorithm picks a state in this intersection and follows the
parent relation back to an initial state.”5

Bold text has been added to highlight that the DASH article is vague in how
a state is picked. If there is only a single state in a region, then it is obvious that
one should use that state to construct the trace from. However, it is unclear
which state should be used to construct the trace when there are multiple to
pick from. From a correctness perspective it does not matter which state is
picked, eventually the algorithm will lead to the same answer. We have thought
of multiple different strategies to pick the state:

• Pick a random state

• Pick the last state (which our implementation does)

• Pick a state that enters the sought region

Since we did not know how to pick a state, we initially picked a random state
as the state to generate the trace from. This works well for many test cases.
However, there are cases where picking a random state seems counterintuitive.

5Page 8 in DASH [A2]
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void f oo ( )
{

int a = 1 ;
int i = 0 ;
while ( i < 1000)

i = i + 1 ;
i f ( a == 0)

e r r o r ;
}

(a) Example code

0 {#0[]}

1 {#1[a 1]}

a := 1

7 {#2005[a 1, i 1000]}

2    1001x

i := 0

5

6 {#2004[a 1, i 1000]}

error

4
a = 0

a = 0

a  0

return

i  1000

3    1000x

i < 1000

4 {#2003[a 1, i 1000]}
a  0

i  1000i := (i + 1)

a  0

(b) Error path τ

0 {#0[]}

1 {#1[a 1]}

a := 1

7 {#2005[a 1, i 1000]}

2    1001x

i := 0

5

6 {#2004[a 1, i 1000]}

error

4
a = 0

a = 0

a  0

return

i  1000

3    1000x

i < 1000

4 {#2003[a 1, i 1000]}
a  0

i  1000i := (i + 1)

a  0

(c) Many choices for τc

Figure 3.12: Example where many different traces can be generated by picking
different states of region 2 in (b).

Figure 3.12 shows such an example. The code is shown in Figure 3.12a and
it should be clear that the error statement cannot be reached. At one point
in DASHint the path in Figure 3.12b needs to converted to a trace. There are
1001 states in region 2 from which a trace can be generated. All of them are
infeasible, when the frontier edge (2, 4:a=0) is added, but it should be noted
that one of them stands out. 1000 of the states are infeasible since they take less
than the required iterations of the while loop. One state, the last state, takes
the required 1000 iterations of the loop, but it is still infeasible because of the
region predicate a = 0, which originates from region 4:a=0.

In the above example it does not make a difference which state is picked,
since all of them will result in the same refinement of the graph. However, it
seems counterintuitive to choose traces that are clearly not feasible. We should
pick a state that optimizes the chances for the trace to be feasible. Given the
example we choose to always use the last state to generate the trace τc from.
Using this implementation we get the trace τc = 〈0, 1, 2, (3, 2)1000, 4〉 which is
shown in Figure 3.12c. Using this heuristic we always choose to generate a trace
from the newest test execution and therefore from the last iteration of loops.

One idea that we had, but did not implement, was to look through all the
states and find one that enters a region with the same region number as the
region we seek to enter. For example, in Figure 3.12b we seek to enter region
4 with the predicate a = 0. However, no states actually lead there yet (as the
frontier edge leads there). Instead, we can search for a state that is a good
candidate for reaching the region, and if a state enters one of the regions with
the region number 4, then it is a better candidate for reaching 4:a=0. In this
way, it is only the predicates on the regions that are different. Looking for states
that enters a region with the same identification number might help in cases
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where it is not the last state that enters the sought region.
For the example in Figure 3.12b, it would be the last state that is picked,

since it enters region 4, even though the concrete state in it satisfies a 6= 0,
which is the negated predicate from region 4:a=0. For this strategy we might
have multiple states that enters region 4, in which case one has to either pick
a random one or find a clever way to choose among them. However, since we
did not implement this strategy, we are not sure if it would bring improvements
over the strategy that picks the last state.

3.8.8 Problem: Infinite refinement without loop optimization

Our pseudocode for RefinePred, shown in Algorithm 3.6, includes a small test to
see if a weaker predicate can be used as the refinement predicate for assume c
edges. This loop optimization is mentioned in the evaluation section of the
DASH article, i.e. after the DASH authors have described their algorithm. They
write the following about the optimization:

“When faced with an if-branch in a program, DASH will perform
an inexpensive test to see whether the WPα of a weaker predicate,
one that ignores the branch condition, still satisfies the template
described in Figure 9. The effect of this optimization is that we avoid
getting “stuck” in irrelevant loops. We have left the consideration of
more thorough generalization techniques for future work.”6

When implementing DASHint we initially did not include the loop optimiza-
tion because it was mentioned so late in the paper. However, when we discovered
simple test cases that could not be solved without it, we felt forced to see if
the loop optimization would help DASH solve the test cases. It was not easy to
implement, as we show in Section 3.8.9.

A test case is shown in Figure 3.13a. The code sets a variable b to zero and
takes exactly one iteration in the while loop, which does not affect b. Afterwards
the error statement is executed if b is equal to one. Since b is never affected
after the initial assignment the error statement can never be reached. However,
without the optimization DASH keeps analyzing infinitely and creates graphs
such as the one seen in Figure 3.14b. We now show what difference the loop
optimization makes to the presented example.

Figure 3.13b shows a trace that is found when analyzing the code in Fig-
ure 3.13a. So far the loop optimization has not made any differences. For this
particular trace the refinement predicate returned by RefinePred differs when
the loop optimization is enabled.

Without the loop optimization, RefinePred returns the refinement predicate
b = 1∧ i ≥ 1. This refinement predicate contains both the region predicate b = 1
and the assume i ≥ 1 condition. The graph returned by RefineGraph, using the
refinement predicate, is shown in Figure 3.13c.

When the optimization is enabled the refinement predicate returned by
RefinePred is only the region predicate b = 1. It thus ignores the assume i ≥ 1

6Page 12 in DASH [A2]
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void t e s t ( )
{

int b = 0 ;
int i = 0 ;
while ( i < 1)

i++;
i f (b == 1)

e r r o r ;
}

(a) Example code

0 {#0[]}

1 {#1[b 0]}

b := 0

2 {#2[b 0, i 0], #4[b 0, i 1]}

i := 0

3 {#3[b 0, i 0]}

i := (i + 1)i < 1

4
b = 1

i  1

4 {#5[b 0, i 1]}
b  1

i  1

7 {#7[b 0, i 1]}

6 {#6[b 0, i 1]}

return

b  1 5

b = 1

b  1

error

(b) Before

0 {#0[]}

1 {#1[b 0]}

b := 0

2 {#2[b 0, i 0], #4[b 0, i 1]}
¬((and
  b = 1
  i  1))

i := 0

2
(and
  b = 1
  i  1)

i := 0

3 {#3[b 0, i 0]}

i := (i + 1)

i := (i + 1)

i < 1

4 {#5[b 0, i 1]}
b  1

i  1

7 {#7[b 0, i 1]}

6 {#6[b 0, i 1]}

return

4
b = 1

b  15

b = 1

b  1

error

i < 1

i  1i  1

(c) After without opti-
mization

0 {#0[]}

1 {#1[b 0]}

b := 0

2
b = 1

3 {#3[b 0, i 0]}

i < 1

4
b = 1

i  1

4 {#5[b 0, i 1]}
b  1

i  1

i := 0

2 {#2[b 0, i 0], #4[b 0, i 1]}
b  1

i := 0 i := (i + 1)

i := (i + 1)

6 {#6[b 0, i 1]}

b  15

b = 1

7 {#7[b 0, i 1]}

return

i < 1

i  1

b  1 error

(d) After with optimization

0 {#0[]}

1 {#1[b 0]}
b  1

b := 0

2
b = 1

3 {#3[b 0, i 0]}
b  1

i < 1

4
b = 1

i  1

3
b = 1

i < 1

4 {#5[b 0, i 1]}
b  1

i  1

2 {#2[b 0, i 0], #4[b 0, i 1]}
b  1

i := 0

i := (i + 1)

6 {#6[b 0, i 1]}

b  1 5

b = 1

7 {#7[b 0, i 1]}

return

i < 1

i < 1

i  1 i := (i + 1)

i := (i + 1)

1
b = 1

i := 0

i := 0

b  1

error

(e) Later with optimization

0 {#0[]}

1 {#1[b 0]}

b := 0

2 {#2[b 0, i 0], #4[b 0, i 1]}
¬((and
  b = 1
  i  1))

i := 0

3 {#3[b 0, i 0]}
¬((and
  b = 1
  1  (1 + i)))

i := (i + 1) i < 1

3
(and
  b = 1
  1  (1 + i))

i < 1

4 {#5[b 0, i 1]}
b  1

i  1

7 {#7[b 0, i 1]}

i := (i + 1)

2
(and
  b = 1
  i  1)

i := (i + 1)

6 {#6[b 0, i 1]}

return

4
b = 1

b  1 5

b = 1

1
false

i := 0

i := 0

b  1

error

i < 1

i < 1

i  1i  1

(f) Later without optimization

Figure 3.13: Region graphs showing how the loop optimization helps DASH.
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condition. The optimization checks that the region predicate b = 1 is “strong
enough” to be used as a refinement predicate. When the region before the frontier
is split, the region that keeps the frontier edge must not contain any concrete
states. This is to ensure progress is achieved. Using the weaker predicate results
in the region graph in Figure 3.13d. This shows that the optimization makes a
difference, but so far, in this test case, we have not seen that it makes DASHint
terminate.

What makes DASHint terminate is the impact that the refinement predicate
has on a later iteration. Both versions will come to a trace that results in
refining region 2. The traces are shown in Figure 3.13e and Figure 3.13f, with
and without the optimization, respectively. The traces are the same, both with
a frontier going out of region 2 and the traces are both infeasible since b is
required to be 1. The result of the two refinements are, however, very different.
In this case the predicates returned by RefinePred are different but since it does
not make a difference here, we assume that they are the same. We assume that
the refinement predicate is only the region predicate b = 0. What matters here
is that the predicates in region 2 are different. The one without the optimization
has the predicate ¬(b = 1 ∧ i ≥ 1) and together with b = 0 it becomes more
complex. However, the version with the optimization has the predicate b 6= 0
and together with b = 0 one of the split regions gets the region predicate false.
Therefore all ingoing edges to that region can be removed, which results in
Figure 3.14a. Notice that with the optimization, DASHint has completed the
analysis. The error region is unreachable. The version without the optimization
keeps trying to rule out the error region, but as Figure 3.14b shows, it tries
more and more iterations of the loop, each of them being infeasible.

We were a bit surprised that such a simple example could not be handled
by DASH without the loop optimization, which was mentioned as a side note
in their evaluation section. We were especially surprised since SYNERGY, the
algorithm that DASH builds on, boasts that it is very effective in generating a
test for a very similar example, namely where the while condition is changed to
i < 1000 and where b is a parameter of the test procedure7. In that example the
error statement can easily be reached (by calling test with b 7→ 1). By altering
the example and making the error statement unreachable, we caused DASH to
iterate forever.

In the example given in Figure 3.13a, the while loop is irrelevant to the b
variable, and therefore also to the instrumented safety property being checked.
However, if the loop calculates something which is then asserted afterwards,
then DASH can still be brought to its knees. The example code in Figure 3.15
makes DASH analyze forever, even with the optimization.

The DASH authors already know this is a problem for the algorithm since
they left this problem for future work:

“We have left the consideration of more thorough generalization
techniques for future work.”8

7Page 119, Figure 1 in SYNERGY [A5]
8Page 13 in DASH [A2]
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0 {#0[]}

1 {#1[b 0]}
b  1
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(a) With optimization
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2
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2
(and
  b = 1
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1
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1
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(b) Without optimization

Figure 3.14: (a) shows that with the RefinePred loop optimization, analysis ends
contrary to without the optimization, which results in larger and larger graphs
such as (b).

void t e s t ( int a )
{

int k = 0 ;
for ( int i = 1 ; i < a ∧ i < 10 ; i++)

k += i ;
i f ( k == 2) // Not p o s s i b l e

e r r o r ;
}

Figure 3.15: DASHint never halts when analyzing the test procedure.
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We also had trouble interpreting how their optimization should be imple-
mented, as the next section shows.

3.8.9 Problem: How to implement loop optimization

The above section found that the loop optimization is important and that it is
needed for even trivial cases. However, we had problems in interpreting how it
should be implemented. As a reminder, they wrote:

“When faced with an if-branch in a program, DASH will perform
an inexpensive test to see whether the WPα of a weaker predicate,
one that ignores the branch condition, still satisfies the template
described in Figure 9. This can be done by evaluation, and does not
require a theorem prover call.”9

Notice that for DASHint WPα is equivalent to WP since DASHint do not
have pointers and WPα is used to add aliasing constraints. Thus the “the
weaker predicate, one that ignores the branch condition” must in DASHint be the
predicate from the region after the frontier since ignoring the branch condition
in WP yields the unmodified region predicate. However, there are still two main
problems with their paragraph:

• Figure 9 in the DASH article is not very descriptive. It shows a split of a
region into two. So the phrase “satisfies the template described in Figure 9”
is not very helpful.

• It is unknown what test it is that they perform when they mention “perform
an inexpensive test”. It is clearly done by evaluation, but it is unknown
what is evaluated.

In another section they refer to Figure 9 and define what they call a template-
based refinement. We believe this is what they are trying to refer to when they
refer to Figure 9. The next question is what their “inexpensive test” is. When
defining their template-based refinement they define what a suitable predicate is
and what requirements there are to it. We believe that their “inexpensive test”
is to check if the region predicate alone is a suitable predicate. If this is the case,
we have no idea why they did not write that. However, personal correspondence
with the authors has verified that this is the case:

“We just check whether the resulting predicate still satisfies the
conditions of a suitable predicate. If so, we use it. Otherwise, we
fall back on the actual suitable predicate obtained by taking the
if-condition into account.”10

The authors of DASH write that for ρ to be a suitable predicate it is required
that all possible concrete states obtained by executing τc up to the frontier must

9Page 12 in DASH [A2]
10Personal correspondence by email on the 18th of March 2014.
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belong to the region (S ∧ ¬ρ). Here (S ∧ ¬ρ) is the region with ¬ρ added to it
after splitting the region S, which we have called Sk−1.

The question is then how they perform an inexpensive test, using evaluation,
to see whether the region predicate moves all the possible concrete states obtained
by executing τc up to the frontier to the region with ¬ρ added.

We can only think of one possible solution, namely that they test that the
region predicate moves all known states to the region with ¬ρ added. This is
how we have implemented the optimization, which is evident in lines 4-8 of
RefinePred in Algorithm 3.6. In this case it is not always the case that all the
possible concrete states obtained by executing τc up to the frontier are moved
correctly. We cannot see how we can ensure that all states that can be obtained
by a trace τc is moved without using a theorem prover call. Thus our solution
does not always return a suitable predicate. When we wrote to the authors of
DASH about this problem, they replied:

“In our implementation, we just check whether the concrete state
(used to define the frontier etc.) satisfies ¬ρ and that suffices for our
purpose.”11

Thus checking that all known concrete states are moved should suffice. The
next section describes a situation where the predicate found is not a suitable
predicate.

Problem with the initial region not containing any states

When we implemented the above solution, we found cases where requiring that
all known states were moved to the correct region was not enough. A special
case is when refining the initial region when no concrete tests have yet been
executed. In this case, no concrete states exist in the initial region and all states
can thus be moved by any predicate. This can be a problem because the region
after the frontier might only contain true as its predicate. One cannot refine
anything with true.

The problem is depicted in Figure 3.16a. To create such a graph an if
statement must be the first statement and the condition must be equivalent
to false. As can be seen the initial region contains no states and the error
region after the frontier contains only the region predicate true. The trace is
found infeasible. All states, which are none in this case, can be moved by the
region predicate true from region 2, and thus RefinePred will return it as the
refinement predicate. We solved this problem by disallowing the use of the loop
optimization on edges going out of the initial region. The initial region is the
only region that can have a frontier edge going out of it while not having any
states attached to it.

Initially we solved the problem by simply requiring that at least one state
had to exist in the region. However, for reasons related to DASHcall, as described
in Section 4.7.1, it was required that suitable predicates were always used to
refine the initial region.

11Personal correspondence by email on the 5th of April 2014.
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Figure 3.16: (a) shows an infeasible trace where the initial region contains no
states. Refining it by splitting the initial region with the refinement predicate
true results in (b). No progress has been made in (b) compared to (a).

If we had continued and refined the initial region by splitting it, the region
graph in Figure 3.16b would be obtained. Notice that no progress has been
achieved in this graph. The same frontier exists and when refining it, the
initial region is split resulting in three initial regions. This process will continue
infinitely and therefore it simply does not make sense to use true as a refinement
predicate.

3.8.10 Problem: What happens when splitting the initial re-
gion

The RefineGraph pseudocode in Algorithm 3.3 removes edges from the initial
region if they are found infeasible. This “optimization” is not mentioned in the
DASH article, but is a solution we found ourselves.

The DASH article does not describe what happens when an initial region is
refined. If an initial region is handled in the exact same manner as any other
region, then the process of refining an initial region is shown in Figure 3.17a.
The red frontier at the initial region before refinement is found infeasible and
the initial region is refined with the refinement predicate ρ. This results in the
graph after the arrow −→. Notice that there have been no changes made for
region 1 and 2, they can still be reached with any state that could reach it
before the refinement. This is evident since to reach region 1 or 2, one has to
go through one of the initial regions, which means that the initial state must
satisfy the predicate ¬ρ ∨ ρ. But that predicate is equivalent to true, and thus
no changes have been made for them.

However, notice that the red frontier (0:ρ, 3) after refinement is still infeasible.
The reason is that it was found infeasible on the left, and since the requirements
have only grown, it is still infeasible. Thus when refining the initial region, when
it has no incoming edges, then the edge could be removed instead of adding
predicates and maintaining multiple initial regions. This is the process depicted
in Figure 3.17b. The edge is simply removed. This is the strategy we have
implemented.

Initially, we refined the initial region using the first strategy shown in
Figure 3.17a, but where only the left region was marked as an initial region. The
right one was ignored and thought to be unreachable. For all cases in DASHint,

52



0
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−→

0

¬

21

0

3

(a) No special case handling

0

1 2 3

−→

0

1 2 3

(b) Special case: remove edge

Figure 3.17: Two strategies used to refine the initial region. Region graphs are
shown before and after refinement.

the refinement predicate ρ is false when refining the initial region. It will always
be false because RefinePred is disallowed to use the loop optimization on edges
going out of the initial region (which contains no predicates), and thus it always
uses WP to construct the refinement predicate.

However, in DASHcall, there are cases where the refinement predicate is not
false. This is because the initial region can contain a predicate, which is not
true, when analyzing sub procedures. A concrete example from DASHcall can be
seen in Figure 4.6, where the initial region is refined with a predicate that is not
false. Splitting the initial region, as in Figure 3.17a, without marking the right
region as an initial region, suddenly makes region 1 and 2 only reachable when
the predicate ¬ρ is satisfied, which is clearly a wrong refinement. We therefore
needed to maintain either multiple initial regions or, when refining the initial
region, remove the frontier edge such that only a single initial region exists. We
chose the last option as it generated cleaner graphs.
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Chapter 4

Interprocedural analysis with
DASHcall

In this chapter we present DASHcall that adds interprocedural analysis on top of
DASHint.

The allowed program statements are extended with assignments of procedure
calls v := f(a0, a1, . . . , an) and return e statements. However, the error statement
is restricted to the main procedure P . Thus, error statements in sub procedures
are not supported primarily due to how FindAbstractErrorPath works. This is
explained further in Section 4.1. Procedure calls f(a0, a1, . . . , an) that are not
part of an assignment are not supported, since procedures are side effect free,
due to the lack of global state, pointers, call by value semantics, and the fact
that error statements are not allowed in sub procedures. The procedure call
could therefore be removed, without changing the semantics, in a preprocessing
step. State changed in a sub procedure must thus be propagated back through
a return value. For the rest of the chapter, a procedure call will refer to a
procedure call that is part of an assignment.

DASHcall analyzes a complete program P where each procedure has its own
region graph. The DASHcall version of DashLoop takes as input the program
P , a set of region graphs G and the main procedure P . Special care must be
taken when DASHcall encounters a procedure call as the frontier edge. The
main idea is to recursively invoke DashLoop on the invoked procedure, but
restraining its input to the context it is called in, and instrumenting it with a
safety property that depends on crossing the frontier. We will explain this in
detail when describing ExtendFrontier in Section 4.4.

ExecuteSymbolic also needs to be modified such that it can execute a trace
over a procedure call edge. At that point it needs to execute a trace through
the invoked procedure. We describe ExecuteSymbolic for DASHcall in Section 4.3.

The DASHcall implementation is able to handle recursive and mutually
recursive procedures if the input value that determines the recursion depth
is bound to a constant, ex. fib (3) or fib (x), where x is assigned a constant
value earlier. However it is not able to handle recursive procedures, where the
recursion depth is dependent on a symbolic input value, e.i. x0. We elaborate
on recursive procedures in Section 4.7.3.
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void t e s t ( int x , int y )
{

i f ( x > 0)
{

y = 4 ;
int q = sum(x , y ) ;
i f ( q == 5)

i f ( x == 2)
e r r o r ;

}
}

(a) Caller procedure

int sum( int i , int x )
{

int s = i + x ;
return s ;

}

(b) Called procedure

Figure 4.1: (a) shows a procedure test which calls the procedure sum in (b). It is
used as a running example to describe how DASHcall works.

We use a running example in this chapter to illustrate the inner details of
how DASHcall behaves. The example code is shown in Figure 4.1. The example
includes two procedures, test taking variables x and y as parameters, and a sum
procedure taking the variables i and x as parameters.

There are a few things to notice about this program. First, it is not possible
to reach the error statement, since it requires y to be 4 and z to be 2, but the
sum of them should be 5. Second, it should be noted that both procedures take
x as a parameter, which could result in naming conflicts during analysis if care
is not taken.

This chapter starts by presenting how FindAbstractErrorPath finds an abstract
error path in Section 4.1. Changes must be made to the result returned by
ConvertToRegionTraceWithAbstractFrontier, which we describe in Section 4.2.
At this point the prerequisites for ExecuteSymbolic have been shown and we
describe how ExecuteSymbolic can symbolically execute a trace with procedure
calls in Section 4.3. The most important changes in DASHcall are made in
ExtendFrontier that analyzes a procedure call at the frontier edge, which is
described in Section 4.4. Afterwards we describe some changes to RefineGraph in
Section 4.5. We then describe a possible instrumentation process that can relax
the requirement that only error statements in the main procedure are allowed in
Section 4.6. Finally we describe key problems encountered and changes we have
made to implement DASHcall in Section 4.7.

4.1 FindAbstractErrorPath

The mode of operation of FindAbstractErrorPath in DASHcall has not changed
compared to the one presented in DASHint. It searches a given region graph for
a shortest path to an error region. Thus it completely ignores the semantics of
procedure call edges, and as such it does not recursively search region graphs
of called procedures. The reason for not searching for error regions in sub
procedures is that the DASH article has not described how this should be
completed. We present a possible solution in Section 4.6 to circumvent this
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0

6

x  0

1

x > 0

7

5

error

2

3

q := sum(x, y)

return

q  5

4

q = 5

x = 2

x  2

y := 4

(a) Path found in the
test procedure

0

1

s := (i + x)

2

return s

(b) Path does not include
the sum procedure

Figure 4.2: (a) shows the path found by FindAbstractErrorPath for the first
iteration of DASHcall while analyzing the code shown in Figure 4.1. Notice that
the path does not pass through (b).

limitation if global state is supported. Thus, the FindAbstractErrorPath procedure
is not changed. This is emphasized by an example.

The path seen in Figure 4.2a is the path found when searching for an error
path in the first iteration of analyzing the code from Figure 4.1. Thus, the path
found is 〈0, 1, 2, 3, 4, 5〉, which specifically does not traverse into the sum sub
procedure shown in Figure 4.2b.

4.2 ConvertToRegionTraceWithAbstractFrontier

The ConvertToRegionTraceWithAbstractFrontier procedure needs to be slightly
changed. It will construct the trace in the exact same manner as in DASHint,
however, it will also include the states for the part of the trace that follows a
concrete execution.

Formally the trace will now have the form τc = 〈RS0, . . . RSk−1, Sk〉 where
each RSi = 〈Si, si〉 is called a RegionState. Each RegionState includes the region
Si and the state si that was found by following the parent relationship from
sk−1. The reason that Sk does not include a state is that it is the region after
the frontier and therefore no concrete execution has reached it yet.

The states are used in ExecuteSymbolic to figure out how to symbolically
execute a procedure call edge when these are encountered in a trace. States si
are thus only needed when the following statement is a procedure call. This is
described in Section 4.3.1, which describes the ExecuteSymbolic procedure for
DASHcall.
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0 {#0[y 0, x 1]}

6 {#8[q 5, y 4, x 1]}

x  0

1 {#1[y 0, x 1]}

x > 0

7 {#9[q 5, y 4, x 1]}

5

error

2 {#2[y 4, x 1]}

3 {#6[q 5, y 4, x 1]}

q := sum(x, y)

return

q ≠ 5

4 {#7[q→5, y→4, x→1]}

q = 5

x = 2

x ≠ 2

y := 4

(a) Error path found in the test
procedure

0 {#3[i 1, x 4]}

1 {#4[s 5, i 1, x 4]}

s := (i + x)

2 {#5[s 5, i 1, x 4]}

return s

(b) States in the sum
sub procedure

0 {#0[y 0, x 1]}

6 {#8[q 5, y 4, x 1]}

x  0

1 {#1[y 0, x 1]}

x > 0

7 {#9[q 5, y 4, x 1]}

5

error

2 {#2[y 4, x 1]}

3 {#6[q 5, y 4, x 1]}

q := sum(x, y)

return

q ≠ 5

4 {#7[q→5, y→4, x→1]}

q = 5

x = 2

x ≠ 2

y := 4

(c) Trace found for the path in
(a)

Figure 4.3: ConvertToRegionTraceWithAbstractFrontier converts the path in (a)
to the trace in (c). (b) shows the states that were added to the sum procedure
when test procedure was executed by an earlier invocation of RunTest. These
states are not included in either the path or the trace.

Figure 4.3a shows a path that is to be converted to a trace. The trace found
is shown in Figure 4.3c. Region 2 includes a state which is prefixed with #2 and
region 3 has a state with the prefix #6. These numbers tells us that 3 regions
were visited between these two states, and these are recorded on the graph of
the sub procedure seen in Figure 4.3b. It should be noted that states are only
linked inside a single procedure. Thus Parent(#6) = #2 and not #5 as could
have been expected.

Writing out the resulting trace in full, including each of the states, produces
the following:

τc = 〈〈0,#0[y 7→ 0, x 7→ 1]〉,
〈1,#1[y 7→ 0, x 7→ 1]〉,
〈2,#2[y 7→ 4, x 7→ 1]〉,
〈3,#6[q 7→ 5, y 7→ 4, x 7→ 1]〉,
〈4,#7[q 7→ 5, y 7→ 4, x 7→ 1]〉,
5〉

The next section presents ExecuteSymbolic, the procedure that symbolically
executes traces.
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4.3 ExecuteSymbolic
The goal of ExecuteSymbolic is to execute a trace τc that traverses the procedure
P . Compared to DASHint the new requirements are that ExecuteSymbolic handles
procedure calls during the trace and additionally returns the symbolic map S
as it was before executing the frontier statement. As a special case, when the
frontier edge is a procedure call, ExecuteSymbolic ignores it and leaves it to be
handled by ExtendFrontier, which is described in Section 4.4.

ExecuteSymbolic has been split into two parts. The ExecuteSymbolic algo-
rithm, shown in Algorithm 4.1, that executes the trace τc, and ExecuteSym-
bolicSubProcedure, shown in Algorithm 4.2, that symbolically executes sub
procedures.

ExecuteSymbolic takes as input a trace τc, the procedure P , which the trace
runs through, the program P that contains all the procedures, and finally
ExecuteSymbolic takes the complete set of graphs G . As mentioned in Section 4.2
the trace τc has been changed from a trace of regions 〈S0, . . . , Sk〉 to a trace of
RegionStates 〈RS0, . . . , RSk−1, Sk〉.

To support the added requirements three major changes have been made to
the pseudocode of ExecuteSymbolic:

• The ExecuteSymbolic return statement has been changed, such that it also
returns the symbolic map S before executing the frontier.

• Two new cases has been added. These cases handle procedure calls of the
form v := f(a0, . . . , an) and return e statements.

• To return the symbolic map S as it is seen before the frontier is executed,
and because procedure calls are handled differently if they are included
before the frontier edge, the execution of the frontier edge has been unrolled
from the loop.

ExecuteSymbolic returns the same path constraint φ that would be found by
the DASHint version of ExecuteSymbolic, when executing a trace that does not
include a procedure call. However, ExecuteSymbolic for DASHcall also returns
the symbolic map S .

Execution of the trace before the frontier

The loop in Algorithm 4.1 behaves the same as in DASHint except that it does
not execute the frontier statement, and it additionally handles procedure calls.
Edges with return e statements can never occur before the frontier edge in a
trace τc. This is because there are no outgoing edges from regions with incoming
return edges, since execution stops when a return statement is executed. The
return e case in lines 22-23 has been included in the pseudocode for completeness,
but will never be triggered and thus it is simply skipped.

Since procedures only see their parameters and cannot alter global state,
handling them symbolically is a matter of constructing the correct parameters
for them. Lines 16-21 handles procedure calls of the form v := f(a0, . . . , an). The
arguments a0, . . . , an to the procedure call are each symbolically evaluated and
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Algorithm 4.1 ExecuteSymbolic(τc = 〈RS0, . . . , RSk−1, Sk〉, P, P ,G)
Returns: 〈φ, S〉, the path constraint φ for reaching and crossing the frontier; and the symbolic
map S , from before the frontier.
1: let 〈S0,_〉 = RS0
2: let 〈ρ0,_〉 = S0
3: S := [v 7→ v0 | v ∈ params(P )]
4: φ := SymbolicEval(ρ0, S)
5:
6: for i = 0 to k − 2 do
7: let 〈_, si〉 = RSi
8: let 〈Si+1,_〉 = RSi+1
9: let 〈ρi+1,_〉 = Si+1
10: op := Op(Si, Si+1)
11: match op
12: case(v := e):
13: S := S [v 7→ SymbolicEval(e, S)]
14: case(assume c):
15: φ := φ ∧ SymbolicEval(c, S)
16: case(v := f(a0, . . . , an)):
17: P ′ := LookupProcedure(f, P)
18: args := 〈SymbolicEval(ai, S) | ∀ai〉
19: 〈φ′, e′〉 := ExecuteSymbolicSubProcedure(P ′, args, si, P ,G)]
20: φ := φ ∧ φ′
21: S := S [v 7→ e′]
22: case(return e):
23: skip
24: φ := φ ∧ SymbolicEval(ρi+1, S)
25: end for
26:
27: let 〈Sk−1,_〉 = RSk−1
28: let 〈ρk,_〉 = Sk
29: op := Op(Sk−1, Sk)
30: match op
31: case(v := e):
32: S ′ := S [v 7→ SymbolicEval(e, S)]
33: φ := φ ∧ SymbolicEval(ρk, S ′)
34: case(assume c):
35: φ := φ ∧ SymbolicEval(c, S)
36: φ := φ ∧ SymbolicEval(ρk, S)
37: case(v := f(a0, . . . , an)):
38: skip
39: case(return e):
40: φ := φ ∧ SymbolicEval(ρk, S)
41: return 〈φ, S〉
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added to a list args in line 18, which functions as the symbolic values of the
parameters. Thus if a procedure takes as input x, then the symbolic expression
of x, which could be x0 +y0/3, will be in args. The symbolic expressions consist
of expressions including only constants or the initial symbolic values generated
in line 3.

A call is made to ExecuteSymbolicSubProcedure in line 19, which is responsible
for executing the sub procedure symbolically. It is important that ExecuteSym-
bolicSubProcedure follows the same execution that was followed in the trace
τc. Therefore, it is among others given the state si from the trace τc, which is
the state that existed prior to executing the procedure call. The region graph
for the called procedure P ′ might contain many concrete executions from prior
invocations of RunTest and ExecuteSymbolicSubProcedure uses si to find the
concrete execution that was generated by the execution that τc follows.

The call to ExecuteSymbolicSubProcedure returns an induced path constraint
φ′ from the procedure call and the symbolic expression e′ that represents the
computation performed by the called procedure. The path constraint φ′ is added
to φ in line 20 while v is assigned the symbolic return value e′ in line 21. Execution
of sub procedures, which is performed by ExecuteSymbolicSubProcedure, is
described in Section 4.3.1.

Execution of the frontier

There are multiple changes to how the frontier statement is being symbolically
executed. We need to return the symbolic map S as it was before executing
the frontier statement. This is a requirement enforced by ExtendFrontier, which
uses it when handling procedure calls at the frontier edge. ExecuteSymbolic
still needs to handle assignments and assume c statements, but it also needs to
handle return e statements as part of the frontier.

If the frontier statement is a procedure call v := f(a0, . . . , an) then Exe-
cuteSymbolic skips it in lines 37-38. Procedure calls at the frontier will be
handled by ExtendFrontier described in Section 4.4. The reason is that Exe-
cuteSymbolic does not have a trace that it can follow in the called procedure,
and it therefore has a large number of possible execution paths that it could
select for symbolic execution in the called procedure. Choosing one path might
make the combined path constraint feasible while choosing another path might
make it infeasible.

In essence the question given is a reachability question: Can a path be found
in the procedure f, under the symbolic state S and with the path constraint
φ, such that a state s is generated that satisfies the region predicate after the
frontier. This is exactly the kind of questions that DASH is constructed to
answer and ExtendFrontier exploits this, as we shall see in Section 4.4. Thus
ExecuteSymbolic skips procedure calls at the frontier edge and leaves the work
to be completed by ExtendFrontier.

What is left to be handled are assume c, assignments and return e statements.
Symbolically executing the region predicate has been moved into each of the
cases since the case that handles procedure calls does not symbolically execute
the region predicate. All assume c statements are handled exactly as if they had
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occurred before the frontier.
Assignments are handled in lines 31-33. The assignment operation needs

special handling since it changes the state of the symbolic map. This state
change is needed when evaluating the region after the frontier. However we
need to return the state of the symbolic map before the frontier. The temporary
symbolic map S ′ is therefore introduced and holds the symbolic map S with
state applied by the assignment, and it is then used when evaluating the region
predicate after the frontier. The symbolic map S remains unchanged.

The last kind of statements that can occur is the return e statement. The
return e statement does not change the symbolic state, nor the path constraint,
therefore only the region predicate needs to be symbolically executed, which is
completed in line 40.

The next section describes ExecuteSymbolicSubProcedure, which executes
called sub procedures during the trace τc.

4.3.1 ExecuteSymbolicSubProcedure

The pseudocode for ExecuteSymbolicSubProcedure is shown in Algorithm 4.2.
The goal of this procedure is to symbolically execute a called sub procedure. It
returns the generated path constraint φ and the symbolic return value e. The
following input is given to ExecuteSymbolicSubProcedure:

• The called procedure P , which should be symbolically executed.

• The symbolically evaluated arguments in args, which represents the pa-
rameters of P in terms of the initial symbolic variables generated in
ExecuteSymbolic.

• The state scaller before the procedure call that is used to find the concrete
execution to follow in P .

• Additionally ExecuteSymbolicSubProcedure is given the program P and the
set of graphs G , which are used for looking up procedures and graphs.

ExecuteSymbolicSubProcedure functions in nearly the same way as Exe-
cuteSymbolic. As in ExecuteSymbolic there is a loop that executes the trace,
and the cases for assignments, assumes and procedure calls are nearly identical.
However, there are some differences:

• The initial symbolic variables for the parameters of P is given in args.
This is shown in line 1 which sets the initial symbolic variables to the ones
given in args, and thus does not create new symbolic variables v0.

• In ExecuteSymbolic a trace τc is given and followed. In ExecuteSymbolic-
SubProcedure the initial region of the called procedure and the concrete
execution to follow needs to be found, this is completed in lines 3-4. Addi-
tionally the trace needs to be explicitly maintained, which is fulfilled in
lines 8-9 and 25-26.
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Algorithm 4.2 ExecuteSymbolicSubProcedure(P, args = 〈b0, . . . , bn〉, scaller, P ,G)
Returns: 〈φ, e〉, φ is the induced path constraint and e is the symbolic return value of the
procedure invocation.
1: S := [vi 7→ bi | ∀vi ∈ params(P )]
2: G := LookupRegionGraph(P,G)
3: Sprev := InitialRegion(G)
4: sprev := FindCalleeStateFromCallersState(scaller, Sprev)
5: φ := true
6:
7: loop
8: snext := Child(sprev)
9: Snext := FindRegionWithState(Children(Sprev), snext)
10: op := Op(Sprev, Snext)
11: match op
12: case(v := e):
13: S := S [v 7→ SymbolicEval(e, S)]
14: case(assume c):
15: φ := φ ∧ SymbolicEval(c, S)
16: case(v := f(a0, . . . , an)):
17: P ′ := LookupProcedure(f, P)
18: args′ := 〈SymbolicEval(ai, S) | ∀ai〉
19: 〈φ′, e′〉 := ExecuteSymbolicSubProcedure(P ′, args′, sprev, P ,G)]
20: φ := φ ∧ φ′
21: S := S [v 7→ e′]
22: case(return e):
23: eresult := SymbolicEval(e, S)
24: return 〈φ, eresult〉
25: sprev := snext
26: Sprev := Snext
27: end loop

• When a return e statement is encountered it ends the symbolic execution
of the sub procedure P . ExecuteSymbolicSubProcedure then returns the
path constraint φ and the symbolic expression that represents the result
of following the induced trace in P .

• Region predicates are not executed since the regions of subgraphs do not
contain predicates. Only the graph that ExecuteSymbolic works on can be
refined, and it is therefore the only graph that can have predicates on the
regions.

The construction of the initial symbolic map is performed in line 1. This is
completed by mapping the formal parameters to their corresponding arguments
provided in args. This ensures that any symbolically evaluated expressions will
only contain expressions with constants or initial symbolic variables v0 generated
in ExecuteSymbolic.

To start the execution, ExecuteSymbolicSubProcedure needs to find the initial
state in the concrete execution that it should follow in the sub procedure. The
concrete execution that should be followed is the one that was generated by
calling P when in the state scaller. Finding the initial state is accomplished
by first finding the initial region of P , in line 3, with a call to InitialRegion.
ExecuteSymbolicSubProcedure then needs to find the state in the initial region
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0 {#0[y 0, x 1], #0[y 0, x 2]}

6 {#8[q 5, y 4, x 1], #7[q 6, y 4, x 2]}

x  0

1 {#1[y 0, x 1], #1[y 0, x 2]}

x > 0

7 {#9[q 5, y 4, x 1], #8[q 6, y 4, x 2]}

5

error

2 {#2[y 4, x 1], #2[y 4, x 2]}

3 {#6[q 5, y 4, x 1]}
x  2

q := sum(x, y)

3 {#6[q 6, y 4, x 2]}
x = 2

q := sum(x, y)

return

q  5

4 {#7[q 5, y 4, x 1]}
x  2

q = 5

x  2

4
x = 2

x = 2

x  2

q  5

q = 5 q = 5

y := 4

(a) The main procedure test

0 {#3[i 1, x 4], #3[i 2, x 4]}

1 {#4[s 5, i 1, x 4], #4[s 6, i 2, x 4]}

s := (i + x)

2 {#5[s 5, i 1, x 4], #5[s 6, i 2, x 4]}

return s

(b) The called procedure sum

Figure 4.4: (a) shows a trace that needs to be symbolically executed, which
contains a call before the frontier to the sub procedure in (b).

that was generated by scaller. This is accomplished in line 4 with a call to
FindCalleeStateFromCallersState. Each of our states contain both a test id, which
is unique for each RunTest invocation, and it contains the number of steps taken
in the execution. Given that scaller has a test id we know that the initial state
must have the same test id. Also, if the state scaller has taken n steps in the
execution, then the initial state must have taken exactly n + 1 steps. Given
these two pieces of information, we can find the initial state.

The initial region is assigned to Sprev, while the region that ExecuteSymbol-
icSubProcedure is about to transition to is called Snext. The same convention is
used for the concrete states sprev and snext. We use the child relationship on
sprev to find snext. The region Snext that contains snext can be found by going
through all the child regions of Sprev and find the region that contains snext.
This is exactly what FindRegionWithState does. The regions Sprev and Snext
can then be used to find the operation op to be executed. After executing the
operation op, sprev and Sprev is set to snext and Snext to prepare for the next
iteration of the loop.

This concludes the explanation of ExecuteSymbolic and ExecuteSymbolicSub-
Procedure. In the next section an example of them is given.

4.3.2 Example of ExecuteSymbolic

As an example of how ExecuteSymbolic functions in DASHcall, we will symbolically
execute the trace found in Figure 4.4a.

In Figure 4.4a we can see the trace 〈0, 1, 2, 3:x=2, 4:x=2〉 following the green
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edges down and including the red frontier. The green part of the trace is found
by following the concrete states where x 7→ 2, which is included in the trace τc.

Setup and symbolically evaluating the initial region

At startup the symbolic map Stest for the test procedure is set to [x 7→ x0, y 7→ y0].
Symbolically evaluating the region predicate of the initial region sets φtest to
true resulting in the state of ExecuteSymbolic becoming:

φtest −→ true

Stest −→ [x 7→ x0, y 7→ y0]

Symbolically executing assume x > 0 on edge (0, 1)

There are no changes to how this and the next step is symbolically executed
compared to how DASHint would execute them. The step (0, 1) executes the
assume x > 0 statement and symbolically evaluates the region predicate in
region 1, which is true. The assume x > 0 statement adds x0 > 0 to φtest. The
symbolic map is left unchanged. The region predicate for region 1 is true and
therefore nothing new was added to φtest while executing it. After this step the
state of ExecuteSymbolic is:

φtest −→ x0 > 0
Stest −→ [x 7→ x0, y 7→ y0]

Symbolically executing y := 4 on edge (1, 2)

The second edge (1, 2) with y := 4, updates the mapping for y in the symbolic
map Stest. Since the region predicate is true φtest is not affected. This leads to
the ExecuteSymbolic state:

φtest −→ x0 > 0
Stest −→ [x 7→ x0, y 7→ 4]

Symbolically executing the q := sum(x, y) call on edge (2, 3:x=2)

This step symbolically executes the operation q := sum(x, y). First we find the
procedure description Psum for sum, in line 17, by a call to LookupProcedure.
Then the symbolic argument list args is constructed. The variables x and
y are used as arguments to sum and symbolically evaluating them results in
args = 〈x0, 4〉.

ExecuteSymbolicSubProcedure is called in line 19 which executes the sub pro-
cedure. It takes as arguments the called procedure Psum, args and additionally
the current concrete state, which is s2 = #2[y 7→ 4, x 7→ 2], the program P and
all graphs G .
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Symbolically executing sum(x, y) with ExecuteSymbolicSubProcedure

ExecuteSymbolicSubProcedure starts by setting up its own symbolic map Ssum
from the symbolic argument list args, which then becomes [i 7→ x0, x 7→ 4]. It
then finds the graph Gsum for the current procedure Psum such that it can find
the initial region and store it in Sprev.

The initial region is region 0 in Figure 4.4b. We need to find the state that
follows the state s2 given as scaller. In region 0 there are two states, namely
#3[i 7→ 1, x 7→ 4] and #3[i 7→ 2, x 7→ 4]. The states additionally have a test
id attached. Both states have the same number of execution steps, namely 3.
However, only one state has the same test id as scaller and in this case it is the
state #3[i 7→ 2, x 7→ 4]. This state is assigned to the variable sprev.

Transitioning between regions in sum is trivial since there is only a single
outgoing edge from each region. However, in the general case, there can multiple
outgoing edges because of conditionals, and ExecuteSymbolicSubProcedure needs
to figure out which edge to follow. This is accomplished by finding the next
state snext by following the child relationship on sprev. For the first iteration,
snext is the state #4[s 7→ 6, i 7→ 2, x 7→ 4]. Using the state snext the region Snext
is found, which is region 1.

The edge between region 0 and region 1 has the operation s := (i+x) and the
symbolic map Ssum is therefore updated to [s 7→ x0+4, i 7→ x0, x 7→ 4] and φ is left
unchanged. Afterwards sprev is set to the state snext = #4[s 7→ 6, i 7→ 2, x 7→ 4]
and Sprev is set to Snext, which is region 1.

The next state snext is found, and in this case it is #5[s 7→ 6, i 7→ 2, x 7→ 4].
The region that the state is contained in, region 2, is assigned to Snext. The
operation on the edge (1, 2) is the return statement return s. Symbolically
evaluating this yields the result eresult = x0 + 4, which is returned from Exe-
cuteSymbolicSubProcedure together with the path constraint true.

Handling return from the procedure call q := sum(x, y)

When ExecuteSymbolicSubProcedure returns, ExecuteSymbolic stores the path
constraint in φ′ and the result in e′. The path constraint is added to φ, but
since φ′ is true then φ is left unchanged. The assigned variable q is updated
to the value e′ in the symbolic map Stest, such that it maps to the symbolic
expression x0 + 4 returned by ExecuteSymbolicSubProcedure. Finally, the region
predicate from region 3, which is x = 2, is symbolically evaluated and added to
φ resulting in the state of ExecuteSymbolic becoming:

φtest −→ x0 > 0 ∧ x0 = 2
Stest −→ [x 7→ x0, y 7→ 4, q 7→ x0 + 4]

Symbolically executing assume q = 5 at the frontier edge (3:x=2, 4:x=2)

ExecuteSymbolic exits the loop, since it is about to execute the frontier edge
(3:x=2, 4:x=2). This edge has the operation assume q = 5 and the region
after it contains the predicate x = 2. Evaluating both of these predicates,
adding them to φ, and removing duplicate terms results in the path constraint
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φ = x0 > 0 ∧ x0 = 2 ∧ x0 + 4 = 5. The result returned from ExecuteSymbolic is
thus:

φ −→ x0 > 0 ∧ x0 = 2 ∧ x0 + 4 = 5
S −→ [x 7→ x0, y 7→ 4, q 7→ x0 + 4]

This path constraint will be found unsatisfiable by ExtendFrontier, due to
the constraints x0 = 2 ∧ x0 + 4 = 5.

The next section explains ExtendFrontier and how procedure calls are handled
when they are encountered at the frontier edge.

4.4 ExtendFrontier
ExtendFrontier for DASHcall behaves the same as in DASHint for all traces except
when the frontier is a procedure call. In this case, ExtendFrontier performs
additional work that requires extra information passed from DashLoop. As in
DASHint, ExtendFrontier takes the trace τc and the procedure currently being
analyzed P . Additionally, it takes the region graphs for all procedures G and the
full program P as arguments. The DASHcall variant of ExtendFrontier is shown
in Algorithm 4.3.

If the frontier edge (Sk−1, Sk) is a procedure call v := f(a0, . . . , an), then the
job of ExtendFrontier is to check if it is possible to reach a state s by calling f
such that the state s satisfies the region predicate from Sk. By encoding this
problem on the called procedure P ′ in a clever way, we can use DashLoop to
answer the problem. We wish to invoke DashLoop on the called procedure P ′
such that:

• If DashLoop reports that an error could be reached with test input t, then
we are able to run a test that crosses the frontier procedure call and get a
state s that satisfies the region predicate in Sk.

• If DashLoop reports that no errors could be reached with a graph G as
proof, then a refinement predicate ρ, which eliminates the trace τc in the
caller procedure, can be obtained by inspecting the proof G.

This can be achieved by running DashLoop on a slightly altered version of
P ′s region graph. The job of ExtendFrontier is now to:

• Compute the input constraint φic for the analysis of P ′, such that only
values that can be generated by following the trace τc in P can be used
when analyzing P ′.

• Encode the region predicate of Sk into an exit constraint φec such that if
analysis of P ′ reaches a region with φec, then Sk can be reached in the
caller procedure P .

• Use φic and φec to alter P ′s initial region graph G′.

• Invoke DashLoop on the altered region graph G′.
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Algorithm 4.3 ExtendFrontier(τc = 〈RS0, . . . , RSk−1, Sk〉, P,G , P)
Returns:
〈t, true〉, if the frontier can be extended; or
〈unsat, ρ〉, if the frontier cannot be extended
1: let 〈Sk−1,_〉 = RSk−1
2: 〈φ, S〉 := ExecuteSymbolic(τc, P, P ,G)
3: op := Op(Sk−1, Sk)
4: if op matches v := f(a0, . . . , an) then
5: let 〈ρk,_〉 = Sk
6: P ′ := Lookup(f, P)
7: π := CreateVariableRenamer(locals(P ) ∪ {v, v0 | ∀v ∈ params(P )})
8: φic :=

(∧
vi∈params(P ′) vi = π(ai)

)
∧
(∧

(w 7→e)∈S π(w = e)
)
∧ π(φ)

9: φec := π(ρk[@r/v])
10: G ′ := ReconstructGraphsAndInsertConstraints(G , φic, φec, P ′)
11: 〈r, z〉 = DashLoop(G ′, P , P ′)
12: if r = fail then
13: t := π−1

(
z \ {v0 | ∀v ∈ params(P ′)}

)
\
(
locals(P ) ∪ params(P )

)
14: ρ := true
15: else
16: t := unsat
17: ρ := π−1

((∨
ρi∈InitialRefines(z) ρi

) [
a0/v0, . . . , an/vn

]
| vi ∈ params(P ′)

)
18: end if
19: else
20: t := IsSAT(φ, P )
21: if t = unsat then
22: ρ := RefinePred(τc)
23: else
24: ρ := true
25: end if
26: end if
27: return 〈t, ρ〉

• When DashLoop returns, either extract the test input needed to call
procedure P such that the frontier is crossed, or construct a refinement
predicate to refine the region graph G, making τc infeasible in P .

Furthermore, ExtendFrontier has to rename variables in the constraints φic
and φec, otherwise these variables might clash with variables in the called
procedure.

The first lines of ExtendFrontier, shown in Algorithm 4.3, should be familiar.
ExecuteSymbolic is called in line 2, returning a path constraint φ and the symbolic
map S that existed before the frontier. Line 4 checks if the operation performed
on the frontier edge is a procedure call. If it is not, ExtendFrontier behaves
exactly like in DASHint.

If the operation is a procedure call v := f(a0, . . . , an) then ExecuteSymbolic
did not symbolically execute it, and it is then the job of ExtendFrontier to check
if the frontier edge can be crossed. In line 6, ExtendFrontier starts by looking
up the called procedure f in the program P , and finds the procedure P ′. The
next lines of ExtendFrontier construct the input and exit constraints, invokes
DashLoop, and extracts the result of DashLoop. The next sections describe how
each of these tasks is fulfilled by ExtendFrontier.
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4.4.1 Renaming

In line 7, a variable renamer π is constructed by giving it a set of variables
that it should rename, while any other variable should be left unchanged. The
variables that needs to be renamed are all those variables that originate from
the callers procedure P , such that they do not conflict with any variables in the
callee’s procedure P ′. These are the local variables of P , parameters of P and
the initial symbolic values v0 generated in ExecuteSymbolic for the parameters
of P . As an example, lets say that locals(P ) = {x, y} and params(P ) = {a, b, c}.
The construction of the renamer, in line 7, then proceeds as:

π := CreateVariableRenamer(locals(P ) ∪ {v, v0 | ∀v ∈ params(P )})
−→ CreateVariableRenamer({x, y} ∪ {v, v0 | ∀v ∈ {a, b, c}})
−→ CreateVariableRenamer({x, y} ∪ {a, a0, b, b0, c, c0})
−→ CreateVariableRenamer({x, y, a, a0, b, b0, c, c0})

Thus the variables {x, y, a, a0, b, b0, c, c0} should be renamed. This also
illustrates that the notation {v, v0 | ∀v ∈ params(P )} is a set that includes
the parameters and their initial symbolic variables that were generated by
ExecuteSymbolic.

The renamer uses a unique number and a character ’↓’, which is not allowed
in the source code, to rename variables. As such, π(a) becomes 1↓a if a is a
variable that should be renamed and 1 is the unique number chosen when π was
constructed. Whenever the symbol ’↓’ is seen on a variable in a region graph, it
is evident that the variable is external to the procedure. The operation π−1 is
used to reverse the renaming and as such π−1(1↓a) becomes the original variable
a.

Alternatively we could have created a renamer that renames all occurrences
of variables by prepending it with ’↓’ such that π(a) becomes ↓a and π(↓a)
becomes ↓↓a. When reverse renaming, the expression π(↓↓a) becomes ↓a and
variables that have not been renamed, such as a are not reverse renamed. The
reason why our pseudocode explicitly lists the variables that should be renamed
are twofold: 1) because it seems cleaner to explicitly rename only those variables
that absolutely needs to be renamed and 2) because our implementation uses Z3
to perform the renaming that requires us to list the individual variables and
their renamed counterparts. The variables that we do not rename, are those
that have been renamed once before.

4.4.2 Constructing the input constraint φic
The input to the called procedure P ′ must be restricted, such that only test
input that is possible by following the trace τc in the caller procedure P , is
allowed. How this is accomplished is described in this section.

For example, the code for the procedure test shown in Figure 4.1a calls the
sum procedure shown in Figure 4.1b. The call made to sum is made with the
actual arguments x and y, and sum takes the formal parameters i and x. Since
both procedures use x as variables, these will be disambiguated with xtest and
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xsum in this presentation. Both of the variables xtest and y are constrained in
test at the point where sum is called. The variable xtest must be positive and y
must be equal to 4. The analysis of the sum procedure must similarly constrain
the variables i and xsum. Since xtest is given as i then i must be positive and
since y is given for xsum then xsum must be 4.

In general, there are two possible origins of constraints. One origin is the
path constraint φ generated by ExecuteSymbolic. In the example xtest is used
for the parameter i, and since the symbolic value xtest is constrained to only
positive values in the path constraint φ, then i must also be constrained to
positive values. The second origin for constraints is the symbolic map S . In the
example y is set to the constant 4 prior to the sum procedure call. Since y is
passed for the variable xsum, then xsum must be equal to 4. This constraint is
not captured by the path constraint φ, but it is captured by the symbolic map,
which at this point contains the mapping y 7→ 4.

Furthermore the exit constraint φec, constructed in the next section, may
contain predicates which use local variables of the caller procedure, but where
those variables are not passed as inputs to the callee. The constraints on these
variables must also be added to the input constraint such that φec is correctly
bound to them. Thus, the input constraint constructed in line 8 uses the formula:

φic :=

 ∧
vi∈params(P ′)

vi = π(ai)

 ∧
 ∧

(w 7→e)∈S

π(w = e)

 ∧ π(φ)

First, the formal parameters are bound to the actual arguments. Second, the
symbolic map S is added where each mapping is seen as an equality predicate
and finally the path constraint φ is appended. Renaming is used on all the
constraints except on the formal parameters of the called procedure P ′.

Example of computing the input constraint

This section presents an example of computing the input constraint. Figure 4.5a
shows the region graph for the test procedure listed in Figure 4.1a, after a
number of iterations have been performed by DASHcall. The trace τc shown in
the region graph has a frontier edge that is a procedure call to sum. ExtendFrontier
constructs the region graph shown in Figure 4.5c and invokes DashLoop on it.

The initial region for sum in Figure 4.5c shows the added input constraint.
First the formal parameters are bound to the actual arguments from test. In
this case, xtest is bound to i and y is bound to xsum. The computation becomes:∧

vi∈params(P ′)
vi = π(ai) −→ i = π(x) ∧ x = π(y)

−→ i = 1↓x ∧ x = 1↓y

which are the first two equalities shown in the initial region of Figure 4.5c.
Next the symbolic map is added. At the point of the procedure call, the

symbolic map S contains the mappings [x 7→ x0, y 7→ 4]. Computing the symbolic
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0 {#0[y 0, x 1]}

6 {#8[q 5, y 4, x 1]}

x  0

1 {#1[y 0, x 1]}

x > 0

7 {#9[q 5, y 4, x 1]}

5

error

2 {#2[y 4, x 1]}

3 {#6[q 5, y 4, x 1]}
x  2

q := sum(x, y)

3
x = 2

q := sum(x, y)

return

q  5

4 {#7[q 5, y 4, x 1]}
x  2

q = 5

x  2

4
x = 2

x = 2

x  2

q  5

q = 5 q = 5

y := 4

(a) Region graph for the test procedure

0

1

s := (i + x)

2

return s

(b) Intial
region graph
for sum

0
(and
  i = 1 x
  x = 1 y
  1 y = 4
  1 x = 1 x
  1 x  > 0)

1

s := (i + x)

2
1 x = 2

2
1 x  2

return s return s

(c) Region graph with
input and exit con-
straints for sum

Figure 4.5: (a) shows a region graph for the test procedure after a number of
iterations of DASHcall. The current frontier is a procedure call to sum. The initial
region graph for sum is shown in (b) and the graph generated by ExtendFrontier
for the call to sum is shown in (c).

map part of φic results in:

∧
(w 7→e)∈S

π(w = e) −→ π(x = x0) ∧ π(y = 4)

−→ 1↓x = 1↓x0 ∧ 1↓y = 4

The result is included as the third and fourth equalities of the initial region
in Figure 4.5c. The last step is to add the path constraint φ. In this example,
the path constraint is x0 > 0, which originates from the assume x > 0 statement
between region 0 and 1 in Figure 4.5a. The computation π(φ) becomes:

π(φ) −→ π(x0 > 0)
−→ 1↓x0 > 0

The path constraint is the last predicate shown in the initial region of
Figure 4.5c. We have now computed the input constraint φic, which is the

71



conjunction of the computed constraints:

φic −→
( ∧
vi∈params(P ′)

vi = π(ai)
)
∧
( ∧

m7→e∈S
π(m = e)

)
∧ π(φ)

−→
(

i = 1↓x ∧ x = 1↓y
)
∧
(

1↓x = 1↓x0 ∧ 1↓y = 4
)
∧ 1↓x0 > 0

This is the constraint shown on the initial region in Figure 4.5c. Let us
verify that the above constraint capture that i must be positive, and that xsum
must be equal to 4.

The variable xsum is forced to be 4. This is evident when the two relevant
constraints, one from the binding of arguments to parameters and one from the
symbolic map, are shown together:

x = 1↓y ∧ 1↓y = 4 −→ x = 4

The requirement that i must be positive is also captured by the input
constraint. Three constraints force i to be positive. One from the binding of
arguments to parameters, one from the symbolic map, and finally the single path
constraint. When shown together, it is easily verified that i must be positive:

i = 1↓x ∧ 1↓x = 1↓x0 ∧ 1↓x0 > 0 −→ i > 0

Thus, the requirements for i and xsum are passed on when analyzing the sub
procedure. The next section describes how the exit constraint φec is generated.

4.4.3 Constructing the exit constraint φec
ExtendFrontier needs to construct the exit constraint φec for the procedure call
v := f(a0, . . . , an), such that if φec can be satisfied at a return statement in P ′,
then we can cross the frontier and reach Sk in P . This is accomplished in line 9
of Algorithm 4.3 with the pseudocode π(ρk[@r/v]). Thus, we take the region
predicate of Sk, the region after the frontier, and replaces all occurrences of v
with a result placeholder variable @r. The placeholder variable @r is used by
ReconstructGraphsAndInsertConstraints and is explained in Section 4.4.4. The
last step is to rename the variables that come from the callers context P by
using π.

In Figure 4.5a, when following the trace, the region after the frontier is region
3. Therefore, in ExtendFrontier, ρk is the region predicate of region 3, which is
x = 2. When calculating the exit constraint for the sum procedure shown in
Figure 4.5c, we substitute all occurrences of q with @r since q is the variable
being assigned with the return value of the procedure call. The calculation is
thus:

π(ρk[@r/v]) −→ π((x = 2)[@r/q])
−→ π(x = 2)
−→ 1↓x = 2
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Since there are no occurrences of q in ρk the predicate is unchanged by the
substitution. The exit constraint φec cannot directly be seen in the region graph
of sum yet. One of the responsibilities of ReconstructGraphsAndInsertConstraints
is to insert φec at the correct places and it will alter the predicate slightly.
ReconstructGraphsAndInsertConstraints is described in the next section.

4.4.4 ReconstructGraphsAndInsertConstraints
The ReconstructGraphsAndInsertConstraints procedure has multiple responsibili-
ties:

• Generate a fresh set of region graphs G ′ used for the analysis of the called
procedure P ′.

• Insert the input constraint φic in the initial region of G′, the region graph
for the called procedure P ′.

• Split all return regions in G′ in two using φec, and marking one of them
as an error region.

The reason that fresh region graphs are needed for the analysis of P ′, is that
the graphs used in the current analysis may contain concrete executions that are
impossible under the input constraint φic of P ′. Therefore DashLoop needs to
start from a fresh region graph where these states have been removed. DashLoop
may also refine the region graph G′ when analyzing the called procedure P ′.
Such refinements are only relevant for the analysis of the called procedure and
are irrelevant for the analysis of any other procedures, and must therefore be
discarded when DashLoop returns.

Inserting the input constraint is easy, as it is simply added on the initial
region of G′. Inserting the exit constraint involves a bit more work. Each
return e region in G′ is split into two, which we denote as Sec and S¬ec. The
exit constraint φec is transformed by substituting the result placeholder @r with
the return expression e. The region Sec has the predicate φec[e/@r] added while
S¬ec gets the predicate ¬φec[e/@r]. Additionally the region Sec is marked as an
error region. Thus if the error region is reached, then conceptually the region
predicate ρk, from the region after the frontier, is satisfied.

The exit constraint calculated for the sum procedure call in Figure 4.5a was
1↓x = 2. The initial region graph, where the input and exit constraints have not
been added yet, is shown in Figure 4.5b. The altered region graph, with input
and exit constraints added, can be seen in Figure 4.5c. It can be seen that the
region after the return s statement has been split into two. The exit constraint
that is inserted for the return s statement is:

φec[e/@r] −→ (1↓x = 2)[s/@r]
−→ 1↓x = 2

The region where 1↓x = 2 has been added as a predicate is marked as an
error region, whereas the region with the negated version 1↓x 6= 2 is a not an
error region. This can be verified by examining Figure 4.5c.
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Alternatively, had the assigned variable q instead been x, such that the
procedure call had been x = sum(x, y), then the exit constraint φec computed
would have been @r = 2. Computing the predicate for the return s statement
for this constraint becomes:

φec[e/@r] −→ (@r = 2)[s/@r]
−→ s = 2

Thus, for the return s statement, every occurrence of x in ρk is replaced with
s, through the intermediate variable @r. This happens since it is the value of s
that is assigned to x if return s is reached in P ′.

When the input and the exit constraint has been inserted in G′, then it is
ready for DashLoop to analyze. The complete set of region graphs G ′ is returned
from ReconstructGraphsAndInsertConstraints, which contains G′. The call to
DashLoop is made in line 11. When DashLoop returns, the result needs to be
extracted, which is explained in the next section.

4.4.5 Extracting results from interprocedural analysis

ExtendFrontier invokes DashLoop on line 11 in Algorithm 4.3 with an instrumented
safety property added to the region graph of the called procedure P ′. The safety
property was constructed such that if DashLoop reports fail, then ExtendFrontier
is able to return a test input that crosses the frontier edge. If DashLoop returns
pass, ExtendFrontier can construct a refinement predicate from the returned
graph.

First we show how to extract the test input to the caller procedure P from
the test input reported by DashLoop, which reaches an error region in procedure
P ′. Afterwards we show how to compute a refinement predicate from the region
graph that was given as a proof by DashLoop, which shows that the error regions
were unreachable in P ′.

Extracting test input

At line 13 in Algorithm 4.3 the test input for the caller procedure P is extracted.
The variable z contains the test input that reaches an error region in the sub
procedure P ′. The test input z contains, as seen from the view of P ′:

• Initial symbolic variables v0 for all parameters of P ′.

• Values for the variables mentioned in the input constrain φic:

– Parameters and local variables for the caller procedure P .
– Initial symbolic variables for parameters for the caller procedure P .
– Variables mentioned in the input constraint for P (if any).

The values needed to run a test for P are the initial symbolic variables for
the parameters of P and all the variables mentioned in the input constraint for
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P . Thus, the input t for P is extracted from the test input z to P ′ with the
pseudocode:

t := π−1
(
z \ {v0 | ∀v ∈ params(P ′)}

)
\
(
locals(P ) ∪ params(P )

)
First the initial symbolic variables for the parameters for the called procedure

P ′ are removed from z. These are variables the values that needs to be given to
P ′, such that it ends up in an error region, but they are irrelevant for calling P .
The result is then reverse renamed with π−1 and the locals and parameters for
the caller procedure P is removed. These variables might occur in z because
they may have been mentioned in the input or exit constraints for P ′. What is
left behind is the initial symbolic values v0 for the parameters of P generated
by ExecuteSymbolic together with any external variables that might have been
given in an input constraint when analyzing P as a sub procedure.

We present an example to make extraction of the test input clearer. A call
was made to sum from the test procedure in Figure 4.5a. The call to DashLoop
is able to analyze the region graph in Figure 4.5c and come up with a test input
z that reaches the error region:

[1↓x0 7→ 2, 1↓y 7→ 4, 1↓x 7→ 2, i0 7→ 4, x0 7→ 4]

First ExtendFrontier removes all initial symbolic variables for the parameters
of the called procedure P ′ from z:

z \ {v0 | ∀v ∈ params(P ′)} −→ z \ {v0 | ∀v ∈ {i, x}}
−→ z \ {i0, x0}
−→ [1↓x0 7→ 2, 1↓y 7→ 4, 1↓x 7→ 2,

i0 7→ 4, x0 7→ 4] \ {i0, x0}
−→ [1↓x0 7→ 2, 1↓y 7→ 4, 1↓x 7→ 2]

Parameters and local variables of P ′ are never mentioned in the returned
test input and we therefore do not need to remove them.

The next step is to reverse rename variables using π−1:

π−1
(
z \ {v0 | ∀v ∈ params(P ′)}

)
−→ π−1

(
[1↓x0 7→ 2, 1↓y 7→ 4, 1↓x 7→ 2]

)
−→ [x0 7→ 2, y 7→ 4, x 7→ 2]

Finally all local variables and parameters for the caller procedure P are
removed. In this case there are no locals. However, local variables will be present
if 1) a local variable is used in the call to a procedure or 2) if the local variable
is mentioned in ρk and is not the variable being assigned with the result of
the procedure call. There are two parameters to test and these are x and y.
Removing these, the final test input t is found:

t −→ π−1
(
z \ {v0 | ∀v ∈ params(P ′)}

)
\
(
locals(P ) ∪ params(P )

)
−→ [x0 7→ 2, y 7→ 4, x 7→ 2] \

(
∅ ∪ {x, y}

)
−→ [x0 7→ 2]
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Thus, the test input returned from ExtendFrontier dictates that the initial
value for x must be 2. The y variable is not constrained and when running a test
it is given a default value of 0. By inspecting the region graphs in Figure 4.5, it
can be confirmed that running a test with x 7→ 2 will reach the region after the
frontier.

In this case DashLoop was able to reach an error region in the called procedure
P ′. The next section presents how ExtendFrontier extracts a refinement predicate
if DashLoop shows that the error regions in P ′ are unreachable.

Computing the refinement predicate

If DashLoop is not able to find a test input that reaches an error region in a
sub procedure P ′, then it returns a graph z as a proof that the error regions
were unreachable. The goal is then to compute a suitable refinement predicate ρ
from the graph z, such that the trace τc is eliminated in the caller procedure P .

Remember that DashLoop was given a graph where input and exit constraints
where added, such that reaching an error region in P ′ would correspond to τc
being able to cross the frontier. At this point, DashLoop has refined the graph,
such that no error regions are reachable in P ′ and the goal is to compute a
suitable refinement predicate that shows that the trace τc is infeasible in P .

For a refinement predicate ρ to be suitable with respect to τc in P , it must
not be possible to reach Sk from Sk−1 where ¬ρ is added. Furthermore, all
states that can be obtained by executing τc up to the frontier must belong to
the region with ¬ρ added.

The key observation is to discover that when the initial region, in the graph
given to DashLoop, is refined, then the used refinement predicate ρi is a predicate
that must be satisfied for a trace in P ′ to reach an error region. Thus, if the
predicate ¬ρi is satisfied, then a path to an error region becomes unreachable,
and thus some path to Sk in P is also unreachable. Therefore all the predicates
ρi used to refine the initial region are interesting. If a path to an error region
is removed prior to reaching the initial region, then the predicates used there
are irrelevant to the trace τc since even if the input constraint was set to true,
then the error region could still not be reached. This is evident since the input
constraint cannot make a region predicate false. Thus, it seems that we can
construct a refinement predicate for eliminating τc in P by using the predicates
ρi used to refine the initial region in the region graph z returned by DashLoop.

We now need to find the suitable predicate ρ, such that if ¬ρ is satisfied in
region Sk−1, then region Sk cannot be reached in P and all states that can be
obtained by executing τc in P belongs to the region with ¬ρ added. Because
RefinePred does not use the loop optimization on the initial region, as described
in Section 3.6.3, all the ρi predicates are suitable refinement predicates for traces
in P ′.

If we assume that the names of the parameters and arguments are the same,
then we can ignore argument/parameter substitution and renaming. Then,
formally we have:

• Each ¬ρi eliminates a path to an error region. Therefore ¬ρ0 ∧ . . . ∧ ¬ρn
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eliminates all paths to all error regions in the sub procedure, and thereby
eliminates all paths to region Sk in the calling procedure P .

• Because ρi is used to refine the initial region in P ′, and ρi is a suitable
predicate, then, by the definition of a suitable predicate, all states that
can be satisfied by the input constraint on the initial region must all
satisfy ¬ρi. The conjunction of the predicates ¬ρ0 ∧ . . . ∧ ¬ρn must also
be satisfied by the states that satisfy the input constraint. Since the input
constraint models all the states that can be obtained by τc in P , then all
the states that can be obtained by τc must satisfy ¬ρ0 ∧ . . . ∧ ¬ρn.

The conjunction ¬ρ0∧ . . .∧¬ρn must then collectively remove all paths down
to the error regions, and all states that can be obtained by the input constraint
must satisfy the predicate. Thus we have found that ¬ρ, the negated refinement
predicate for τc in P , is ¬ρ0∧ . . .∧¬ρn. To find the suitable refinement predicate
ρ for P , we only have to negate the constraint:

ρ −→ ¬(¬ρ)
−→ ¬(¬ρ0 ∧ . . . ∧ ¬ρn)
−→ ρ0 ∨ . . . ∨ ρn
−→

∨
ρi∈InitialRefines(z)

ρi

Notice that the predicates used to refine the initial region, which are those re-
turned by InitialRefines(z), are not directly found in z, and have to be maintained
separately.

If we remove the assumption that argument and parameter names are equal,
we have to take argument/parameter substitution and renaming into account.
Argument/parameter substitution is reversed by replacing all symbolic variable
names with their corresponding argument. To reverse the renaming, π−1 is used.
Computing the refinement predicate then becomes:

ρ := π−1

 ∨
ρi∈InitialRefines(z)

ρi

[a0/v0, . . . , an/vn
]
| vi ∈ params(P ′)


which is the computation performed in line 17 of Algorithm 4.3. Notice that, if
the initial region is never refined in the region graph z, then all paths to the
error regions have been pruned before reaching the initial region. In that case,
the computation above yields false, which is the expected behavior since then
no concrete execution of τc in P can reach region Sk.

We will use the procedure call to sum in Figure 4.6a, which shows a later
iteration of DASHcall, as an example to illustrate how the refinement predicate ρ
is computed. The initial region graph constructed for sum is shown in Figure 4.6b,
and it is impossible to reach the error region in it. This is because the input
variable x is required to be 4, because of the input constraint, and the i variable
is required to be 2, because of the exit constraint. However, the sum of these
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0 {#0[y 0, x 1], #0[y 0, x 2]}

6 {#8[q 5, y 4, x 1], #7[q 6, y 4, x 2]}

x  0

1 {#1[y 0, x 1], #1[y 0, x 2]}

x > 0

7 {#9[q 5, y 4, x 1], #8[q 6, y 4, x 2]}

5

error

2 {#2[y 4, x 1], #2[y 4, x 2]}

3
(and
  q = 5
  x = 2)

q := sum(x, y)

3 {#6[q 5, y 4, x 1]}
x  2

q := sum(x, y)

3 {#6[q 6, y 4, x 2]}
(and
  q  5
  x = 2)

q := sum(x, y)

return

q  5

4 {#7[q 5, y 4, x 1]}
x  2

q = 5

4
x = 2

q = 5

q  5

q = 5

x  2

x = 2

x  2

q  5

q = 5

y := 4

(a) Procedure call with two constraints in ρk which is the
predicate on the region after the frontier edge.

0
(and
  i = 2 x
  x = 2 y
  2 y = 4
  2 x = 2 x
  2 x  > 0)

1

s := (i + x)

2
¬((and
  s = 5
  2 x = 2))

2
(and
  s = 5
  2 x = 2)

return s return s

(b) φic and φec
added to the initial
region graph.

0 {#0[2 y 4, 2 x 1, 2 x 1, i 1, x 4]}
(and
  i = 2 x
  x = 2 y
  2 y = 4
  2 x = 2 x
  2 x  > 0)

1 {#1[2 y 4, 2 x 1, 2 x 1, s 5, i 1, x 4]}
¬((and
  s = 5
  2 x = 2))

s := (i + x)

1
(and
  s = 5
  2 x = 2)

s := (i + x)

2 {#2[2 y 4, 2 x 1, 2 x 1, s 5, i 1, x 4]}
¬((and
  s = 5
  2 x = 2))

2
(and
  s = 5
  2 x = 2)

return s return s return s

(c) The only iteration where the initial region
is refined.

0 {#0[2 y 4, 2 x 1, 2 x 1, i 1, x 4]}
(and
  i = 2 x
  x = 2 y
  2 y = 4
  2 x = 2 x
  2 x  > 0)

1 {#1[s 5, 2 y 4, 2 x 1, 2 x 1, i 1, x 4]}
¬((and
  s = 5
  2 x = 2))

s := (i + x)

2
(and
  s = 5
  2 x = 2)

1
(and
  s = 5
  2 x = 2)

return s

2 {#2[s 5, 2 y 4, 2 x 1, 2 x 1, i 1, x 4]}
¬((and
  s = 5
  2 x = 2))

return sreturn s

InitialRefines
0:
(and
  (i + x) = 5
  2 x = 2)

(d) Frontier edge from (c) has been removed.

Figure 4.6: (a) shows an interesting procedure call in regards to computing a
refinement predicate. The region graphs (b), (c) and (d) shows parts of the
refinement process completed by DashLoop when invoked by ExtendFrontier.

two variables stored in s must be 5 if the error region is to be reached, but the
sum is always 6. Therefore it is impossible to reach the error region.

The refinement predicate returned from ExtendFrontier is based on the
predicates that were used to refine the initial region. Figure 4.6c shows the
only trace that results in refinement of the initial region. The trace is infeasible
since the path constraint φ after symbolic execution contains i0 + x0 = 5∧ x0 =
4 ∧ i0 = 2, which is unsatisfiable. The refinement predicate used to refine the
initial region is computed by using the weakest precondition for the assignment
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s := i+x on the frontier edge and the predicate from the region after the frontier:

WP(s := i+x, s=5 ∧ 2↓x=2) −→ i+x=5 ∧ 2↓x=2

Refining the initial region with the above predicate results in Figure 4.6d.
Notice that, as previously described in Section 3.3.5, when refining the initial
region over some edge then that edge is simply removed. An extra requirement
is added to RefineGraph, such that if it refines the initial region with a predicate,
then that predicate is stored in a list on the graph for later retrieval. This
is described in Section 4.5. In the example, the list of predicates that are
used to refine the initial region can be seen in the round box with the name
“InitialRefines” in Figure 4.6d.

When DashLoop returns with the resulting graph in z, all the predicates ρi
used to refine the initial region is returned by InitialRefines. The predicates are
combined in a disjunction, and in the example this yields:∨

ρi∈InitialRefines(z)
ρi −→

∨
ρi∈{(i+x=5∧2↓x=2)}

ρi

−→
∨
i+x=5 ∧ 2↓x=2

−→ i+x=5 ∧ 2↓x=2

Again, these predicates are not directly found in the region graph, and have
to be maintained separately by RefineGraph. In this example the initial region
was refined only once, but had it been refined multiple times, then InitialRefines
would have returned all the predicates used to refine the initial region.

The next step is to substitute all parameters of the called procedure P ′,
with the actual values given in the call. For the call, the variable x is given as
the parameter i and the variable y is given for the x parameter. The resulting
computation is: ∨

ρi∈InitialRefines(z)
ρi

[a0/v0, . . . , an/vn
]
| vi ∈ params(P ′)

−→
(
i+x=5 ∧ 2↓x=2

)[
a0/v0, . . . , an/vn

]
| vi ∈ {i, x}

−→
(
i+x=5 ∧ 2↓x=2

)[
x/i, y/x

]
−→ x+y=5 ∧ 2↓x=2

The last step is to reverse rename the variables using π−1:

ρ := π−1

 ∨
ρi∈InitialRefines(z)

ρi

[a0/v0, . . . , an/vn
]
| vi ∈ params(P ′)


−→ π−1

(
x+y=5 ∧ 2↓x=2

)
−→ x+y=5 ∧ x=2

This is the refinement predicate ρ returned by ExtendFrontier. The idea
is that with this predicate, the current trace τc will be eliminated since it
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0 {#0[y 0, x 1], #0[y 0, x 2]}

6 {#8[q 5, y 4, x 1], #7[q 6, y 4, x 2]}

x  0

1 {#1[y 0, x 1], #1[y 0, x 2]}

x > 0

7 {#9[q 5, y 4, x 1], #8[q 6, y 4, x 2]}

5

error

2 {#2[y 4, x 1], #2[y 4, x 2]}
¬(and
  (x + y) = 5
  x = 2)

3 {#6[q 5, y 4, x 1]}
x  2

q := sum(x, y)

3 {#6[q 6, y 4, x 2]}
(and
  q  5
  x = 2)

q := sum(x, y)

return

3
(and
  q = 5
  x = 2)

q  5

4 {#7[q 5, y 4, x 1]}
x  2

q = 5

4
x = 2

q = 5

q  5

q = 5

x  2

x = 2

x  2

q  5

q = 5

y := 4

2
(and
  (x + y) = 5
  x = 2)

y := 4

q := sum(x, y)q := sum(x, y)q := sum(x, y)

(a) The refined region graph resulting from finding that the
procedure call in Figure 4.6a was infeasible.

0 {#0[y 0, x 1], #0[y 0, x 2]}

6 {#8[q 5, y 4, x 1], #7[q 6, y 4, x 2]}

x  0

1 {#1[y 0, x 1], #1[y 0, x 2]}

x > 0

7 {#9[q 5, y 4, x 1], #8[q 6, y 4, x 2]}

5

error

2 {#2[y 4, x 1], #2[y 4, x 2]}
¬(and
  (x + y) = 5
  x = 2)

3 {#6[q 5, y 4, x 1]}
x  2

q := sum(x, y)

3 {#6[q 6, y 4, x 2]}
(and
  q  5
  x = 2)

q := sum(x, y)

return

3
(and
  q = 5
  x = 2)

q  5

4 {#7[q 5, y 4, x 1]}
x  2

q = 5
4
x = 2

q = 5

1
false

y := 4

2
(and
  (x + y) = 5
  x = 2)

y := 4

q  5

q = 5

x  2

x = 2

x  2q  5

q = 5

y := 4 q := sum(x, y)

q := sum(x, y) q := sum(x, y)

(b) The graph found by the next iteration of DashLoop when the
trace in (a) is found infeasible.

Figure 4.7: Shows the last two refinements of the region graph in Figure 4.6a.
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was unable to cross the frontier. The refinement predicate has been added in
Figure 4.7a.

The next iteration of DASHcall will try the trace seen in Figure 4.7a, which
is infeasible. The refinement predicate is computed as in DASHint, since the
frontier is not a procedure call. Thus WP is used over the assignment y := 4
with the postcondition x+y=5 ∧ x=2:

WP(y := 4, x+y=5 ∧ x=2) −→ x+4=5 ∧ x=2
−→ false

As can be seen, the refinement predicate is equivalent to false. When
the refinement predicate is used to split region 1, the region graph shown in
Figure 4.7b is created. The error region is unreachable and the analysis stops
with DashLoop returning pass. This concludes the ExtendFrontier presentation.

4.5 RefineGraph
RefineGraph is subject to two changes. First the predicates used to split the
initial region needs to be recorded. In Algorithm 4.4 the procedure AddInitialRe-
gionSplitPredicate is used to store those predicates. It has been placed together
with the optimization for refining the initial region as described in Section 3.3.5.

The second change is to distribute the states in Sk−1 into S∗k−1 and S∗∗k−1,
since ρ is not as strong as it was in DASHint. In DASHint we knew that ρ would
always exclude all the known states in Sk−1. In DASHcall we only know that
it is a suitable predicate, which implies that it will only exclude the states
associated with the current trace τc. States that are not associated with τc, but
still resides in Sk−1 may be able to satisfy ρ and would therefore be placed in
S∗∗k−1. Remember that there are no requirements that say if ρ is satisfied, then
Sk is reached. However, what is required is that if ρ is not satisfied, then the
error region cannot be reached. The states that are added to S∗∗k−1 still does not
reach Sk, since then the frontier would not have been at the edge (Sk−1, Sk).

4.6 Finding error statements in sub procedures
As mentioned in the start of this chapter, DASHcall only finds the error statements
in the top level procedure of a multi-procedure program. The DASH article
specifically mentions:

“We will assume without loss of generality that the property φ that
we wish to check is only associated with the main procedure P0 in
the program P .”1

The DASH algorithm, as described in the DASH article, supports pointers
into the heap and as such global state. Using global state, the limitation that
error statements can only occur in the main procedure can be avoided with a
clever instrumentation. We believe that the authors of DASH thought of this

1Page 11 in DASH [A2]
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Algorithm 4.4 RefineGraph(ρ, τc = 〈RS0, . . . , RSk−1, Sk〉, G = 〈Σ',→'〉)
Returns: 〈Σ',→'〉, the refined region graph.
1: let 〈Sk−1,_〉 = RSk−1
2: let 〈ρk−1, states〉 = Sk−1
3:
4: if k = 1 then
5: AddInitialRegionSplitPredicate(ρ)
6: return 〈Σ',→' \(Sk−1, Sk)〉 . Since k = 1, this is the same as removing (S0, S1)
7: end if
8:
9: Σ∗' := Σ' \ {Sk−1} . Remove Sk−1
10: →∗':=→' \{(S, Sk−1) | S ∈ Parents(Sk−1)}
11: →∗':=→∗' \{(Sk−1, S) | S ∈ Children(Sk−1)}
12:
13: ρ∗k−1 := Simplify(ρk−1 ∧ ¬ρ)
14: ρ∗∗k−1 := Simplify(ρk−1 ∧ ρ)
15: for s ∈ states do . Distribute states between S∗k−1 and S∗∗k−1
16: if Eval(ρ∗k−1, s) = true then
17: states∗ := states∗ ∪ {s}
18: else
19: states∗∗ := states∗∗ ∪ {s}
20: end if
21: end for
22:
23: S∗k−1 := 〈ρ∗k−1, states

∗〉
24: Σ∗' := Σ∗' ∪ {S∗k−1} . Insert S∗k−1
25: →∗':=→∗' ∪{(S, S∗k−1) | S ∈ Parents(Sk−1)}
26: →∗':=→∗' ∪{(S∗k−1, S) | S ∈ Children(Sk−1)}
27:
28: S∗∗k−1 := 〈ρ∗∗k−1, states

∗∗〉
29: Σ∗' := Σ∗' ∪ {S∗∗k−1}
30: →∗':=→∗' ∪{(S∗∗k−1, S) | S ∈ Children(Sk−1)}
31: if IsSAT(ρ∗∗k−1) = unsat then . Add incoming edges if ρ∗∗k−1 is satisfiable
32: →∗':=→∗' ∪{(S, S∗∗k−1) | S ∈ Parents(Sk−1)}
33: end if
34:
35: →∗':=→∗' \{(S∗k−1, Sk)} . Remove frontier edge from S∗k−1
36: return 〈Σ∗',→∗'〉

instrumentation when they wrote without loss of generality. Essentially all calls
to error in sub procedures are replaced with an assignment ERROR = 1 to a global
variable ERROR. The main procedure is then instrumented to check if ERROR
has been set to 1. If this is the case, then the main procedure executes the error
statement to signal the failure.

The instrumentation process is illustrated in Figure 4.8. Figure 4.8a shows
two procedures where main is the main procedure and sub is a sub procedure
called by main. Notice that sub uses the error statement, which DASH does not
support. Figure 4.8b shows the same code, but instrumented to use a global
variable ERROR to signal to the main procedure when sub has reached an error.
As such it does not matter that only error statements in the main procedure
are searched for by DASH, at least not if global state is supported. However,
since DASHcall does not support global state, we cannot use this instrumentation
process for programs analyzed by DASHcall.
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int main ( int x , int y )
{

return sub (x , y ) ;

}

int sub ( int a , int b)
{

i f ( a ∗ 4 > b)
e r r o r ;

return a + b ;
}
(a) Before instrumentation

GLOBAL int ERROR = 0 ;

int main ( int x , int y )
{

int r = sub (x , y ) ;
i f (ERROR == 1)

e r r o r ;
return r ;

}

int sub ( int a , int b)
{

i f ( a ∗ 4 > b)
ERROR = 1 ;

return a + b ;
}
(b) After instrumentation

Figure 4.8: (a) shows two procedures where the sub procedure uses an error
statement. DASH only supports error statements in the main procedure. Using
global state error statements in sub procedures can be avoided as is seen in (b).

4.7 Challenges and modifications

This section summarizes the challenges and modifications we have made to the
DASH algorithm, when handling programs that support integer variables and
procedure calls.

4.7.1 Infinite refinement when the frontier is a procedure call

We have had a number of problems when incorporating the loop optimization
from DASHint while adding procedure calls. We found that some of our test
cases went into an infinite refine loop, when refining over a procedure call. The
problems we describe here arose before we had introduced the optimization that
removes the frontier edge when refining the initial region, and it was also before
we disallowed the use of the loop optimization on the initial region.

We present an example where infinite refinement occurs over a procedure
call edge. The two procedures in the example are shown in Figure 4.9a and
Figure 4.9b. The test procedure is the main procedure. The problem is that
the same edge is continuously refined with the same input and exit constraints.
This results in multiple new initial regions that have the region predicate false
and are therefore unsatisfiable.

The trace in Figure 4.9c has the procedure call to abs as the frontier. DashLoop
is invoked and because no input values can satisfy the exit constraint, we expect
to find the refinement predicate to be, or equivalent to, false. No values that
abs can take will satisfy the exit constraint, since as seen earlier, the only
way abs can return a negative value, is by passing it −2,147,483,648 as input.
However this value is specifically disallowed in the exit constraint and therefore
the exit constraint a < 0 ∧ a 6= −2,147,483,648 is impossible to satisfy. The
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void t e s t ( int k )
{

int a = abs (k ) ;
i f ( a < 0)

i f ( a 6= −2147483648)
e r r o r ;

}
(a) test procedure

int abs ( int z )
{

i f ( z < 0)
return −z ;

return z ;
}

(b) abs procedure

0 {#0[k 0], #0[k -2147483648]}

1 {#4[a 0, k 0]}
a  0

a := abs(k)

1 {#5[a -2147483648, k -2147483648]}  
a = -2147483648

a := abs(k)

1
(and
  a  -2147483648
  a < 0)

a := abs(k)

4 {#5[a 0, k 0], #7[a -2147483648, k -2147483648]}

a  0

5 {#6[a 0, k 0], #8[a -2147483648, k -2147483648]}

return

2 {#6[a -2147483648, k -2147483648]}  
a = -2147483648

a = -2147483648 3

error

a  0

a < 0

2
a  -2147483648

a = -2147483648

a  -2147483648a  0

a < 0 a < 0

(c) About to analyze sub procedure

0 {#0[k 0], #0[k -2147483648]}
(and
  ¬((and
     k  -2147483648
     k < 0))
  ¬((and
     k  -2147483648
     0 > (-1 * k))))

1 {#4[a 0, k 0]}
a  0

a := abs(k)

1 {#5[a -2147483648, k -2147483648]}  
a = -2147483648

a := abs(k)

0
(or
  (and
     k  -2147483648
     k < 0)
  (and
     k  -2147483648
     0 > (-1 * k)))

a := abs(k) a := abs(k)

1
(and
  a  -2147483648
  a < 0)

a := abs(k)

4 {#5[a 0, k 0], #7[a -2147483648, k -2147483648]}

a  0

5 {#6[a 0, k 0], #8[a -2147483648, k -2147483648]}

return

2 {#6[a -2147483648, k -2147483648]}  
a = -2147483648

a = -2147483648 3

error

a  0

a < 0

2
a  -2147483648

a = -2147483648

a  -2147483648a  0

a < 0 a < 0

(d) About to analyze sub procedure

0 {#0[k 0], #0[k -2147483648]}
(and
  ¬((and
     k  -2147483648
     k < 0))
  ¬((and
     k  -2147483648
     0 > (-1 * k))))

1 {#4[a 0, k 0]}
a  0

a := abs(k)

1 {#5[a -2147483648, k -2147483648]}  
a = -2147483648

a := abs(k)

0
false

a := abs(k) a := abs(k)

0
(or
  (and
     k  -2147483648
     k < 0)
  (and
     k  -2147483648
     0 > (-1 * k)))

a := abs(k) a := abs(k)

1
(and
  a  -2147483648
  a < 0)

a := abs(k)

4 {#5[a 0, k 0], #7[a -2147483648, k -2147483648]}

a  0

5 {#6[a 0, k 0], #8[a -2147483648, k -2147483648]}

return

2 {#6[a -2147483648, k -2147483648]}  
a = -2147483648

a = -2147483648 3

error

a  0

a < 0

2
a  -2147483648

a = -2147483648

a  -2147483648a  0

a < 0 a < 0

(e) First false region arises

0 {#0[k 0], #0[k -2147483648]}
(and
  ¬((and
     k  -2147483648
     k < 0))
  ¬((and
     k  -2147483648
     0 > (-1 * k))))

1 {#5[a -2147483648, k -2147483648]}  
a = -2147483648

a := abs(k)

1 {#4[a 0, k 0]}
a  0

a := abs(k)

0
false

a := abs(k) a := abs(k)

0
false

a := abs(k) a := abs(k)

0
false

a := abs(k) a := abs(k)

0
false

a := abs(k) a := abs(k)

0
(or
  (and
     k  -2147483648
     k < 0)
  (and
     k  -2147483648
     0 > (-1 * k)))

a := abs(k) a := abs(k)

1
(and
  a  -2147483648
  a < 0)

a := abs(k)

2 {#6[a -2147483648, k -2147483648]}  
a = -2147483648

4 {#5[a 0, k 0], #7[a -2147483648, k -2147483648]}

a = -2147483648

5 {#6[a 0, k 0], #8[a -2147483648, k -2147483648]}

3

error

a < 0

a  0 a  0

return

a < 0

a  0

2
a  -2147483648

a < 0

a  -2147483648

a = -2147483648

(f) More false regions arises

Figure 4.9: Shows the problem of infinite loop refinement. Code is shown in
(a) and (b). In (c) we are about to refine a procedure call edge. (d) shows the
graph after refinement and together with (e) shows the infinite loop forming, due
to the same input and exit constraints. (f) shows the graph after a couple of
refinements and the infinite loop is in progress.

suitable refinement predicate returned should therefore be false, but as we
can see in Figure 4.9d the found refinement predicate returned is actually
(k 6= −2,147,483,648 ∧ k < 0) ∨ (k 6= −2,147,483,648 ∧ k > 0), which we name
ρ∗.

In the next iteration of DASH the procedure call is still the frontier, but now
additional input constraints are given when analyzing abs. However, DashLoop
finds the same refinement predicate ρ∗, with the result of splitting the initial
region in two. One with the predicate ρ∗ ∧ ¬ρ∗ and one with the predicate
ρ∗ ∧ ρ∗. The first predicate is equivalent to false, with the second being identical
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to the original predicate, and thus no progress is achieved. This is shown in
Figure 4.9e. The refinement predicate returned is not suitable, which seems
to be the root cause of the infinite refinement problem. The infinite loop has
begun, where additional initial regions with the predicate false are added, as
can be seen in Figure 4.9f.

We tried a number of techniques, which either did not work or it was unknown
why they worked, to solve the problem:

• Completely disabling the loop optimization solved the problem, which also
served to confirm our belief that the problem arose because we found and
used a refinement predicate that was not suitable. However, without the
loop optimization, some of the test cases for DASHint failed.

• At this point in time, our RefinePred implementation was allowed to use
the loop optimization, even if there were no states in a region that was
moved. We tried to add the requirement that at least one state should
be moved, as argued for earlier in Section 3.8.9. This fixed some of the
tests that failed, but others, like the example presented in this section,
still failed.

• Another solution we came up with, was the idea that an edge going out
of the initial region could simply be removed if the SAT solver found it
infeasible. This solved the problem for all our test cases. However we were
unable to explain why this solution should solve the problem, and we were
hesitant to use it.

We found the final solution while arguing that the predicate computed by
ExtendFrontier in Section 4.4.5, when DashLoop found the error regions to be
unreachable in a sub procedure, was actually a suitable refinement predicate.
The argument only worked if we assumed that all the refinement predicates that
were used to refine the initial region in the sub procedure were suitable predicates.
If the predicates were suitable, then we could show that the computed predicate
would be suitable for the original procedure. This resulted in changing RefinePred
such that the loop optimization could never be used when it was the initial region
that was being refined. We introduced it in DASHint, in Section 3.6, since it also
fixes the problem in Section 3.8.8. In this way, the infinite refinement problem
for the example presented in this section was solved. The refinement predicate
returned was forced to be suitable, and therefore progress was achieved.

Our implementation still uses the idea of removing outgoing edges from the
initial region when they are refined. However, we have tested that if we allow
multiple initial regions, the solution where the loop optimization is disallowed on
initial regions still works for all our test cases. Therefore, removing edges when
refining the initial region is only an optimization that simplifies the presentation
in this thesis, such that the graphs presented are smaller.

4.7.2 Lack of path constraint in the input constraint

We have had major problems adding interprocedural analysis to DASHint. This
section describes the key problems with invoking DashLoop from inside Ex-
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tendFrontier. The DASH article uses approximately one page on describing
modifications of ExtendFrontier and some additional helper procedures. However,
we have had to modify code in many places to get DASHint to handle interproce-
dural analysis. One of the biggest problems we have had was how to construct
the input and exit constraints given to DashLoop, when invoking it from inside
ExtendFrontier.

The original pseudocode for ExtendFrontier that can handle interprocedural
analysis is shown in Algorithm 4.5. Section 4.7.4 describes that they take a
trace that traverses only the analyzed procedure and constructs a full trace that
traverses sub procedures using a call to GetWholeAbstractTrace.

Algorithm 4.5 ExtendFrontieroriginal(τo, F, P ) for interprocedural analysis
Returns:
〈t, true〉, if the frontier can be extended; or
〈unsat, ρ〉, if the frontier cannot be extended

1: τw = 〈S0, S1, . . . , Sn〉 := GetWholeAbstractTrace(τo, F )
2: (k − 1, k) := Frontier(τw)
3: 〈φ1, S , φ2〉 := ExecuteSymbolic(τw, P )
4: if Edge(Sk−1, Sk) ∈ CallReturn(E) then
5: let 〈Σ, σI ,→〉 = GetProc(Edge(Sk−1, Sk))
6: φ := InputContraints(S)
7: φ′ := Sk[e/x]
8: 〈r,m〉 := DASH(〈Σ, σI ∧ φ,→〉,¬φ′)
9: if r = fail then
10: t := m
11: ρ := true
12: else
13: ρ := ComputeRefinePred(m)
14: t := unsat
15: end if
16: else
17: t := IsSAT(φ1, S , φ2, P )
18: if t = unsat then
19: ρ := RefinePred(S , τw)
20: else
21: ρ := true
22: end if
23: end if
24: return 〈t, ρ〉

They construct the input constraint in line 6 with a call to InputConstraints
giving the symbolic map S as the only argument. They write the following about
the input constraint in the article:

“The predicate φ corresponds to the constraints on Q’s input vari-
ables which are computed directly from the symbolic memory S (by
the auxiliary function InputConstraints at line 7), [. . . ].”2

A small typo in their quote exists, since InputConstraints is actually called
in line 6. What is more severe is that they write that the input constraint

2Page 11 in DASH [A2]
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void t e s t ab s ( int x , int y )
{

i f ( y 6= 0)
{

x = abs (x ) ;
i f ( x < 0)

e r r o r ;
}

}
(a)

void t e s t ab s2 ( int x )
{

i f ( x 6= −2147483648)
{

x = abs (x ) ;
i f ( x < 0)

e r r o r ;
}

}
(b)

int abs ( int a )
{

i f ( a < 0)
return −a ;

return a ;
}

(c)

Figure 4.10: (a) shows the testabs procedure which calls the abs procedure in (c)
whenever y 6= 0. (b) shows the testabs2 procedure which has a precondition on x
that it must not be the smallest negative value. Analyzing these procedures with
the constraints calculated by InputConstraints produces meaningless solutions.

for the called procedure Q can be computed directly from what we call the
symbolic map S . As we know by now, the symbolic map contains mappings of
the form v 7→ e where e can be a constant or a symbolic expression. Thus the
constraint they generate must be in the form p1 = SymbolicEval(a1, S)∧. . .∧pn =
SymbolicEval(an, S) where pi are the parameter names and ai is the argument
given for pi. The path constraint is missing from this input constraint. There
is no way to include the path constraint from the trace τc by using only the
symbolic map S , since S only contains a snapshot of the program state at region
Sk−1. The path constraint is located in φ1 and is not given to InputConstraints.

Our first implementation followed their pseudocode and explanations. How-
ever, we found cases where this led to problems. We had two distinct problems:

1) When DashLoop returns with a test input for the sub procedure, then that
test input might not include all the variables needed to call the callee procedure.
This happens when a variable is used in an if expression but not given as an
argument to the sub procedure. An example is given in Figure 4.10a. The
y variable cannot be zero if abs is to be called. However, when analyzing abs
the path constraint is not added to the input constraint and the result of the
analysis will not even include a value for y. If the default value of zero is used,
the execution will not follow τc nor cross the frontier.

One can solve this problem by using an IsSAT call. The problem given to
IsSAT is simply φ1 and where all the arguments are assigned the solutions in
t. Thus if x has to be 4, then the extra constraint x = 4 must be added to φ1.
However, this solution does not solve the next problem we discovered.

2) If some variables are constrained by the path constraint prior to a proce-
dure call, such as in an if condition, then the procedure analysis might come up
with an input parameter that conflicts with the path constraint, since it is not
given when analyzing the called procedure. An example is given in Figure 4.10b.
Here the testabs2 procedure calls the abs procedure with the argument x. At
the point of the call x can be any value except for the smallest possible value
−2,147,483,648. This value is the only value that allows abs to return a negative
value. Therefore it is not possible to reach the error statement in the testabs2
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void f oo ( )
{

int y = 4 ;
int x = zero ( ) ;
i f ( x == y)

e r r o r ;
}

(a)

int zero ( )
{

return 0 ;
}

(b)

Figure 4.11: Example where including both the path constraint and the arguments
from the symbolic map is not enough for correct analysis. The whole symbolic
map must be included in the input constraint to zero.

procedure. However, when analyzing the abs procedure, the requirement given
is that it must return a negative value, such that the error statement can be
reached. The result returned is that abs should be called with −2,147,483,648,
as was discovered in the DASHint complete example from Section 3.7. However,
the testabs2 procedure is unable to call abs with that specific value, since the
path constraint prohibits it.

These two examples shows that constructing the input constraint solely from
the symbolic map S cannot be correct. The solution to the above problems was
to add the path constraint together with the arguments from the symbolic map.
However, there are cases where the exit constraint contains variables that are
not given in either the path constraint or the arguments to the called procedure.

The two procedures in Figure 4.11 shows that it is not enough to only
add the symbolically evaluated arguments from the symbolic map to the input
constraint φic when analyzing the called procedure. The foo procedure can reach
the error statement if x is equal y. The procedure starts by assigning 4 to y and
thereafter zero is called, which returns zero. Thus x is always 0 and y always 4
which makes the error statement unreachable.

Analyzing foo would proceed by executing a concrete test, which does not
reach the error statement. The trace found in the next iteration has the frontier
edge going into the error region. The trace is found infeasible. The next iteration
has a trace where the frontier edge is over the zero procedure call. In this case
the exit constraint is x = y, but y is not part of either the path constraint or the
arguments given to the zero procedure. If a default value of zero is assigned to y
since it is not constrained, then the analysis reports that the trace is feasible,
which it is clearly not. The problem is that the analysis of the sub procedure
cannot see that y must be 4.

Problems can also arise when a test is executed with RunTest and a variable in
the exit constraint is not mentioned in either the path constraint or in arguments.
IsSAT then does not find a value for the variable, which causes RunTest to be
unable to evaluate a region predicate that contains the variable.

The conclusion is that DASH has to dump the whole symbolic map into
the input constraint together with the path constraint. This is also how we
presented the computation of the input constraint in Section 4.4.2.

We have later learned, by personal correspondence, that the DASH imple-
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void bound ( int x )
{

int f = f i b ( 3 ) ;
i f ( f == x)

e r r o r ;

}
(a)

void f r e e ( int x )
{

int f = f i b (x ) ;
i f ( f == 1)

i f ( x == 0)
e r r o r ;

}
(b)

int f i b ( int i )
{

i f ( i == 0) return 0 ;
i f ( i ≤ 2) return 1 ;
return f i b ( i − 1) +

f i b ( i − 2 ) ;
}

(c)

Figure 4.12: The bound procedure in (a) calls the recursive procedure fib given
in (c) with a bound constant. DASH quickly finds a test for bound that reaches
the error. The free procedure in (b) calls fib with a free unconstrained variable,
which makes DASH enter an infinite recursive analysis.

mentation actually asserts the path constraint to Z3 prior to analyzing a sub
procedure. In this way, they achieve the same effect as if the input constraint con-
tained the path constraint. However, we do not know how they add constraints
from the symbolic map.

4.7.3 Problem: Handling of recursive procedures

As was mentioned in the introduction to this chapter, DASHcall is unable to
handle certain types of recursive invocations. The DASH article contains the
following paragraph describing how it handles recursive procedures:

“If a procedure needs to be recursively invoked in order to reach an
error condition, DASH itself will be recursively invoked, substituting
appropriate values for concrete parameters, so that symbolic execu-
tion will eventually “bottom out”, in the base case of the recursion.
On the other hand, if the recursive execution of a procedure is not
directly related to the error, the algorithm will generate test cases
that pass right though the recursive invocations, at which point the
call will be on the near side of the frontier.”3

It thus seems like the DASH algorithm has no problems with recursive
procedures and does not need any kind of special handling for it. For the
example given in Figure 4.12a DASH quickly terminates finding the input x 7→ 2,
which is the value that fib (3) returns. Thus, the error region is quickly reached.

However, we have found examples where DashLoop is recursively invoked
infinitely, i.e. no automatic “bottoming out” in any base cases.

The free procedure given in Figure 4.12b results in infinite analysis. The
error statement cannot be reached since fib (0) is zero (x needs to be zero to
satisfy the if condition). However, since x is not bound to any specific value,
DASH keeps recursively invoking DashLoop, never bottoming out. We have not
found any solution to this problem.

3Page 12 in DASH [A2]
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4.7.4 GetWholeAbstractTrace: confusing
The ExtendFrontier procedure presented in the DASH article, reproduced as
Algorithm 4.5, shows that the procedure GetWholeAbstractTrace is used. The
authors describe the functionality as:

“ExtendFrontier first calls the auxiliary function GetWholeAbstract-
Trace (line 1). GetWholeAbstractTrace takes an ordered abstract
error trace τ = 〈S0, S1, . . . , Sn〉 and a forest F as input, and returns
an “expanded” whole abstract error trace τw. Essentially, τw is the
abstract trace τ with all call-return edges up to its frontier replaced
with the abstract trace traversed in the called function (and this
works in a recursive manner), so that it is really a trace of every ab-
stract program point through which the test passed. If Edge(Si, Si+1)
is a call-return edge that occurs before the frontier, GetWholeAb-
stractTrace runs a test t (obtained from the concrete witness in Si)
on the called procedure GetProc(e) and replaces Edge(Si, Si+1) with
the sequence of regions corresponding to the test t.”4

Thus they create a trace that passes through every program point in both
the main procedure and through the called sub procedures. There are multiple
problems to this approach:

• The trace τw is a list of regions where all call-return edges (Si, Si+1) have
been replaced with St1, . . . , Stn originating from the test t. It is not given
which operation exists on the edges (Si, St1) and (Stn, Si+1).

• A call return edge (Si, Si+1) cannot be replaced without explicit handling of
arguments and parameters. If x is passed to a procedure as the parameter
y then there must be an assignment of some form to convey that x and y
are connected. The same problem exists for return statements.

• What happens when there are two procedures that both takes x as a
parameter. They do not touch upon renaming of variables while describing
GetWholeAbstractTrace.

• As we have understood the DASH algorithm, they maintain a forest F for
each procedure in the program. They write “As in the single procedure
case, we maintain a forest F and an abstraction P' for every procedure
P in the program.”5 They should therefore be able to lookup the correct
path in one of the forests and thereby not need to execute a test t to figure
out the path taken by τ in the sub procedure.

They also mention that only ExtendFrontier needs to be altered for interpro-
cedural analysis to function. Given the above listed problems we cannot see
how ExecuteSymbolic should be able to execute τw without modifications. Also,
as should have been evident from our presentation, we have concrete states

4Page 11 in DASH [A2]
5Page 11 in DASH [A2]
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attached to the region graph of sub procedures such that following the trace τ
was a simple task for us.

Our pseudocode for ExecuteSymbolic, shown in Algorithm 4.1, handles: 1)
following the trace, 2) arguments/parameters, 3) return values and finally it uses
a symbolic map for each sub procedure such that renaming is not needed. Our
first implementation actually did perform renaming, but when we wrote down
the pseudocode for it, we found that renaming could be avoided and recoded
our implementation.

All in all, it seems that GetWholeAbstractTrace is a procedure that is used
to compact the presentation of the DASH interprocedural algorithm. The real
DASH implementation probably does something similar to what we do.

4.7.5 Consequences of having states on regions

The DASH authors maintains a forest F for every procedure, as is evident in the
quote below:

“As in the single procedure case, we maintain a forest F and an
abstraction P' for every procedure P in the program.”6

A major difference between our implementation and their pseudocode is that
our version keeps the abstraction P' and the forest F together in the region
graph data structure. They invoke DashLoop with an empty forest and a fresh
abstraction. Thus, when we need to invoke DashLoop all the concrete states
must be removed from the region graph, such that the sub procedure gets a
fresh start.

4.7.6 ComputeRefinePred: confusions about ρi and ¬
In the DASH article, the procedure ComputeRefinePred is responsible for comput-
ing the refinement predicate for P in ExtendFrontier when DashLoop has proved
that no error regions are reachable in the sub procedure P ′. Our computation
for ComputeRefinePred differs from the one presented in the DASH article. We
have used:

ρ :=
∨

ρi∈InitialRefines(z)
ρi

given that we ignore reverse renaming and argument/parameter substitution.
We have argued in Section 4.4.5 for why this is a suitable predicate that can be
used to eliminate τc in P . In the article the authors use the following definition:

“Specifically, ComputeRefinePred(m) is defined as follows.

ComputeRefinePred(m) := ¬
∨
ρi

where each ρi is a predicate in the proof m used to split the initial
region σI ∧ φ. It can be shown that ComputeRefinePred returns a
suitable predicate.”7

6Page 11 in DASH [A2]
7Page 12 in DASH [A2]
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Immediately it can be seen that we have removed a negation (¬) from the
definition. Additionally we have discovered, by personal correspondence, that
the ρi they use in their definition are not actually the predicates returned by
RefinePred, but are the predicates that would be attached to the initial region.
Those predicates are the negated versions of those returned by RefinePred. Thus,
their ρi, which we call ρitheir , is actually the negated version of our ρi’s, which
we can call ρiour . We can express the difference by the equation ρitheir = ¬ρiour .
We assumed that ρi referred to the suitable predicate returned by RefinePred,
since ρ has been used as such in the previous sections of the article. If we insert
their definition of ρi in ComputeRefinePred we get:

ComputeRefinePred(m) := ¬
∨
ρitheir

:= ¬
∨
¬ρiour

:=
∧
ρiour

This still does not match our definition. They use a conjunction where we use a
disjunction. What is worse, is that this predicate is not a suitable predicate for
τc in the caller procedure P . Remember, that for a predicate to be suitable with
respect to τc, the negated version must disallow any state to reach the region
after the frontier. This is a requirement since then we are allowed to remove an
edge when splitting Sk−1 into two. However, their negated version:

¬
∧
ρiour −→

∨
¬ρiour

basically means that if a single ρiour is not satisfied, it is not possible to reach
Sk. However, it might be possible to reach one of the error regions in P ′ as
long as one of the ρiour ’s is satisfied. Therefore, their predicate is not a suitable
refinement predicate. This makes a difference when the initial region in P ′ has
been refined multiple times, such that there is more than one ρi. It also makes
a difference when the initial region in P ′ has not been refined at all. Then their
predicate becomes true, since it is neutral element for conjunction, but with
true, progress is not achieved.

We do not believe that they use the above formula. There must be some
mismatch in the communication between us and the authors of DASH, either in
the article or by personal correspondence.
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Chapter 5

Implementation details when
implementing DASHcall in Java
for analyzing a subset of Java

This chapter describes the implementation details of DASHcall. We have named
the implementation DASH for Java, or in short form DASH4j. DASH4j takes as input
a small Java program and analyses it as DASHcall would. Our implementation
code is structured to resemble the pseudocode presented for DASHcall. There
are some practical obstacles that need to be solved before all the requirements
for the DASHcall algorithm are met:

• Java code needs to be loaded. There is a difference between what DASH
supports and what Java supports. For example, DASH does not support
expressions with side effects, but Java does with the syntax i++.

• A SAT solver is needed for the IsSAT procedure.

• A region graph must be constructed for DASH analysis.

• RunTest must be able to execute a test and collect states for the region
graph.

The supported Java features are described in Section 5.1. Desugaring of
Java code is described in Section 5.2 whereas construction of region graphs is
presented in Section 5.3. We use instrumentation when concretely executing
a test, which we describe in Section 5.4. Z3 is used as the SAT solver and
integrating with it is described in Section 5.5. We elaborate on handling the
Java Standard Library in Section 5.6. Finally, in Section 5.7 we describe how
the source code for DASH4j can be obtained and we provide an overview of the
tests we have written.

5.1 Supported Java features
In this section we describe the features in Java that are supported by the DASH4j
implementation of DASHcall.
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DASH4j supports static methods with integer arithmetic, parameters and
local variables. Inside methods, assignments and any of the normal control flow
constructs are allowed: if , while, do while and for, since they can be mapped to
the if c goto l construct that DASHint supports.

DASHcall, as described in Chapter 4, introduced procedure calls. In Java this
is mapped to static method calls. The result of a method call must be assigned
to a variable, as required by DASHcall. The reason for using static methods,
as opposed to using instance methods, is that instance methods always take a
hidden parameter before the actual parameters. The hidden parameter is the
this reference to the object instance that the method is called on. It is visible
during analysis, but could have been ignored, and we did this initially, but static
methods maps cleaner to the DASH concept of a procedure.

Other features of Java are not currently supported. Thus features such as
doubles, long, exceptions, objects and reflection are not supported. Significant
subsets of Java features are discussed as future extensions in Chapter 6.

5.2 Loading Java code
There are two choices for the input to DASH4j: either Java source code or
bytecode. When Java source code is compiled it generates .class files containing
bytecode. Operating on any of these two choices is not optimal since:

• Java source code

– Has irrelevant syntactic sugar. Examples are generics, for, while,
foreach-loops, inner classes, anonymous classes, varargs, String +
operator, implicit toString(), implicit String.valueOf (...) , etc. Each
construct would have to be handled.

– Allows unlimited nested expressions: q=(a+b)+(c−v()).
– Source code may not be available for compiled classes.

• Java bytecode

– Has at least 202 bytecodes1 that needs to be handled individually.
– Uses a stack based model, where it can be difficult to associate stack

entries with variables.
– Very low level.

Neither of these maps well to the language constructs used by DASH. Instead
we use a tool called Soot2. It converts Java bytecode into a simple intermediate
language called Jimple. Jimple is very similar to the language that DASH
supports:

• All if , while, do while and for is converted to simplified form, with
if c goto l and goto l statements.

1http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-7.html
2http://www.sable.mcgill.ca/soot/
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stat ic int add
( int a , int b , int c )

{
return a + b + c ;

}

(a) Java

stat ic int add
( int , int , int )

i load_0
i load_1
iadd
i load_2
iadd
i r e t u r n

(b) Bytecode

stat ic int add
( int , int , int )

{
int a , b , c , temp$0 ,
temp$1 , temp$2 ;

a := @parameter0 : int ;
b := @parameter1 : int ;
c := @parameter2 : int ;
temp$0 = a ;
temp$1 = temp$0 + b ;
temp$2 = temp$1 + c ;
return temp$2 ;

}
(c) Jimple

Figure 5.1: The code listed in (a) shows the Java source code of a static method
add that takes three integers and returns their sum. (b) shows add when compiled
to bytecode. (c) shows add when converted to a simple 3-address representation
called Jimple.

• Expressions are represented using 3-address representation. For example,
the expression q=(a+b)+c will be replaced by z=a+b; q=z+c.

• If method calls are located inside expressions, then they are extracted and
their results are assigned to an intermediate variable.

• Arguments to method calls are either constants or local variables. If
this is not the case, the argument expression is converted to 3-address
representation and the result is used as the argument.

In essence, Jimple is Java but where all syntactic sugar has been removed.
Jimple was designed for ease of use for algorithms such as DASH.

An example Java program, the bytecode and its Jimple counterpart can be
seen in Figure 5.1. It should be obvious that detecting various operations from
bytecode are cumbersome and non-trivial, Soot simplifies this considerably.

We therefore use the Soot tool to load Java bytecode as Jimple. It should
be noted that our implementation uses a special static procedure error () that
functions as the DASH error statement. We could have used assert statements,
but the representation in Java bytecode and Jimple is more complicated. It
depends on a static field to check whether assert statements are enabled and
an exception is thrown if an assertion is violated. Instead we have chosen to
represent the error statement by a call to a static error () method. The next
section describes how a region graph is constructed from Jimple source.

5.3 Construction of a region graph from Jimple
Given a program in Jimple, we need to construct a region graph for each
procedure in the program. The Soot tool supports creating a control flow graph
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(CFG) for a Jimple program. As mentioned earlier, the initial region graph is
equivalent to the CFG. However, the CFG that Soot creates has some important
differences compared to the region graph:

• Nodes in the Soot CFG contain statements whereas nodes in the region
graph represent equivalence classes.

• Edges in the CFG models control flow whereas the edges in the region
graph models possible state changes by executing statements.

• The conditional if c goto l statement must be converted to two assume
statements. One edge that points to the destination l and contains an
assume c statement. The other edge represents falling through to the next
statement with an assume ¬c statement.

• The CFG contains plain goto l statements. These must be removed by con-
necting incoming edges to the goto l statements directly to the destination
designated by l.

• There are no error regions in the CFG. These needs to be detected and
marked in the region graph.

DASH4j transforms the Soot CFG to a region graph. The transformation is
performed by creating a new graph. In general, whenever there is a node in
the original CFG there is a node in the region graph. The statement inside the
node in the CFG is moved to the edges below. The individual transformations
are illustrated in Figure 5.2.

The general rule holds for assignments v := e, as seen in Figure 5.2a, and for
assignments with method calls v := f(. . .) seen in Figure 5.2d. The statements
are simply moved to the edges below.

The if c goto l statements needs more work. The node has 2 outgoing edges.
One that corresponds to the goto l statement and another that falls through
to the next statement. We cannot move the if c goto l down onto the edges,
instead we place assume statements on the two edges. The edge corresponding
to the goto l statement, has an assume c statement added. The edge that falls
through to the next statement is given the statement assume ¬c. The translation
is depicted in Figure 5.2b.

The plain goto l nodes are handled by removing them altogether. All incoming
edges to the goto l are connected to the destination l. This works in a recursive
manner, such that if a goto chain is present it is compacted to a single edge.
This process is shown in Figure 5.2c.

The return nodes are converted as in Figure 5.2e. Jimple allows multiple
exit points and the return nodes are the leaf nodes in the CFG. They do not
have any outgoing edges. Therefore it is not possible to move the statement
down to the edge below. For return nodes, we construct a new region below it,
with a connecting edge containing the return statement.

Finally, the error () call needs to be handled. The transformation is nearly
identical to assignments. The error () call is moved to the edge below and
converted to an error statement. The region before the error statement is marked
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v = e −→ Region

 v := e

(a) Assignment

if c goto l

l: Stm1 Stm2

−→

Region

Region

c

Region

¬c

 Stm1  Stm2

(b) If

goto l

l: Stm

−→ Region

 Stm

(c) Goto

v = f(...) −→ Region

 v := f(...)

(d) Call

return e

−→
Region

Region

 return e

(e) Return

error() −→ Region

error

(f) Error

Figure 5.2: Individual transformations of a control flow graph based on Jimple
statements into a region graph with DASH statements.

as an error region. We cannot mark the region after the error statement as an
error region. The reason is that this region may have incoming edges from other
regions where the edges are not labeled with an error statement. Those regions
are not going into an error condition, and therefore we cannot mark it as an
error region. The transformation of error () regions is shown in Figure 5.2f.

The observant reader might have noticed that, as in Figure 5.1c, Jimple
includes a section in the beginning where the parameters of a method are
assigned to local variables. Those assignments are also found in the CFG that
Soot produces. These assignments are ignored when generating the region graph.
DASH4j stores the mapping of parameter indexes to variable names separately,
analogues to how DASH keeps this information in P .

The region graph can now be constructed and DASH4j can start analyzing it.
The next section describes how RunTest performs concrete execution.

5.4 Concrete execution – Implementing RunTest

RunTest is a part of the DASH algorithm that does not come with any pseudocode.
This section describes how we have implemented it.

RunTest is given a test input t and is required to execute a concrete test
where the state of the program needs to be recorded at every program point that
corresponds to a region. We have chosen to implement RunTest by executing
an instrumented version of the program. Before running the DASH algorithm,
an instrumented version of the program is created and stored on disk. When
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RunTest is called it loads the instrumented class in an isolated context, initializes
it, and executes it concretely.

A special class called InstrumentationHelper is used throughout the instru-
mented program. The InstrumentationHelper is described in the next section.

5.4.1 The InstrumentationHelper

The InstrumentationHelper keeps track of:

• The currently reached region Sr, which is initially set to the initial region.

• The current state C of the program. This is much like the symbolic map
S , but C only contains concrete values such as x 7→ 4. The concrete state
is seeded with all variables that are external to P .

• A stack of method states, which essentially models a stack frame. A
method state includes the region it has currently reached and the state
C for the method. Whenever a method is called a new method state is
pushed on top of the stack.

We instrument the original Jimple program by adding calls to the Instru-
mentationHelper, either before or after a Jimple statement. The state of the
InstrumentationHelper is altered by calling these methods:

• updateVar(”a”, a): updates C such that the name ”a” now has the concrete
value a. This is equivalent to C := C [”a” 7→ a].

• advanceToNextRegion(): advances the region pointer Sr to the next region.
There can be multiple outgoing edges of Sr and therefore a number of
regions are candidates to be the next one. advanceToNextRegion() finds the
next region by evaluating the region predicate of each region using the
current state C . When the edge going to a region contains an assume c
statement, then the assumption is checked as well. Since all the equivalence
classes for regions in DASH are disjoint, and because the assume c state-
ments are disjoint as well, there can only be one transition that satisfies C .
Thus, when evaluating region predicates and possible assume statements,
only one evaluates to true under C .

• saveStateOnGraph(): places a copy Ccopy of C on the region pointed to by
Sr. It also connects Ccopy with the parent state such that the parent-child
relationship is constructed between the states.

• pushNewMethodState() and popNewMethodState()methods push and pop method
states respectively. pushNewMethodState() saves Sr and C and adds it to the
method stack. popNewMethodState() pops the topmost method element and
loads Sr and C from it.

The next section describes how these methods are used to instrument a
Jimple program, such that states are saved on the correct regions.
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h e l p e r . ca l lWithAss ign ( ) ;
v = cl_dI . f (a0, ..., an) ;
h e l p e r . cal lWithAssignEnd ( " v " , v ) ;

Figure 5.3: Compact instrumentation used for method calls

5.4.2 Instrumenting a class

The instrumentation process is depicted in Figure 5.4. It shows how each Jimple
instruction is instrumented. As can be seen, many of the Jimple instructions
needs to be instrumented with multiple method calls. As inserting these method
calls are cumbersome in practice, our implementation actually only adds a single
method call to each instrumentation, except for method calls which require two.
We have “unpacked” these method calls to more clearly show what is being
performed. Figure 5.3 shows our actual instrumentation for method calls.

To avoid class name clashes we change the name of the instrumented class by
appending it with "_dI", which stands for DASH Instrumented. It is thereafter
written to the disk where it can be loaded during RunTest and executed on the
JVM.

The next sections present the individual instrumentations.

Instrumentation 1 – Add static helper field

I1 shows that a test class is instrumented by adding a static field _dH, such that
when the instrumented class is executed, it can get a reference to an injected
InstrumentationHelper instance. The field name _dH stands for DASH Helper.
The InstrumentationHelper is initialized before concrete execution begins. It has
a reference to all graphs such that it can place states on them and it knows
which method that is called initially by RunTest. Instead of instrumenting
each class with a static field, we could have had a static field in another class
that all instrumented classes could fetch. However, it is bad coding practice
to have global state and it would also not be possible to execute two tests
concurrently. By having RunTest explicitly set the InstrumentationHelper field
on the instrumented class we avoid the global state, since classes are loaded in
an isolated context.

Instrumentation 2 – Initialization of method call

The goal of I2 is to fetch the InstrumentationHelper into a local variable, since
method calls in Jimple must be on local variables. It also saves the initial state
onto the region graph. The parameter values are loaded with calls to updateVar
and saved to the initial region by saveStateOnGraph. It seems counterintuitive to
load the parameters when RunTest was given them in the first place. However,
when method calls are made from inside the instrumented class, the initial state
of the called method must also be saved. These parameters are not given to
RunTest and we have chosen to load them in the instrumented class, since then
all parameters are loaded automatically.
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# Before instrumentation After instrumentation

I1

public class TestClass
{

. . .
}

public class TestClass_dI
{

Instrumentat ionHelper _dH;
. . .

}

I2

public stat ic void t e s t ( . . . )
{

int a , b , . . . ;

a := parameter0 ;
b := parameter1 ;
. . .

}

public stat ic void t e s t ( . . . )
{

int a , b , . . . ;
Inst rumentat ionHelper h e l p e r ;
a := @parameter0 ;
b := @parameter1 ;
. . .
h e l p e r = _dH;
h e l p e r . updateVar ( " a " , a ) ;
h e l p e r . updateVar ( " b " , b ) ;
. . .
h e l p e r . saveStateOnGraph ( ) ;
. . .

}

I3

v = e ; v = e ;
h e l p e r . updateVar ( " v " , v ) ;
h e l p e r . advanceToNextRegion ( ) ;
h e l p e r . saveStateOnGraph ( ) ;

I4
l 1 : i f c goto l 2 ;

l 1 : h e l p e r . advanceToNextRegion ( ) ;
h e l p e r . saveStateOnGraph ( ) ;
i f c goto l 2 ;

I5 goto l ; goto l ; // not instrumented

I6
e r r o r ( ) ; e r r o r ( ) ;

h e l p e r . advanceToNextRegion ( ) ;
h e l p e r . saveStateOnGraph ( ) ;

I7

l : v = c l . f (a0, . . . , an) ;
l : h e l p e r . pushNewMethodState ( ) ;

v = cl_dI . f (a0, . . . , an) ;
h e l p e r . popMethodState ( ) ;
h e l p e r . updateVar ( " v " , v ) ;
h e l p e r . advanceToNextRegion ( ) ;
h e l p e r . saveStateOnGraph ( ) ;

I8
l : return e ;

l : h e l p e r . advanceToNextRegion ( ) ;
h e l p e r . saveStateOnGraph ( ) ;
return e ;

Figure 5.4: Instrumentation performed by DASH4j for each Jimple instruction
executed inside a class.

A special requirement of Jimple is that parameters are loaded into local
variables, using special identity statements, before any other code can be exe-
cuted. Therefore we cannot interleave the loading of parameters with updating
them using updateVar. This is why helper and the parameters are loaded after the
identity statements. The initial state has the parent pointer set to null.

Instrumentation 3 – Handling assignments

I3 handles assignment statements in the form v = e. The instrumentation is
placed after the assignment operation has been performed. This allows us to
simply read the value of v, without having to evaluate e. An assignment changes
the state of the program and it could affect which region we were to transition to.
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Therefore first updateVar is called to update the value stored in C and afterwards
the next region is found using advanceToNextRegion. The state is then saved on
the found region using saveStateOnGraph.

Instrumentation 4 – Conditional branching

The instrumentation I4 handles conditional statements of the form if c goto l2.
These statements are represented as two assume edges in region graph, as
described in Section 5.3.

The instrumentation code is placed before the if statement. With assign-
ments, all edges going of the region must contain the same assign statement.
With conditionals, there are two possible statements, namely assume c and
assume ¬c. Notice that since assume statements does not change the state in C ,
we only need to find the next region and save a copy of the state on it.

The method advanceToNextRegion is called to find the next region. For all
statements other than if , advanceToNextRegion only needs to check if the region
predicate is satisfied by C . For the if statements the assume statements on the
edges must be checked as well. Thus, the predicate that must be satisfied for
a transition to be possible is ρr+1 ∧ c where ρr+1 is region predicate from the
candidate region and c is from the assume statement leading there. Again, only
a single transition is possible because the regions are disjoint under each distinct
assume condition. When the next region is found, the state is saved with a call
to saveStateOnGraph.

There is one important detail that must be handled when inserting instru-
mentation code before an instruction. If there is a label l1 at the instrumented
instruction, it has to be moved such that the instrumentation code is executed
as well. This is seen in I4 where the label l1 has been moved from if c goto l2
to helper.advanceToNextRegion(). If not done correctly, the region graph and the
concrete execution could go “out of sync”.

Instrumentation 5 – Unconditional branching

DASH does not support unconditional goto statements and these were removed
from the region graph constructed in Section 5.3, but their effect was modeled
with edges in the graph. We therefore do not need to advance to the next region,
nor save state on the region, with the result that no instrumentation is added
for goto l statements, as can be seen in I5.

Instrumentation 6 – Error call

The error () call, which works as the error statement in DASH4j, is instrumented
in I6. The instrumentation code is placed after the error call for convenience,
since then labels do not need to be updated. The next region is found and the
state is saved.

Here, instrumentation could have been added such that an error flag was
set, and the implementation of IsErrorRegionReached could check this flag. This
would constitute a small optimization.
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Instrumentation 7 – Method invocations

I7 shows the instrumentation for method invocations. The goal of this instru-
mentation is to:

• Transform the call such that an instrumented method is called, i.e. the
call is made to the instrumented class and not the original.

• Save the current method state, i.e. Sr and C , on the method stack.

• Set Sr and C to the correct values for the called method.

• When the called method returns, restore the method state Sr and C as it
was before the method call.

• Update the assigned variable v in C with the return value of the method
invocation.

• Save the state on the correct region after the call edge in the region graph.

To call the instrumented class, the call is modified from calling cl . f(a0, . . . , an)
to call cl_dI.f(a0, . . . , an) where c is the original class name. Notice that _dI has
been appended to the class name, such that the instrumented version of the
class is called.

Saving the current method state and creating the new one is accomplished
by a call to pushNewMethodState. The old method state is saved on a stack and a
new method state is created for the called method cl . f. The region graph for
cl . f is found by looking up cl . f in G , which was one of the arguments given to
RunTest. The internal pointer Sr is set to the initial region and the state map C
is initially empty. The parameters for the invocation are automatically loaded
as described I2. This concludes the setup for the method call.

When the method call returns the old method state is restored by calling
popNewMethodState. The rest of the instrumentation is identical to the instru-
mentation made for assignments. The state C is updated such that it reflects
the new value of v, the next region is found and the state is saved.

As was the case for the if instrumentation, we need to move any labels that
would reach the method call up to the start of the instrumentation code. Thus
the label l is moved such that pushNewMethodState is called if there is code that
jumps to l.

Instrumentation 8 – Return statement

The last instruction to instrument is the return e statement. The goals are to
record the state of the method and save it on the region after the return edge
on the graph. When executing a return e statement, the current method returns
and thus no statements after the return statement is executed. Therefore the
instrumentation is placed before the return statement. Again, any incoming
edges that hit the return statement must be moved to the start of instrumentation
code.
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5.4.3 Loading and running an instrumented program

We have shown how a program is instrumented. The instrumented program is
saved to disk by converting the instrumented Jimple program back to bytecode
using Soot. When RunTest is called, the instrumented program needs to be
loaded and executed.

Loading is performed by using an URLClassLoader, as it can load a class from
a specific location, i.e. the directory where DASH4j saves instrumented classes.
DASH4j creates a new URLClassLoader for each RunTest invocation. Notice that
classes loaded by one URLClassLoader shares their set of static variables. Loading
the same classes with another URLClassLoader thus create a new set of static
variables. This had made a difference if global static variables were supported
by DASH4j, as discussed in Section 6.1.3, because then all static variables would
have had to be found and reset.

When the test classes are loaded, the InstrumentationHelper is constructed
and injected into the instrumented classes. DASH4j therefore instantiates the
Class objects for the instrumented classes, such that the static field _dH can be
set. A Class object is also used to invoke the tested method in the instrumented
class.

When the test method returns, all the region graphs have been modified
by the added instrumentation code and thus nothing else needs to be done,
and RunTest can return to DashLoop. The next section describes how DASH4j
integrates with Z3.

5.5 Integrating with Z3

DASH4j uses the Z3 theorem prover3 to solve the constraints generated by
ExecuteSymbolic, simplify constraints and evaluate expressions.

Since DASH4j is an implementation of DASHcall in the context of Java, 32 bit
signed integers must be supported. They are modeled by using Z3 BitVectors of
length 32. A BitVector in Z3 is a fixed sized collection of bits. The bit vectors are
“raw” in the sense that they contain no type information, thus they do not know
if they are representing a signed or unsigned integer. Instead the operations
performed on BitVectors are typed. For example, mkBVSDiv(bv1 , bv2) creates a
signed division operation of bv1 and bv2. This is similar to the instruction set of an
x86 CPU, where there are no type information associated with memory locations
and the instructions come in signed and unsigned editions when needed. In Java,
all 32 bit integers are signed and as such DASH4j uses the signed operations.

Initially, DASH4j stored the constraints for both regions and ExecuteSymbolic
in its own internal format. The internal format was converted into Z3’s format
when IsSAT was called. Every expression was immutable such that expressions
could be shared. DASH4j also had a custom made simplifier, which was a simple
bottom-up rewriter. However, we ran into memory usage problems, which we
believe were the result of:

3Z3 can be found at http://z3.codeplex.com/
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• During symbolic execution each region predicate would be symbolically
evaluated, which resulted in new expressions being created.

• Our custom written simplifier did not handle De Morgan’s law in any smart
way, and could easily end up duplicating many expressions. De Morgan’s
law is about pushing ¬’s down into subexpressions. These expressions
would then be duplicated by our simplifier.

• Converting the constraints into Z3’s format duplicates all the constraints
and would not allow Z3 to perform any optimization during the construction
of the constraints.

Using Z3’s internal format and simplifier solved the memory problems. We
believe Z3 has a significantly smarter internal storage than our own naive
approach. Z3’s ctx-solver-simplify was also significantly better than our own
bottom up simplifier, when comparing the size of the expression afterwards.
Our custom simplifier was also easily outperformed by Z3’s simple bottom up
rewriter called Simplify.

The dependency on Z3 also comes with a price. All interaction with Z3 uses
a Z3 context object. It must be passed to all routines which interact with Z3,
which clutters the implementation. What is worse, is that replacing Z3 with a
different SAT solver would require a major rewrite of DASH4j. At this moment
DASH4j is tightly coupled to Z3.

During development we found two bugs in Z3. One bug was that ctx-solver-
simplify returned a non-equivalent constraint, i.e. it simplified incorrectly. Due
to this bug, one of our assertions in DASH4j failed and we tracked it down
to ctx-solver-simplify’s wrong simplification. The bug was reported, confirmed
and fixed4. The second bug was that when Z3 solved constraints with only
two variables, it would sometimes return a result with three variables. The
extra variable was named k!0. This bug was also reported and fixed5. The Z3
developers were very quick to respond and fix the reported bugs.

The last release version of Z3 was released 11th of November 20126. This
version does not have a Java API. Therefore DASH4j uses a version of Z3 compiled
from their unstable branch. This branch contains scripts that generate a Java
API that calls the Z3 implementation using Java Native Interfaces7. The first
bug was only present in their unstable branch whereas the second was also found
in their latest release.

5.6 Handling the Java Standard Library
In general, DASH4j supports calls into the Java Standard Library, but there is a
series of requirements that must hold. When a method calls a static method
inside another class, DASH4j instruments all the methods in the called class.
DASH4j fails with exceptions if it finds Jimple code that it does not handle,

4https://z3.codeplex.com/workitem/94
5https://z3.codeplex.com/workitem/97
6http://z3.codeplex.com/releases
7http://leodemoura.github.io/blog/2012/12/10/z3-for-java.html
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such as doubles, native method calls or instance methods. Thus, the class that
is called into must only contain methods with integer arithmetic. If such a
class exists in the Java Standard Library, then DASH4j is able to instrument
and analyze it. However, we have not been able to find such classes in the
Java Standard Library. Even the java.lang.Math class calls native methods. For
example, sin(double a) calls StrictMath.sin(a), which is a native method.

Even if DASH handled doubles, integers, objects, constructors and exceptions,
then DASH would have problems with the Java Standard Library. A significant
amount of the Java Standard Library depends on native methods, like the file
system classes, where mocking the semantics are required. The device drivers
that Microsoft used DASH to analyze also calls into operating system functions
which they had to model [B10]. Modeling the operating system calls was a
significant challenge for them, and we do not believe it is any easier to model
the Java Standard Library. We have not done any investigation on how we could
model the Java Standard Library.

5.7 DASH4j implementation

We have had lots of problems implementing the DASH algorithm. We believe
that the authors of DASH have first written an implementation of the algorithm,
and then later wanted to write about it. In converting the algorithm from source
code to article format, some details have gone missing. For example, the input
constraint computed in ExtendFrontier did not include the path constraint in the
article, instead, their implementation asserted it to Z3, which we mentioned in
Section 4.7.2. In such cases it would have been beneficial to be able to inspect
their source code, as the source code contains all the details. We hope our
descriptions are clearer, but we also release our source code, such that others
can browse through our implementation in case of missing details.

Our implementation is therefore open source and is located on a GitHub
repository8. The GitHub repository includes directions on how to build and run
the project. The source code is structured such that it resembles the pseudocode
described herein as much as possible.

We have a total of 320 tests cases. 19 of them are ignored due to the
implementation not being able to analyze them (recursive procedures, cannot
find loop invariant, etc.). 255 of the tests are example programs that are analyzed
by DASH4j. The rest are tests up against Z3, unit tests of program code and
some tests to test nondeterministic branching that we have also implemented.

We have written a small tool that checks log output from the implementation
and shows running times from different parts of the program. The output is
given in Figure 5.5. The total runtime is 38 seconds for all our tests running
on an laptop with a i7-3610QM Intel processor and 8GB of ram. Notice that
the total runtime in Figure 5.5 is 35 seconds, which is due to not every part of
DASH4j being traced. It can be seen that a significant amount of time is spent
using ctx-solver-simplify inside RefineGraph. FindAbstractErrorPath is called 1391
times, which shows the number of iterations performed by DashLoop. Given

8Public repository: https://github.com/foens/dash
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+-------------------------------------+---------+---------+---------+---------+---------+
| Procedure | Time ms | Avg | Min | Max | #calls |
+-------------------------------------+---------+---------+---------+---------+---------+
| refineGraph | 18698 | 28 | 0 | 2342 | 664 |
| ctx-solver-simplify | 18006 | 17 | 0 | 1173 | 1008 |
| SATSolver | 6675 | 6 | 4 | 323 | 1073 |
| IsSAT | 3911 | 3 | 1 | 320 | 1073 |
| addPredicates | 2185 | 2 | 1 | 4 | 1073 |
| createSatisfiableResult | 26 | 0 | 0 | 1 | 468 |
| loadClass | 3025 | 10 | 0 | 1525 | 293 |
| forceResolve | 1411 | 4 | 0 | 897 | 293 |
| retrieveActiveBody | 940 | 3 | 0 | 136 | 293 |
| loadNecessaryClasses | 399 | 1 | 0 | 398 | 293 |
| runTest | 2845 | 5 | 0 | 589 | 550 |
| ctx-solver-simplify | 1688 | 2 | 0 | 55 | 669 |
| InstrumentationBuilder | 1537 | 5 | 2 | 78 | 293 |
| ExecuteSymbolic | 754 | 0 | 0 | 95 | 1214 |
| computeRefinePred | 287 | 4 | 0 | 134 | 59 |
| RefinePred | 197 | 0 | 0 | 56 | 605 |
| ToConcreteTraceWithAbstractFront... | 61 | 0 | 0 | 13 | 1214 |
| FindAbstractErrorPath | 31 | 0 | 0 | 1 | 1391 |
| isErrorRegionReached | 0 | 0 | 0 | 0 | 550 |
| extractTestInputForOuterProcedure | 0 | 0 | 0 | 0 | 82 |
+-------------------------------------+---------+---------+---------+---------+---------+
| Total | 35798 | 4 | 0 | 2342 | 8657 |
+-------------------------------------+---------+---------+---------+---------+---------+

Figure 5.5: Table showing runtime information gathered from the log output of
DASH4j.

that the total runtime is 38 seconds, then on average each of the DashLoop
iterations take 27 milliseconds.
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Chapter 6

Future Work

This chapter presents future work we would have liked to perform if time had
allowed us to. First, the chapter presents various ways to extend the set of
language features currently supported by DASH4j in Section 6.1. Section 6.2
describes various structural and performance improvements we would like to
investigate. Finally, Section 6.3 describes tests we would like to perform against
Microsoft’s DASH implementation.

6.1 Extending the set of supported language features

The following extensions of language features require that ExecuteSymbolic can
generate the correct constraints and that RunTest is able to generate the concrete
input from the solved constraints. For example, if objects are supported, then
somehow RunTest must be able to construct the correct objects from the test
input t. It could therefore be valuable to investigate how other tools, like
jCUTE [B11] that also needs to construct constraints and objects for their tests,
handles this.

6.1.1 Pointer support with DASHheap

We would like to support the C-like pointers, supported by DASH, in Java. The
idea with DASHheap is to support simple objects with only one public integer
field. Then the references to simple objects would function as if they were
pointers to integers.

Implementing DASHheap would introduce the problem of aliasing, which
would require us to implement WPα. The procedure WPα differs from WP only
in that it uses smart tricks to avoid an exponential blowup that could be caused
by aliasing.

It would also require us to alter ExecuteSymbolic such that memory can be
shared over method calls, when a pointer is passed to a sub procedure. We know
that Z3 supports arrays with unbounded length, and we believe we can use this
array to model the heap.

In essence, DASHheap corresponds to the full version of DASH described in
the DASH article.
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6.1.2 Supporting objects with multiple fields in DASHstruct

In the programming language C, structures are supported by using the struct
keyword. These are simply a collection of fields. Supporting structs and pointers
in the context of Java, would allow us to support objects with multiple public
fields. These fields could point to other objects or contain integer values.

If we were able to support these C-like structures, then we could generate Java
memory graphs representing linked lists, binary search trees or other unbounded
memory structures. Creating constraints and concretely constructing the memory
graphs requires us to extend DASH beyond what is described in the DASH article.

Where DASHheap could be implemented with pointers into an infinite large
Z3 array, where each pointer points to exactly one integer, then we believe that
struct could be implemented by pointing to the first field in an object, and where
the remaining fields would be present sequentially after the first field. In this
way, when obj.a is accessed, the symbolic value is found where obj is stored.
Accessing obj.b would access the symbolic value found at address obj+1 in the
Z3 array.

6.1.3 Supporting static fields with DASHglobals

DASHglobals would add support for C-like global variables, which are variables
that can be accessed and modified from any procedure.

In Java global variables would correspond to static fields, both private and
public. The public static fields are accessible from any method and the private
ones can only be accessed inside the declaring class, due to compile time checking.
As described in Section 4.6, supporting the error statement in sub procedures
can be achieved be instrumenting the program to use static fields or global
variables.

Assuming that DASHheap has been implemented, then global variables could
be modeled by calling the main procedure with all the global variables as
additional arguments. When a procedure calls a sub procedure, all the variables
are passed on. In this way the variables would function as global variables.

6.1.4 DASHarrays

There are two types of arrays we could support in DASHarrays, arrays that are
located on the stack and arrays that are located on the heap. The later would
build on DASHheap.

Arrays could be modeled by using the Z3 array type, however these arrays
are unbounded. Many languages, like Java, have a length property associated
with the array. The length property would also be relevant to check out of
bounds errors.

6.1.5 Supporting boolean, short and other types in DASHtypes

Introduction of types other than 32 bit integers can be modeled in Z3 by simply
creating bit vectors of the desired length. However conversions between bit
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vectors of different lengths are required since shorts can be assigned to integers
and integers to shorts (by casting).

At the bytecode level, Java already inserts casts when assigning a larger
number to a smaller one. However, Java does not have expressions for converting
a smaller number to a larger one. We would have to detect these and perform
the equivalent operation in Z3.

6.1.6 General object support with DASHobject

The goal of DASHobject would be to introduce proper objects with private variables
and instance methods.

One way to represent objects is as they are represented on runtime – as
procedures that take the instance as an argument. Thus we could represent the
state of the object as a struct and pass it to called instance methods.

We believe the hard part is constructing only valid objects. Private fields
can only be set by calling constructors or mutator methods. We are unsure how
we can figure out which sequence of calls that is to be made to construct an
object with some specific field values.

For example, a method may require an ArrayList with some specific state
before triggering an error condition. The requirement is now for DASH4j to
instantiate an ArrayList and call the correct sequence of methods with the correct
arguments to get it into the correct state. We do not know how to solve such a
problem, but we may be able to find answers in tools with similar requirements.

6.2 Improvements to code structure or performance

We have focused on correctness of the supported features when implementing
DASH4j. We have found several areas where there is room for improvements or
optimizations. These are discussed in the next sections.

6.2.1 Limit the execution steps performed after the frontier

In our current implementation, when RunTest is called, it keeps executing the
program until the executed method returns. However, for correctness, we only
require that at least the frontier edge is executed when RunTest is invoked.
There are cases where one might end up in a long loop which is irrelevant to
the safety property and which hurts performance.

An example is given in Figure 6.1. Initially, the default value of x, which is
0, is used. The result is that the execution enters an infinite loop. In this case
it would be beneficial to limit the number of concrete execution steps that are
executed after the frontier, to avoid that the analysis gets stuck running a test.

6.2.2 States linked across procedures and reference to region

During concrete execution by RunTest, the states are only linked inside a single
procedure. Thus, when a procedure is invoked, the state before and after
the procedure call are linked together, without the intermediate states that

109



void t e s t ( int x )
{

while ( x == 0) { /∗ empty ∗/ }
e r r o r ;

}

Figure 6.1: The program will hit the error statement if x is different from zero.

were created in the called procedure. When performing symbolic execution,
ExecuteSymbolic have to search through the initial region of a called procedure
to find the state it should continue from. To save some time, the state before
the procedure call could contain an extra reference to the state inside the sub
procedure. Then ExecuteSymbolic would not need to search the initial region for
the correct state.

Another optimization that could make a difference, was that each state could
keep a reference to the region that they are contained. In ExecuteSymbolic-
SubProcedure, with pseudocode given in Algorithm 4.2, a concrete execution is
symbolically executed by following the child relationship of the states in the
concrete execution. However, the region that a state is placed in needs to be
found, which is done by FindRegionWithState(Children(Sprev), snext). It searches
through all child regions of Sprev to find the region that contains snext. If states
kept a reference to the region they were contained in, then this operation would
be a constant lookup operation instead of a search through all child regions of
Sprev and checking each state against snext.

6.2.3 Improve storage space of states

The current implementation of RunTest in DASH4j stores the state of all variables
on each region. This is redundant since at most one variable will change and
that only happens if the edge is an assignment.

6.2.4 Investigate simulation vs instrumentation for RunTest

DASH4j uses instrumentation to implement the RunTest functionality. We would
like to investigate what impacts it would have to switch to a simulator instead.
Much of the code for ExecuteSymbolic could be used for the simulator, as
each expression is already supported. The new requirements would be to save
state on regions, execute the code without following a specific trace and to use
concrete values for the initial symbolic values. We believe we could stub these
requirements out into interfaces such that ExecuteSymbolic did not know if it
was following a trace or executing a program concretely.

There are some considerations to be made if such a switch is completed. For
example, concrete execution performed by RunTest might get slower, since a
simulator is used instead of using the production grade and optimized JVM.
One benefit we would certainly loose, was that we now have two separate imple-
mentations for RunTest and ExecuteSymbolic. These separate implementations
in a sense verifies that each of them works, since if they get “out of sync”
then all sorts of assertions should fail. When we join them together, errors in
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our implementation are harder to catch since symbolic execution and concrete
execution would share a significant amount of code.

6.3 Testing against the DASH implementation
Given extra time we would have liked to test our program instances found while
implementing DASHint and DASHcall against the DASH implementation made by
Microsoft. Their implementation is not open source, however, it is possible to
add YOGI into their Static Driver Verifier Research Platform (SDVRP), and
YOGI embeds the DASH implementation1. We would then create C-drivers that
mimic the problems we have found with DASH and see how their implementation
behaves. We would for example like to see how they handle the recursive
procedures that DASH4j keeps running on infinitely.

We know that this is not a simple task to complete, since the SDVRP kit
and YOGI have numerous dependencies and we lack experience in writing device
drivers.

1Instructions for installing YOGI are given on https://research.microsoft.com/en-us/
projects/yogi/readme.txt
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Chapter 7

Conclusion

We have implemented DASH in Java both for analyzing single procedure integer
programs and for analyzing interprocedural integer programs. We have named
the implementation DASH4j. The programs DASH4j analyzes are written in
a limited subset of Java where the Java Standard Library and features such
as objects, exceptions and reflection are excluded. We have found several
implementation problems and even errors in the description of DASH as presented
by the DASH article [A2]. DASH4j is able to find subtle errors like integer overflow
and can prove many programs as correct.

We have presented the DASH algorithm in depth, including many minor and
some major details that are significant for the DASH implementation. Examples
include optimization of predicates, missing input constraints when analyzing
called procedures, and descriptions of how a specific loop optimization is imple-
mented. Additionally, we have presented and analyzed problem instances that
were encountered and shown that the solutions presented make large differences
for the DASH algorithm. We believe that if others are to implement DASH, or
build on it, it will be significantly easier to follow our description that includes
solutions to problems not disclosed by the authors of DASH. We have also pub-
lished our source code1 such that others can see how DASH4j is implemented. It
is published under a very permissive license2.

We have found that the DASH algorithm can be oblivious to ifs, while or for
loops when they are irrelevant for the safety property being analyzed, because
the concrete tests generated simply traverse them. However, we have found that
when a result calculated inside a loop is relevant for a safety property, then
the refinement process used in DASH can run infinitely. This is due to the fact
that the weakest precondition technique is unsuitable for finding loop invariants.
The authors of DASH have mentioned a loop optimization technique that helps,
but does not directly solve the problem. Also, recursive procedures can be hard
for DASH to analyze and sometimes DASH ends up recursively invoking itself
until memory is exhausted.

The strategy to implement DASH to uncover details not described in the

1Public repository: https://github.com/foens/dash
2Creative Commons Attribution 4.0 International License: http://creativecommons.org/

licenses/by/4.0/
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article has shown to be a good strategy. We have found a number of problems
and details not covered in the article where we have had to find solutions
ourselves. For example, we found that the description of the input constraint
in ExecuteSymbolic had the path constraint missing. We believe it would have
been near impossible to find many of such problems if we had not implemented
DASH. It has thus helped us in writing pseudocode that incorporates solutions
to the problems.

Writing pseudocode that incorporated the uncovered details of DASH has
also helped us in improving the implementation. For example, we had initially
performed renaming while executing traces in ExecuteSymbolic, but when we
wrote down the pseudocode, we found that renaming was not required. We
therefore rewrote ExecuteSymbolic, which produced a cleaner implementation
and better pseudocode. The same applies to how we performed renaming in
ExtendFrontier, where we found multiple cases where renaming was not required.

This kind of self-reinforcing cycle, between the pseudocode and implementa-
tion, was not anticipated but has improved both pseudocode and implementation
considerably.

We have found that our methodology of writing test cases have given us
numerous examples that show that alterations to the DASH algorithm were
needed. This is evident throughout our thesis, given that we nearly always
present an example program that shows the problem being described. Having
example programs has helped us immensely in discovering faults and solutions
throughout the implementation process.

We have described ideas, which we believe might help in extending DASH
such that it can handle objects as used in Java. We believe that support for
exceptions, types and objects can be implemented. However, we do not believe
that reflection can be supported in any significant portion, and we know that
many static analysis tools disregard reflection altogether.

Finally, we have found that to use the DASH algorithm on any significant
portion of Java requires a great deal of modeling of the Java Standard Library.
Modeling of methods for which code is missing is a cumbersome task, one of which
the DASH authors also called one of the most challenging issues encountered [B10].
For the DASH authors, it involved calls to the operating system, whereas for Java,
it will involve the Java Standard Library and native method calls implemented
by the Java Virtual Machine.
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