-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcyclic_pursuit_formation.py
217 lines (165 loc) · 5.53 KB
/
cyclic_pursuit_formation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Robotarium example: formation preservation and cyclic pursuit with two subteams
# @author Anqi Li
# @date April 8, 2019
import rps.robotarium as robotarium
import rps.utilities.graph as graph
import rps.utilities.transformations as transformations
from rps.utilities.barrier_certificates import *
from rps.utilities.misc import at_pose
import time
import numpy as np
from numpy.linalg import norm
from rmp import RMPRoot, RMPNode
from rmp_leaf import CollisionAvoidanceDecentralized, GoalAttractorUni, FormationDecentralized
from matplotlib import pyplot as plt
# Instantiate Robotarium object
# number of robots
N = 5 + 3
N_cyclic_pursuit = 5
cyclic_pursuit_index = [i for i in range(N_cyclic_pursuit)]
formation_control_index = [5, 6, 7]
goal_2_goal_index = 5
# goal configurations
theta = np.arange(N) * 2 * np.pi / N_cyclic_pursuit
x_g = np.stack((np.cos(theta), np.sin(theta))).T * 0.8
x_g[-3, :] = np.array([-0.8, -0.8])
x_g[-2, :] = np.array([-0.8, -1.3])
x_g[-1, :] = np.array([-1.3, -0.8])
# initialize the robotarium
rb = robotarium.Robotarium(number_of_agents=N, show_figure=True, save_data=False, update_time=0.1)
# the algorithm uses single-integrator dynamics, so we'll need these mappings.
si_to_uni_dyn, uni_to_si_states = transformations.create_single_integrator_to_unicycle(projection_distance=0.04)
# barrier certificate to avoid collisions. used for driving to the initial configs,
# not used during the algorthim
si_barrier_cert = create_single_integrator_barrier_certificate(N)
def at_position(states, poses, position_error=0.01):
pes = norm(states[:2, :] - poses[:2, :], 2, axis=0)
done = np.nonzero(pes <= position_error)
return done
# --------------------------------------------------------------------------------------
# build the RMPtree
r = RMPRoot('root')
robots = []
def create_mappings(i):
phi = lambda y, i=i: np.array([[y[2 * i, 0]], [y[2 * i + 1, 0]]])
J = lambda y, i=i: np.concatenate((
np.zeros((2, 2 * i)),
np.eye(2),
np.zeros((2, 2 * (N - i - 1)))), axis=1)
J_dot = lambda y, y_dot: np.zeros((2, 2 * N))
return phi, J, J_dot
for i in range(N):
phi, J, J_dot = create_mappings(i)
robot = RMPNode('robot_' + str(i), r, phi, J, J_dot)
robots.append(robot)
theta = 0.002
Rot = np.array([[np.cos(theta), np.sin(theta)], [-np.sin(theta), np.cos(theta)]])
x_g = np.dot(x_g, Rot)
weight_cp = 5
cps = []
for i in cyclic_pursuit_index:
cp = GoalAttractorUni(
'cp_robot_' + str(i),
robots[i],
y_g=x_g[i],
w_u = 10,
w_l = 0.01,
sigma = 0.1,
alpha = 1,
gain = 1,
eta = 1)
cps.append(cp)
iacas = []
for i in range(N):
for j in range(N):
if i == j:
continue
iaca = CollisionAvoidanceDecentralized(
'ca_robot_' + str(i) + '_robot_' + str(j),
robots[i],
robots[j],
R=0.18,
eta=1)
iacas.append(iaca)
weight_fc = 10
dd = 0.6
fcs = []
for i in formation_control_index:
for j in formation_control_index:
if i == j:
continue
fc = FormationDecentralized(
'fc_robot_' + str(i) + '_robot_' + str(j),
robots[i],
robots[j],
d=dd,
w=weight_fc)
fcs.append(fc)
ga = GoalAttractorUni(
'ga_robot_' + str(goal_2_goal_index),
robots[goal_2_goal_index],
np.array([1.3, 1.3]),
w_u = 10,
w_l = 1,
sigma = 0.1,
alpha = 10,
gain = 1,
eta = 2)
# ------------------------------------------------------
# drive to the initial configurations
x_uni = rb.get_poses()
si_velocities = np.zeros((2, N))
rb.set_velocities(np.arange(N), si_to_uni_dyn(si_velocities, x_uni))
rb.step()
for k in range(2000):
x_uni = rb.get_poses()
x_si = uni_to_si_states(x_uni)
if np.size(at_position(x_si, x_g.T)) == N:
print('done!')
break
si_velocities = (x_g.T - x_si)
si_velocities = si_barrier_cert(si_velocities, x_si)
rb.set_velocities(np.arange(N), si_to_uni_dyn(si_velocities, x_uni))
rb.step()
time.sleep(1)
# -----------------------------------------------
# main simulation
dt = rb.time_step
si_velocities = np.zeros((2, N))
magnitude_limit = 0.2
for k in range(6000):
# Get the poses of the robots and convert to single-integrator poses
x_uni = rb.get_poses()
x_si = uni_to_si_states(x_uni)
x = x_si.T.flatten()
x_dot = si_velocities.T.flatten()
r.set_root_state(x, x_dot)
r.pushforward()
x_g = np.dot(x_g, Rot)
[cps[i].update_goal(x_g[i]) for i in range(N_cyclic_pursuit)]
[leaf.update() for leaf in iacas]
[leaf.update() for leaf in fcs]
r.pullback()
try:
a = r.resolve()
si_accelerations = a.reshape(-1, 2).T
# simulate double-integrator dynamics
si_velocities = si_velocities + si_accelerations * dt
norms = norm(si_velocities, axis=0)
idxs_to_normalize = (norms > magnitude_limit)
si_velocities[:, idxs_to_normalize] *= magnitude_limit * (1 / norms[idxs_to_normalize])
except:
si_velocities = np.zeros((2, N))
print(x_si)
print('Warning: no sol found, emergency break')
break
# Set the velocities of agents 1,...,N
rb.set_velocities(np.arange(N), si_to_uni_dyn(si_velocities, x_uni))
# Iterate the simulation
try:
rb.step()
except:
rb.call_at_scripts_end()
exit(0)
# Always call this function at the end of your script!!!!
rb.call_at_scripts_end()