From c5e19e2eed1c98574ea910be3b48ca67910889f6 Mon Sep 17 00:00:00 2001 From: Guido Petri <18634426+guidopetri@users.noreply.github.com> Date: Sun, 25 Oct 2020 15:16:49 -0400 Subject: [PATCH] add notes and ipynb from yesterday --- baseline.ipynb | 2846 +++++++++++++++++++++++++++ notes/10_24_ new data, baseline.pdf | Bin 0 -> 242659 bytes 2 files changed, 2846 insertions(+) create mode 100644 baseline.ipynb create mode 100644 notes/10_24_ new data, baseline.pdf diff --git a/baseline.ipynb b/baseline.ipynb new file mode 100644 index 0000000..c587ffc --- /dev/null +++ b/baseline.ipynb @@ -0,0 +1,2846 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data cleanup" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "player_count_check = pd.read_csv('G:/datasets/csgo/match-map-unique/train/match-58-de_inferno-17-687.csv')\n", + "player_count = player_count_check['SteamId'].nunique()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "player_count" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from csgo_wp.data_transform import CSGODataset, transform_data" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Transforming raw data...\n" + ] + }, + { + "ename": "ValueError", + "evalue": "only one element tensors can be converted to Python scalars", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[0mwarnings\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfilterwarnings\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'ignore'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 4\u001b[1;33m \u001b[0mdataset\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mCSGODataset\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtransform\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtransform_data\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32mg:\\git\\csgo-win-probability\\csgo_wp\\data_transform.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, folder, transform, dataset_split, rng_seed)\u001b[0m\n\u001b[0;32m 243\u001b[0m target = self.rounds[(self.rounds['MatchId'] == match_id)\n\u001b[0;32m 244\u001b[0m \u001b[1;33m&\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrounds\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'MapName'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0mmap_name\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 245\u001b[1;33m & (self.rounds['RoundNum'] == round_num)]\n\u001b[0m\u001b[0;32m 246\u001b[0m \u001b[0mtarget\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m1\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mtarget\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'WinningSide'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0miloc\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;34m'CT'\u001b[0m \u001b[1;32melse\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 247\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtargets\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mtarget\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0m_\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtransformed\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mValueError\u001b[0m: only one element tensors can be converted to Python scalars" + ] + } + ], + "source": [ + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "dataset = CSGODataset(transform=transform_data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "with open('G:/datasets/csgo/train/data.pckl', 'wb') as f:\n", + " pickle.dump((dataset.data, dataset.targets), f)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "df = pd.read_csv('G:/datasets/csgo/match-map-unique/train/match-1071-de_dust2-1-278.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PlayerSteamId
MatchId
107110
\n", + "
" + ], + "text/plain": [ + " PlayerSteamId\n", + "MatchId \n", + "1071 10" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.groupby(['MatchId']).agg({'PlayerSteamId': 'nunique'})" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PlayerSteamId
Tick
289
619
949
1279
1609
......
90399
90729
91059
91389
91719
\n", + "

278 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " PlayerSteamId\n", + "Tick \n", + "28 9\n", + "61 9\n", + "94 9\n", + "127 9\n", + "160 9\n", + "... ...\n", + "9039 9\n", + "9072 9\n", + "9105 9\n", + "9138 9\n", + "9171 9\n", + "\n", + "[278 rows x 1 columns]" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.groupby(['Tick']).agg({'PlayerSteamId': 'nunique'})" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([4], dtype=int64)" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grouped = df.groupby(['Tick', 'Side'], as_index=False).agg({'PlayerSteamId': 'nunique'})\n", + "grouped[grouped['Side'] == 'T']['PlayerSteamId'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "https://steamcommunity.com/profiles/76561198047402862/\n", + "Showed up in 140 ticks\n", + "https://steamcommunity.com/profiles/76561197997981170/\n", + "Showed up in 278 ticks\n", + "https://steamcommunity.com/profiles/76561197994395491/\n", + "Showed up in 278 ticks\n", + "https://steamcommunity.com/profiles/76561197978321481/\n", + "Showed up in 278 ticks\n", + "https://steamcommunity.com/profiles/76561198012987839/\n", + "Showed up in 138 ticks\n" + ] + } + ], + "source": [ + "for x in df[df['Side'] == 'T']['PlayerSteamId'].unique():\n", + " print(f'https://steamcommunity.com/profiles/{x}/')\n", + " print(f\"Showed up in {df[df['PlayerSteamId'] == x]['Tick'].nunique()} ticks\")" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2502" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.shape[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2502" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "278*9" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "g:\\git\\csgo-win-probability\\csgo_wp\\data_transform.py:53: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " df['pos'] = df[['X', 'Y', 'Z']].values.tolist()\n" + ] + }, + { + "data": { + "text/plain": [ + "(tensor([[ 1., 50., 51., 2., 43., 1., 8., 3., 38., 46.],\n", + " [36., 1., 2., 35., 8., 36., 39., 36., 8., 2.],\n", + " [37., 2., 1., 36., 9., 37., 40., 37., 9., 3.],\n", + " [ 2., 49., 50., 1., 42., 2., 7., 2., 37., 45.],\n", + " [30., 8., 9., 29., 1., 30., 32., 30., 4., 4.],\n", + " [ 1., 50., 51., 2., 43., 1., 8., 3., 38., 46.],\n", + " [24., 53., 54., 23., 46., 24., 1., 22., 41., 49.],\n", + " [ 3., 50., 51., 2., 43., 3., 8., 1., 38., 46.],\n", + " [29., 8., 9., 28., 4., 29., 31., 29., 1., 5.],\n", + " [32., 2., 3., 31., 4., 32., 35., 32., 5., 1.],\n", + " [ 1., 1., 1., 0., 1., 0., 1., 1., 1., 0.],\n", + " [ 1., 1., 1., 1., 1., 1., 1., 0., 1., 0.]]), tensor([1.]))" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "1 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "2 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "3 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "4 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "5 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "6 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "7 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "8 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "9 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "10 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "11 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "12 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "13 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "14 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "15 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "16 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "17 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "18 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "19 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "20 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "21 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "22 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "23 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "24 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "25 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "26 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "27 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "28 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "29 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "30 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "31 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "32 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "33 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "34 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "35 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "36 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "37 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "38 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "39 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "40 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "41 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "42 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "43 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "44 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "45 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "46 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "47 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "48 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "49 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "50 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "51 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "52 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "53 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "54 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "55 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "56 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "57 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "58 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "59 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "60 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "61 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "62 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "63 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "64 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "65 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "66 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "67 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "68 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "69 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "70 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "71 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "72 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "73 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "74 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "75 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "76 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "77 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "78 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "79 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "80 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "81 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "82 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "83 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "84 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "85 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "86 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "87 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "88 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "89 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "90 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "91 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "92 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "93 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "94 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "95 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "96 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "97 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "98 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "99 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "100 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "101 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "102 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "103 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "104 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "105 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "106 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "107 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "108 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "109 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "110 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "111 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "112 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "113 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "114 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "115 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "116 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "117 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "118 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "119 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "120 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "121 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "122 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "123 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "124 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "125 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "126 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "127 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "128 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "129 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "130 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "131 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "132 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "133 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "134 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "135 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "136 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "137 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "138 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "139 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "140 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "141 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "142 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "143 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "144 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "145 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "146 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "147 torch.Size([24, 12, 10]) torch.Size([24, 1])\n", + "148 torch.Size([24, 12, 10]) torch.Size([24, 1])\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 11\u001b[0m \u001b[0mstart\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 12\u001b[0m \u001b[1;31m# check if dataset acts as expected\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 13\u001b[1;33m \u001b[1;32mfor\u001b[0m \u001b[0mindex\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mloader\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 14\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mindex\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtarget\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 15\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtime\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m-\u001b[0m \u001b[0mstart\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\python37\\lib\\site-packages\\torch\\utils\\data\\dataloader.py\u001b[0m in \u001b[0;36m__next__\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 361\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 362\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m__next__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 363\u001b[1;33m \u001b[0mdata\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_next_data\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 364\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_num_yielded\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 365\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_dataset_kind\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0m_DatasetKind\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mIterable\u001b[0m \u001b[1;32mand\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\python37\\lib\\site-packages\\torch\\utils\\data\\dataloader.py\u001b[0m in \u001b[0;36m_next_data\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 401\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_next_data\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 402\u001b[0m \u001b[0mindex\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_next_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m# may raise StopIteration\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 403\u001b[1;33m \u001b[0mdata\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_dataset_fetcher\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfetch\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mindex\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m# may raise StopIteration\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 404\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_pin_memory\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 405\u001b[0m \u001b[0mdata\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_utils\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpin_memory\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpin_memory\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\python37\\lib\\site-packages\\torch\\utils\\data\\_utils\\fetch.py\u001b[0m in \u001b[0;36mfetch\u001b[1;34m(self, possibly_batched_index)\u001b[0m\n\u001b[0;32m 42\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mfetch\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpossibly_batched_index\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 43\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mauto_collation\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 44\u001b[1;33m \u001b[0mdata\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0midx\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0midx\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mpossibly_batched_index\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 45\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 46\u001b[0m \u001b[0mdata\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mpossibly_batched_index\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\python37\\lib\\site-packages\\torch\\utils\\data\\_utils\\fetch.py\u001b[0m in \u001b[0;36m\u001b[1;34m(.0)\u001b[0m\n\u001b[0;32m 42\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mfetch\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpossibly_batched_index\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 43\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mauto_collation\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 44\u001b[1;33m \u001b[0mdata\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0midx\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0midx\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mpossibly_batched_index\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 45\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 46\u001b[0m \u001b[0mdata\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mpossibly_batched_index\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mg:\\git\\csgo-win-probability\\csgo_wp\\data_transform.py\u001b[0m in \u001b[0;36m__getitem__\u001b[1;34m(self, sample_idx)\u001b[0m\n\u001b[0;32m 224\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0midx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmatchup\u001b[0m \u001b[1;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmatchups\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 225\u001b[0m \u001b[0mtick_count\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmatchup\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstem\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'-'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m# last component\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 226\u001b[1;33m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 227\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mn_samples\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mn_samples\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mtick_count\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 228\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmatchup_idx_by_sample_idx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0midx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mn_samples\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mg:\\git\\csgo-win-probability\\csgo_wp\\data_transform.py\u001b[0m in \u001b[0;36mtransform_data\u001b[1;34m(df, game_map)\u001b[0m\n\u001b[0;32m 80\u001b[0m \u001b[1;31m# return torch.cat((t, t_2), dim=2).unsqueeze(1)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 81\u001b[0m \u001b[0mn_samples\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 82\u001b[1;33m result = torch.cat([t.reshape(n_samples, 100),\n\u001b[0m\u001b[0;32m 83\u001b[0m t_2.reshape(n_samples, 20)],\n\u001b[0;32m 84\u001b[0m dim=1).view(n_samples, 12, 10)\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "import torch\n", + "import time\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "loader = torch.utils.data.DataLoader(dataset,\n", + " batch_size=24,\n", + " shuffle=False,\n", + " num_workers=0,\n", + " )\n", + "start = time.time()\n", + "# check if dataset acts as expected\n", + "for index, (data, target) in enumerate(loader):\n", + " print(index, data.shape, target.shape)\n", + "print(time.time() - start)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# del dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "9" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "player_count_check = pd.read_csv('G:/datasets/csgo/match-map-unique/train/match-96-de_dust2-11-147.csv')\n", + "player_count = player_count_check['PlayerSteamId'].nunique()\n", + "player_count" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "tick_count_check = pd.read_csv('G:/datasets/csgo/csgo_playerframes_dust2.csv',\n", + " names=['MatchId',\n", + " 'MapName',\n", + " 'RoundNum',\n", + " 'Tick',\n", + " 'Second',\n", + " 'PlayerId',\n", + " 'PlayerSteamId',\n", + " 'TeamId',\n", + " 'Side',\n", + " 'X',\n", + " 'Y',\n", + " 'Z',\n", + " 'ViewX',\n", + " 'ViewY',\n", + " 'AreaId',\n", + " 'Hp',\n", + " 'Armor',\n", + " 'IsAlive',\n", + " 'IsFlashed',\n", + " 'IsAirborne',\n", + " 'IsDucking',\n", + " 'IsScoped',\n", + " 'IsWalking',\n", + " 'EqValue',\n", + " 'HasHelmet',\n", + " 'HasDefuse',\n", + " 'DistToBombsiteA',\n", + " 'DistToBombsiteB',\n", + " 'Created',\n", + " 'Updated'],\n", + " usecols=['MatchId', 'MapName', 'RoundNum', 'Tick', 'PlayerSteamId'])" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PlayerSteamId
MatchId
9610
\n", + "
" + ], + "text/plain": [ + " PlayerSteamId\n", + "MatchId \n", + "96 10" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tick_count_check[(tick_count_check['MatchId'] == 96)].groupby('MatchId').agg({'PlayerSteamId': 'nunique'})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Baseline" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
RoundNum
WinningSide
CT0.474391
T0.525609
\n", + "
" + ], + "text/plain": [ + " RoundNum\n", + "WinningSide \n", + "CT 0.474391\n", + "T 0.525609" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# ideas: map-based, player count based, logreg, peterx's stuff\n", + "import pandas as pd\n", + "\n", + "map_data = pd.read_csv('G:/datasets/csgo/csgo_rounds_dust2.csv', usecols=['RoundNum', 'WinningSide'])\n", + "map_baseline = map_data.groupby('WinningSide').agg({'RoundNum': 'count'})\n", + "map_baseline = map_baseline / map_baseline.sum(axis=0)\n", + "map_baseline" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.5\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "print(roc_auc_score(map_data['WinningSide'] == 'CT', np.zeros(map_data.shape[0])))\n", + "del map_data" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
MatchIdRoundNumSideTickIsAliveWinningSide
041CT1525751
141CT1529051
241CT1532351
341CT1535651
441CT1538951
.....................
2131902189222T30653011
2131903189222T30659611
2131904189222T30666211
2131905189222T30672811
2131906189222T30679411
\n", + "

2131907 rows × 6 columns

\n", + "
" + ], + "text/plain": [ + " MatchId RoundNum Side Tick IsAlive WinningSide\n", + "0 4 1 CT 15257 5 1\n", + "1 4 1 CT 15290 5 1\n", + "2 4 1 CT 15323 5 1\n", + "3 4 1 CT 15356 5 1\n", + "4 4 1 CT 15389 5 1\n", + "... ... ... ... ... ... ...\n", + "2131902 1892 22 T 306530 1 1\n", + "2131903 1892 22 T 306596 1 1\n", + "2131904 1892 22 T 306662 1 1\n", + "2131905 1892 22 T 306728 1 1\n", + "2131906 1892 22 T 306794 1 1\n", + "\n", + "[2131907 rows x 6 columns]" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# player count based\n", + "import pandas as pd\n", + "\n", + "player_data = pd.read_csv('G:/datasets/csgo/csgo_playerframes_dust2.csv',\n", + " names=['MatchId',\n", + " 'MapName',\n", + " 'RoundNum',\n", + " 'Tick',\n", + " 'Second',\n", + " 'PlayerId',\n", + " 'PlayerSteamId',\n", + " 'TeamId',\n", + " 'Side',\n", + " 'X',\n", + " 'Y',\n", + " 'Z',\n", + " 'ViewX',\n", + " 'ViewY',\n", + " 'AreaId',\n", + " 'Hp',\n", + " 'Armor',\n", + " 'IsAlive',\n", + " 'IsFlashed',\n", + " 'IsAirborne',\n", + " 'IsDucking',\n", + " 'IsScoped',\n", + " 'IsWalking',\n", + " 'EqValue',\n", + " 'HasHelmet',\n", + " 'HasDefuse',\n", + " 'DistToBombsiteA',\n", + " 'DistToBombsiteB',\n", + " 'Created',\n", + " 'Updated'],\n", + " usecols=['MatchId', 'RoundNum', 'Tick', 'Side', 'IsAlive'])\n", + "player_data['IsAlive'] = player_data['IsAlive'].astype(int)\n", + "results = pd.read_csv('G:/datasets/csgo/csgo_rounds_dust2.csv', usecols=['MatchId', 'RoundNum', 'WinningSide'])\n", + "player_data = pd.merge(player_data, results, on=['MatchId', 'RoundNum'])\n", + "del results\n", + "player_data['WinningSide'] = (player_data['WinningSide'] == 'CT').astype(int)\n", + "player_data = player_data.groupby(['MatchId',\n", + " 'RoundNum',\n", + " 'Side',\n", + " 'Tick',\n", + " ],\n", + " as_index=False).agg({'IsAlive': 'sum', 'WinningSide': 'max'})\n", + "player_data" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IsAliveWinner
SideCTT
MatchIdRoundNumTick
41152575.05.01
152905.05.01
153235.05.01
153565.05.01
153895.05.01
..................
1892223065303.01.01
3065963.01.01
3066623.01.01
3067283.01.01
3067943.01.01
\n", + "

1069034 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " IsAlive Winner\n", + "Side CT T \n", + "MatchId RoundNum Tick \n", + "4 1 15257 5.0 5.0 1\n", + " 15290 5.0 5.0 1\n", + " 15323 5.0 5.0 1\n", + " 15356 5.0 5.0 1\n", + " 15389 5.0 5.0 1\n", + "... ... ... ...\n", + "1892 22 306530 3.0 1.0 1\n", + " 306596 3.0 1.0 1\n", + " 306662 3.0 1.0 1\n", + " 306728 3.0 1.0 1\n", + " 306794 3.0 1.0 1\n", + "\n", + "[1069034 rows x 3 columns]" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pivoted = player_data.pivot_table(index=['MatchId', 'RoundNum', 'Tick'], values=['IsAlive'], columns=['Side'])\n", + "pivoted['Winner'] = player_data.groupby(['MatchId', 'RoundNum', 'Tick']).agg({'WinningSide': 'max'})['WinningSide']\n", + "pivoted" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Int64Index([ 4, 15, 21, 26, 28, 29, 37, 38, 41, 47,\n", + " ...\n", + " 1676, 1677, 1690, 1693, 1698, 1786, 1799, 1853, 1878, 1892],\n", + " dtype='int64', name='MatchId', length=173)" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pivoted.index.levels[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1069034 850701 218333\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "mask = np.random.choice(pivoted.index.levels[0], replace=False, size=int(pivoted.index.levels[0].shape[0] * 0.8))\n", + "pivoted.reset_index(drop=False, inplace=True)\n", + "train, test = pivoted[pivoted['MatchId'].isin(mask)], pivoted[~pivoted['MatchId'].isin(mask)]\n", + "print(pivoted.shape[0], train.shape[0], test.shape[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns\n", + "\n", + "player_baseline = train.groupby([('IsAlive', 'CT'), ('IsAlive', 'T')], as_index=False).agg({('Winner', ''): 'mean'})\n", + "player_baseline.columns = ['CT count', 'T count', 'Win probability']\n", + "player_baseline_pivoted = player_baseline.pivot('CT count', 'T count', 'Win probability')" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWsAAAEGCAYAAACjLLT8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOydd3hURReH39lNAmmEQMomJBAICCi9C0ivKgKCgIWiAiqIitJERUGaYAc+EVARC6BYqKF3kBZApPeS3oD0ZMt8f2zYsOmBbIrOy3MfcmfO3PnlZvfcc8+dOyOklCgUCoWidKMpaQEKhUKhyB/lrBUKhaIMoJy1QqFQlAGUs1YoFIoygHLWCoVCUQawK2kBuZF2dleZGqZiirpS0hIKjajgUdISCo08sr2kJRSK5NXBJS2h0ISdrFDSEgpN/Strxf0eQx9zucA+x96jxn33V1hUZK1QKBRlgFIbWSsUCkWxYjKWtII8Uc5aoVAoAIyGklaQJ8pZKxQKBSClqaQl5Ily1gqFQgFgUs5aoVAoSj8qslYoFIoygHrAqFAoFGUAFVkrFApF6Ueq0SAKhUJRBlAPGBUKhaIMoNIgCoVCUQZQDxgVCoWiDKAi6+Jj79GTfLR4JSaTiSe7tuXF/j2t6hOSknn7s2+JiI7DaDQytE83+nRpA8APq7fw+5a9IAS1qlXhw9eGUc7B3uaa9528xJwVWzGZTPR9pBEv9HzYWnNyKu98s5aIuHgMRhNDurekT5sGRMTF8+63a4m9nYQQgn7tGvFsl+a213v8LB8t/dOst1NLXuzTOYveFCbP+5mImJsYTCaGPt6BPh1bANDz1ek4lS+HVqNBq9WwfNZYm+sF2HclijnbTmOSkr4N/HmhZU2r+qWHLrHhdBgARmniSmwiO0Z3xc3RwVxmkjzzw168XMozr5/tzzGAfZMWOI8YAxoNqVvWk7rqZ6t6u3qNcH13BqbIcADS/9pDyorvASjf+ynKdXsMpMR49QqJX8wGfbpN9bq0a4Lv+yNAo+Hmyi1EL1yVo51jg1oE/j6X62PmEB+0H4DKL/Sm0sBuICWp564SMv4LZLrepnpzRD1gLB6MRhMzv/6ZRVPH4l3ZnafHzaRDi4YEVvW12KzYsJNAfx/mv/sqcbcTeGLUezzWviVx8Qn8tG47f86fSvlyDoyb8zUb9xymd+fWttVsMjHr580sHDsIb/cKPDtjKe0b1iLQN3Pq0pU7jlLDx4MvxzxFXEIyfd79msdaPoRWo+GtpzpTt5qOpNQ0nv7wO1o9WN2qrS30zvz2d75+5yW8K7vxzNuf06HZQwT66TL1btpHDT9v5k18kbj4RHq/MZvHHmmCvZ35o7Zkyiu4V3CxmcbsmiWztpxi4YCWeLuW59kf9tI+0JtAD1eLzbAWgQxrEQjArouR/Bh8xeKoAX4OvkL1yi4kpRXTl1mjwfnlN4h/7y1MsdG4ffo1+oP7MN64ZmVmOH2ChGlvWzet5EH5Xv24NWoIpKfjMvEDyrXrRNq2jTbV6zvtZa4Mfg9DRCyBqz8lfutB0i7eyGanmziUxN3HLEV23pXwGNaL811HIdPS8Z8/Ebde7bj12zbb6c2NUv6A8V8zRerJC1eoqvPCT+eJvb0dPR5pzo5Df1vZCCFISklFSklyahpuLs5oteZTYDSaSEvXYzAaSU1Lx7OSm+01XwnD39MdP0937O20dG9el53Hz2fRDElpaUgpSUlNx825PFqNBs+KLtStZnaSzuXLUcPHg6hbCbbVe/E6/t6V8fOujL2dHT1aN2bn4VPWehEkp6TddY6d0GpK7mN2MvwW/u5O+FV0wl6roXsdX3ZejMzVPuhsGD3qZF7gIxNS2HM5iifr+xeHXADsatXFGB5qjpoNBtJ2b8e+ZduCH0CjRTiUM/9frhymuBjbiQWcGtYi/Vo4+huRSL2B22t3U6Fry2x2lYc+zu2N+zHE3rau0GrQlHfI+L8chqg4m+rNDSmNBd5KApt+i4QQ3kKIJkKIxkIIb1v2FRl7C2+PSpZ978oViYq9aWXz9KMduXIjnM7Pj6ffa1OZOGIgGo0G78ruDO3bjW7DJ9F52HhcnBxp3fghW8oFIOpWIrpKmRO9e7u7ZnO4gzo15Up4LF3Hz6P/1CWMH9QVjcZ63vPQmFucvRFJ/eq+2JKouNvoKle07HtVdiPypvUXb1CPNlwOjaTLy1PpP+5jJgzrg8birAUvz1jEoEmfsWrrXzbVatGcmIrO1dGy7+1anqjE1BxtU/RG9l+JpssDmXcKc7ef5o32dRGi+Oaa11T2wBQTZdk3xUajrZz9jsmu9kO4ffkNrh/MQVs1wGwbF0PqHytw//YX3Jf9jkxKQn/siE312ukqow/PvCDoI2Kx11W2tvGuRIXuDxP3k3WEb4iMI2bxH9Te9y11Dy7DlJBE4p5jlAjSVPCtBLCJsxZCNBJCHAB2AnOAucAuIcQBIUSTPNqNFEIcEUIcWfLL2kL2mn2Rh6xfsH3HTlG7uj/bvpvLr5+/x8yvl5OYnEJ8YhI7Dh4naNFMtn43h5S0NNbtPFDI/guPlDloxlrz/lNXqO3vzZa5Y1g55QVm/7yZxJQ0S31yajrjvvqD8QO74OJYzsZ6s5dldWH7/z5HnYAqbF34Pr/MeYtZ3/5BYrLZOX4/7VVWfvQmC94ezspN+wg+fcmmeiGnT0V2zXfYfSmSRlXcLSmQ3ZcicXdy4EGd7e+yrMjhwpD13BsvnefmiwO5/dqLpK79Ddd3ZpibOrvg0LItN4cP4ubQJxHly+PQoWsJ6LUW7DtlBBGzl2ZLNWgqOFOha0vOtRvOmVZDEU7lqdingw3F5oHJVPCtBLBVznop8JKU8uDdhUKIVsB3QMOcGkkpFwGLoPDLenlXdicyJvP2KTL2Fp6VKlrZrN62jxf69UQIQVUfL6p4e3AlJILw6Fj8vD2o5GbOY3Zu1YTjZy/xeIdWhZFQaLzdXYmIi8/UfDMBz4rW+dzV+07wQo+HzZq9KlHFoyJXImKpX90XvcHIW1/9zqMtH6Jzk9o21QrgXdmNiNhblv2o2Nt4uVs7stU7D/NC705mvToPqnhV4kpYFPVrVsUrI7VU2c2VTi3qc/LSdZo+GGhbzS7liUhIsexHJqTi6VI+R9uNZ6xTIMdDb7LrYhR7L28n3WAiKV3P5HXHmPl4Y5tqNsVEo/HwsuxrKntmS2XIlGTLz/rgg6DVIiq4YV+/McbIcGS8+Y4nbf8e7OvWI33nFpvpNYTHYO+TGfnb6ypjiLROZTjWr0XVeeMB0LpXwLVDUzCYwF5L+o1IjBnfg/hN+3FqUpdbf+60md5cKeWjQWyVBnHO6qgBpJQHAGdbdPhQrQCuhUcREhmDXm9g457DdGhhfU3QeVbm4IkzAMTeiudaaCR+Og90HpU4ce4yKRm54YMnzlLDz8cWMq01B/hyPeomodG30BuMbDp8hvYNa1nZ+FSqwMGzV82a45O4GhmLn0dFpJRM/X4D1X0qM7hbC5trBXgo0J/rETGERMWiNxjYuP8Y7ZtZp4t0HhU5ePKCWe+tBK6GReHnVYnk1DSSUswRdnJqGn+dOEdN/2I4xz5uXL+ZROitZPRGE5vOhtG+ZvaMXEKanuCQODreVfdauzpsfqUzQS91YnavxjSv6mFzRw1guHAWra8fGm8d2NlRrl0n9If2WdmIipkpP7tadUCjQcbfxhQdiV2dB6Gc+S7LvmGTbA8mi5rkExcoF+CLvZ83wt4Ot17tiN96yMrmXLvhnHvEvMUH7Sd0ylfEbzmAPiwap8Z1EOXNel1aNyTt0o2curE9Rn3BtxLAVpF1kBBiPbAMuHPm/YEhgE0eS9tptUwe+TSvfPA5RpOJPp3bULOqL78E7QJgQM/2vDTgMd778juefO0DpIQ3hj6JewVX3Cu40qV1UwaOnY5Wq6VuDX/6d3/EFjKzaNYw6ZmuvPL5CkxS0rtNA2pW8eTXnUcBeKpDE0Y83oYp362j/wdLkFLyRr+OuLs6cezCDdYdOEmtKp4MmPoNAGOebM8j9Wvm1eV96tXy9gtP8srMRZhMkj4dWlDTX8cvW8xDsAZ0bc3IJ7vy3lcr6DdurvkcP/s47hVcCImMZezH3wFgMJl4tE0T2jSqYzOtFs0aDZO61OOVVYcwmSS96/tR08OVX4+bHdhTjaoBsP1CBA8HeODoUAoGSJmMJC38nApTPwaNhrStGzBev0q5Hk8AkLZxDeXatKfco73BaESmpZE4ZyoAhvNnSN+3i4qfL0YajRgvXyR1Y2FTioXEaCLs/YVUXzbVPHTv162kXbhOpWd6ABD3c+5f+ZTj57kdtI+a6z4Hg5GU05eJW27DkSt5UcpHg4ic8qZFcmAhegK9gSqY04QhwBop5YaCtFerm9setbq57VGrmxcPRbG6eepfywvsc8o//HSxr25uszBCShkEBNnq+AqFQlGklPLIutgHwAohRhZ3nwqFQpEv/9HRIHlR7LcPCoVCkR+yhB4cFpRiiayFEG2FEG8KIbpJKb8ujj4VCoWiUBThSzFCiB5CiHNCiItCiEk51LsJIdYKIf4WQpwSQjyf3zFt9VLMobt+HgHMB1yB93MSrlAoFCVOEaVBhBBaYAHQE3gQeFoI8WAWs9HAaSllQ6AD8IkQwoE8sFVkffd0dSOBrlLKqUA34Fkb9alQKBT3TtFF1i2Ai1LKy1LKdGAF5pFxVr0BrsL8mrULEAfkOVOYrXLWGiGEO+aLgZBSRgNIKZOEEKV7HkKFQvHfpBAPDjMGStw9WGJRxhvYYB6ufPebPSFA1pmt5gNrgDDMWYeBUuZ9FbCVs3YDgjE/TJRCCJ2UMkII4YJ6wKhQKEojhXjd/O6pMXIgJx+XdQx3d+A40AkIBLYIIfZIKeOztczAJs5aShmQS5UJ6GuLPhUKheK+MBTZTX8I5je27+CHOYK+m+eB2dL8VuJFIcQVoA5wiFwo1nHWUspkKWXZe9VPoVD8+ym6nPVhoJYQonrGQ8NBmFMed3Md6AzmqaSB2sDlvA5aCiZCUCgUilJAEb3sIqU0CCFeBTYBWuBbKeUpIcTLGfULgQ+BpUKIfzCnTSZKKfNcJUI5a4VCoYAinSI1Yw6kDVnKFt71cxjm0XEFRjlrhUKhgFI/N0ipddaaSrZdoqqo0XgU3xp9RYVh4zclLaHQxP94tKQlFIqt58ve5+Jvh5JZY/B+mFMUBynliw+UWmetUCgUxUrRjQaxCcpZKxQKBeS8yGgpQjlrhUKhAJWzVigUijKBctYKhUJRBlAPGBUKhaIMYCzdo2CUs1YoFApQaRCFQqEoEyhnrVAoFGUAlbNWKBSK0o80qXHWCoVCUfpRaRCFQqEoA6jRIAqFQlEGUJG1QqFQlAGUsy4+9h4MZvYXizCaTPR7vBvDn3vKqv52QiLvzfqcG6ERlCtnz4eTXqdWjQDCI6OZPONTYuJuohEa+j/RncFPZV053kaaDxxh9ucLzZp79WD44AHWmuMTeG/WZ9wIDaecgwMfTh6bqfnDjzM0C/r37sngAX1srnffxQjmbDqOSUr6Nq7OC23qWNUv3X+ODSevA2A0Sa7ExLPjrSdwc3Sg55cbcHawQ6MR2Gk0/Dy8s831Aji0aIHrq6+CVkvK+vUk//yzVb19o0ZUnD4dY0QEAGm7d5O0bBkAwsWFCuPHY1e9OkhJ/EcfoT992uaafTo0oNmHgxEaDReX7+T0/LVW9X7dm9BgfH+klEiDkeD3fyT60HkA6ozoQeAzHUBKbp0N4a+xizCl6W2q94H2Dek9ZQhCq+HQyh3s/Mp6FavGvdvQ4eUnAEhLTuWPd78h/Iz5c/LIiz1pPrATSEnEuRv8Mn4hBhvrzRE1kVPxYDQamf7pVyz+bDo6z8oMHDGWjm1aEli9qsVm8bJfqFOrBl/OfJfL124w49Ov+OaLmdhptYwf/SIP1q5JUnIyA158g9bNGlu1tZnmTxaw+POZ6Lw8GDj8dTq2bUlg9Wp3aV5JnVqBfDlrilnzJwv45svZZs1jRpg1JyUz4MXXaN28sVXbItdrkszaeIyFzz6CdwUnnl2yjfYP+BLoWcFiM6x1bYa1rg3ArvNh/HjwAm6ODpm/z5D2uDuVs5nGbGg0uL7+OrfGjcMYHU2lhQtJ27cP47VrVmb6f/7h1ttvZ2vu+uqrpB86xO333wc7O0T58jaXLDSC5jOHsn3QbJLD4+ixYRohm4KJv5C55mrEnlOEbDLP7V2xrj9tvx7DunYTcNS5U/vFbqzrMBFjqp62C8cQ0LsVl3/ZY1O9fac9z+LnZnI7IpYxa2ZwekswURdDLTZxN6JYOHAaKfFJ1O7QkH6zRjC/z3tU8HanzbAefNxlHIY0Pc/Of52GvR4meNVum+nNlVIeWRfrgrm25J8z56laxQd/Xx329vb07NyO7XsPWNlcunqdVk0bAlCjmj+hEVHExN3E06MSD9auCYCzkxM1AvyJjIktHs1+vvhX8cnQ3J7te/LRHB6ZXbOzEzWq+RMZbVvNJ8Pi8Hd3wc/dBXuthu4P+bPzXNZFmzMJOnmDHg+V7OT79nXqYAwNxRgeDgYDqdu3U65NmwK1FU5OODRsSMr69eYCgwGZmGhDtWYqNw4k4WokidejMemNXFt9AP/uTa1sDMlplp/tnMpZRYXCTou2vANCq8HO0YHkyJs21evfqCYx1yKIuxGFUW/k77V/8VC3ZlY2145eICU+CYDrRy/ipqtkqdNotdiXd0Cj1eDg6EC8jfXmikkWfCsBbOqshRDeQogmQojGGSv42oyo6Fh0Xp6WfW9PD6KyONzaNauzddd+AP45fY7wyKhsDi40PJIz5y/T4MHatpSboTnGWrOXB1HRWTXXyK45ynpdzdDwSM5cuESDh2yrOSo+BV0Fx0y9FRyJSkjJ0TZFb2D/pQi61PWzlAkBr/y0h6cXb2XV0TwXci4yNJ6emKKjLfum6Gi0np7Z7OwffJBKS5ZQ8aOP0AYEAKD19cV06xYVJk2i0uLFVBg/HoohsnbUuZMcFmfZTw6Pw9HHPZudX49mPL57Dh2WjePAm4sBSIm4yZmvNtDn8Bc8eXw+6QnJROw6aVO9bt7u3A7L/NzeDo+lgnd2vXdoPrAD53YeByA+8ia7Fq9j8v75vHvoK1ITkrmw5x+b6s0Vo7HgWwlgE2cthGgkhDgA7MS84s5cYJcQ4oAQokke7UYKIY4IIY4sWbaiUH3mdK0TCKv94c89RXxCEv2eH8NPv62jTq1AtNrMU5CcnMLYd2cy8bURuDg7Far/eyGnFJmwlszwwU8Rn5BIv6Gj+WnVmgzNWkt9cnIKY9+ZzsTXXsLF2dm2enMoy6r3DrvPh9PI38MqBbJ0WEdWjOjCgmfa8svhSwRfi865sa3JcuIN588TM2gQccOHk/z771ScPt1codVi98ADJK9eTdyIEciUFJyfecbm8kROJzWHkx+y8Qjr2k1g9wuf0WBCfwAc3Jzw696E1S3H8nvjMdg5lSPgyYLdSdyH4ALpBQh8+EGaD+zIhtnLAXCs4MxDXZsx+5HXmN5yFPZO5Wjcp60NxeaONJkKvJUEtspZLwVeklIevLtQCNEK+A5omFMjKeUiYBGAPupCoe41vD0rExGV+eWPjI7B06OSlY2LsxPTJ79xpy+6D3gRPx8dAHqDgTfencljXTvQtX3rwnR9z3h7eVhrjorB06NyFs3OTH/nzUzN/Yfh5+udqfmd6TzWrSNdO9j4C4k5ko6Iz4ykI+NT8HRxzNF246nsKRAvV7NtJefydKzjy8mwOJpWyx7lFiWm6Gg0d0XSGk9PjDHWdyYyOdnyc/rBg4ixYxFubpiiozFFR2M4cwaA1F27isVZJ4fH4eSb+dl18qlESkTuqYGog+dwreZFuUoueLd+kMQb0aTFJQBwY8MRPJvV4urv+2ym93ZEHG6+mZ9bN5/KxEdl16urU5X+s0fyzbDZJN8yp5Nqtq1H3I0okjL0ntx4mGpNH+DYn3ttpjdXSvkbjLZKgzhnddQAUsoDgE3Cv3p1HuB6SBghYRHo9XqCtu2mY9uWVjbxCYno9eanzL+t3UTThg/h4uyElJIps7+gRoA/Qwf1tYW8AmreRce2rfLQvJGmjerj4uxs1jzrc2pU82fooCeLRe9Dvu5cj0sk9GYSeqOJTadu0P4Bn2x2Cal6gq9F07F25qLHKekGkjKe8KekG/jrciQ1Pd1srll/7hxaPz80Oh3Y2VG+UyfS9u+3stFUynSMdnXqgBDI27cxxcVhjIpC62++6Dg0bYohy4NJWxB7/DKu1XU4+3uisddSrXcrQjZbLxTsEpCZVXSvH4DG3o60uESSQmPxaFITbcYdja7tQ9y+60GfLQj5+xIeATrc/TzR2mtp2OthTm8JtrKp6FuZIQvHsmLsAmKuRFjKb4XFULVxLezLm/XWbFPP6sFksSJNBd9KAFtF1kFCiPXAMuBGRpk/MATYaIsO7ey0TB77Mi+9NQWjyUTfx7pSs3o1Vv65AYCBfR7l8rUbTJ7xKVqNlhoB/kyb9DoAx/45zdpNO6hVI4B+z48B4PWRQ2j3cHNbSM2i+RVeevNdjEYjfR/vRs0a1Vj5h/mB1sC+j5k1f/gxWo2GGgFVmfa2+c7g2IlTrN24jVqBAfQbOtqs+aWhtGvdwnZ6NRom9WjEKz/vwSQlvRsGUNPLjV+DLwHwVNNAALafC+XhGt44OmR+vGKTUnnzl78AMJgkPev506amzmZaLRiNJHzxBe5z54JGQ2pQEMarV3F8wjyMLGXNGsq1b4/TE08gjUZkejq3p02zNE/48kvc3n0X7OwwhocTP3u2zSVLo4kj73xPp58nILQaLq3Yxe3zodQa3AmACz9sp+pjzanevy0mgxFjSjp7X5kPQOyxS1xff4iem6YjDUZunrzGxR932FSvyWhi9ZSlDF/2NhqthsO/7CTyQgitnu0CwIGfttLltSdxcneh7/QXzG0MJr584h1uHL/EP0EHeX39TEwGE6GnrnJw+Tab6s39FyndkbWQNhpbKIToCfQGqgACCAHWSCk3FKR9YdMgJY5Gm79NKcOw8ZuSllBo4pfY7nbeFmw975e/USnjb4fS/dp1Tsy5ujyXpycFJ2nKoAL7HOdpK+67v8Jis3HWUsogIMhWx1coFIoipZRPkVrs46yFECOLu0+FQqHIl1I+zrok3mAs9tsHhUKhyI+SGpJXUIotshZCLAOQUn5dXH0qFApFgfkvRtZCiDVZi4COQoiKAFLKJ2zRr0KhUNwzpXw0iK3SIH7AaWAJ5neZBNAM+MRG/SkUCsX9UcoXH7BVGqQZEAy8A9yWUu4EUqSUu6SUu2zUp0KhUNwz0iQLvJUENomspZQm4DMhxK8Z/0faqi+FQqEoEv6jaRAApJQhwFNCiMeAeFv2pVAoFPdFKR8NUizRrpRyPbC+OPpSKBSKe+K/HFkrFApFmUE5a4VCoSj9SKNKg9wbZWxiJJmSUNISCk1a0F8lLaHQrLlYtiZGWqGJKmkJheZiQkT+RqWMOUVxkFIeWf9r1mBUKBSK+6Eoh+4JIXoIIc4JIS4KISblYtNBCHFcCHFKCJHvkObSG1krFApFcVJEkbUQQgssALpinhr6sBBijZTy9F02FYH/AT2klNeFEF75HVdF1gqFQgFgKsSWNy2Ai1LKy1LKdGAF5rn97+YZ4Hcp5XUAKWW++TLlrBUKhQKQBlOBt3yoQuYKWWCOrqtksXkAcBdC7BRCBAshhuR3UJUGUSgUCihIxGwhY17+u+fmX5Sx4DfkPA101hyLHdAU6Aw4An8JIQ5IKc/n1qdy1gqFQgGFmvMjwzEvyqU6BPOas3fwA8JysImRUiYBSUKI3UBDIFdnrdIgCoVCAUWZsz4M1BJCVBdCOACDgKzTRq8GHhFC2AkhnICWwJm8Dqoia4VCoaBwkXWex5HSIIR4FdgEaIFvpZSnhBAvZ9QvlFKeEUJsBE5gdv9LpJQn8zquctYKhUIBhcpZ54eUcgOwIUvZwiz7c4G5BT2mctYKhUIBSENJK8gb5awVCoUCkKV7ahDlrBUKhQIo0jSILVDOWqFQKFCRtUKhUJQJlLMuRvYeOMLszxdiNJno16sHwwcPsKq/HZ/Ae7M+40ZoOOUcHPhw8lhq1QggPDKayR9+TEzcTTRC0L93TwYP6FP8+g8d56P/fYfRZOLJnp0Z/rS1htsJiUz5+CtuhEVSzsGeaeNeoVb1qsWq0a5BcxwHvwoaDek7N5C2dnl2m7oNcRw8GrR2yITbJE4fC4DjiPHYN26FjL9FwqQXi02zX4cGPDx1MEKr4dzynfy9YK1VfbVuTWg6vj+YJCaDkb8++JHIw+Z3ExwqOPHI3OFUqu2HlJLdby0m6uhFm2tu3qEZo6e+gkarYcPyjaxYsNKq3j/QnwmfvkXNejX5ds5Sfv16laXOuYIz4+a+SUDtAKSUfPzWJ5w+mucQ3nuifac2vD9rIlqNhhU//s5XX3ybzeaDWRPp2OURUlJSGffqe5w8cYYaNQOYvyRzUtOqAX58Out/fPv1j7wx4RWeHvIksTE3AZg7/Ut2bN1b5NpzQhpzevGw9PCvcdZGo5Hpnyxg8ecz0Xl5MHD463Rs25LA6tUsNouXraROrUC+nDWFy9duMOOTBXzz5WzstFrGjxnBg7VrkpSUzIAXX6N188ZWbW2v38SMed+w6KN30XlWZtDot+nYuhmB1TLnb17y8x/UCQzgi6njuXw9lJnzvmHJ3CnFphGhwXHY6yTNGo8pLhrXD79Cf3Q/ptBrmSZOzjg+/zqJH01CxkYhKlS01KXv2UT6lj9xejnHGSNtJFnQZvpQNjwzm6TwOPqsn8a1zcHcupD5Qlno3lNc23wUgEp1/en81Rh+7TABgIenDiZk5wm2vfQlGnstdo7lbK5Zo9Hw2vRXmfDMJKLDY/jf+nn8tfkvrl24brFJuJXA/Cn/o0331tnavzp1FId3HmbqSx9iZ29HORto1mg0fDhnMs/2G0lEWCRrti5n68adXDh32WLTsUtbqteoRvvmj9O4WQOmf/wufbo9y+WLV3m0wwDLcQ6e3Mqm9dss7b756kcWLfi+yDXnR2mPrFWsTT8AACAASURBVPN9g1EIsa0gZSXNP2fOU9XPF/8qPtjb29Ozc3u27zlgZXPp6nVaNW0IQI1q/oSGRxITdxNPj0o8WLsmAM7OTtSo5k9kdGzx6j93kaq+Ovx9vbG3t6Nnh9bs2HfYWv+1EFo2rm/WX7UKoRHRxNy8VWwatYF1MEWGYooOB6OB9APbsW9q7SzsW3dGf3gvMtY8iZiMz9RnPHsCmVi86yZ7Ngok/mokCdejMemNXFp9gGrdmlrZGJLTLD/bOZZDSvPLEfYujvi0rM255TsBMOmNpMcn21xznUa1Cb0aRvj1CAx6AztW76J1N+vzfCv2Fuf+Po/BYLQqd3Jxon7L+mxYvhEAg95AUnxSkWts1KQeV69c58a1UPR6A2v/2EjXnh2tbLr27MhvK813MceOnKCCmyte3h5WNm3ateT61RuEhoQXucbCIk2iwFtJkKuzFkKUF0JUAjyEEO5CiEoZWwDgW5CDCyG8hRBNhBCNhRDeRSM5Z6KiY9B5eVr2vb08iMricGvXrMHWXfsB+Of0OcIjo4iMirGyCQ2P5MyFSzR4qLYt5WYjKiYOnVdly763Z2UiY+OsbGoHVmPr3oMA/HP2IuGR0URGW9vYEk0lD0yxmTM5muJi0Lh7Wtlodf4IZxdc3vkUl+kLsW/btdj05YSzjzuJ4ZnnKCkiDmcf92x2AT2a8dTOOXRfNo7dby0GwLWqJylxCbT/dCR9N07nkbnDiyWy9vDxIDo82rIfHRGNh0/lPFpk4lNVx+24W0z4dBwLN/6Pt+aOpbxj+SLXqPPxJjw00rIfHhaJzscri40XYaGZq85EhEXincXmiSd7sOb3IKuyIcMHsXH3KuZ+OZUKbq5Frj03pKngW0mQV2T9EhAM1Mn4/862GvPE2rkihGgkhDgA7MS84s5cYJcQ4oAQokke7UYKIY4IIY4sWZY9F5oXMoc3RUWWC+DwwU8Rn5BIv6Gj+WnVGurUCkSrzVw+LDk5hbHvTGfiay/h4uxcqP7vF5nDLyCyTN714qA+xCcm0f+l8fz8ZxB1albHTluc07vkEFFk1a3Voq3+AIkfTyZp9gTK9x2MRleSS3HlpDl70dWNR/i1wwS2vPgZzcb3B0Bjp8WjXgCnf9jGHz3exZCcRsPRvWysN2dy+nzkhNZOS616tVjzwzpe7jGK1ORUBo0eWPSCcvwoWGsUWb+AWWzs7e3o0qMD61dvtpT9+N1K2jV9jJ7tnyIqMob3PhxXdJrzQUpR4K0kyDVnLaX8AvhCCDFGSjmvkMddCrwkpTx4d6EQohXwHebZpXLq0zKTlT7mcqFe1Pf28iAiKjMaiYyKwdPDOhpxcXZm+jtv3umL7v2H4edrDvj1BgNvvDOdx7p1pGuHNoXpukjw9qxMRFTmnUBkdCxela0jQBdnJ6aPHwWY9fd47lWq6PJdYKLIMMVFo6mc2Z+mkgemWzHZbGTCbUhLRaalYjh7Am3VQEwRIcWm826SwuNw8alk2XfWVSIp4mau9hEHz1Ghmhfl3F1ICo8jKTyO6GOXALiy/lCxOOuY8Bg8fTLvWDx1nsRGFOwOKjo8hujwaM4eOwvA7vV7bOKsI8Ii8amSebPs4+tNZES0lU14WCS+VXSWfZ2vN1F32XTo0paTJ84Qc9fd4d0/L1/2G98un1/k2nOjzOespZTzhBCthRDPCCGG3Nnyaeac1VFnHOsAYJOQtV6dB7geEkZIWAR6vZ6gbbvo2LaVlU18QiJ6vR6A39ZupGmj+rg4OyOlZMqsz6lRzZ+hg560hbx8qVc7kGuh4YSER6HXGwjauZ8OrZtZ2cQnJqHXm9+J/W3DNprWr4uLs1OxaTRePotGVwWNpw60dji06oQ+2HrRXX3wPrS164NGAw7lsAusizHsWi5HtD3Rf1+mQnUdrv6eaOy1BPZuxfUtR61sKgRkOp3K9QLQONiRdjORlOjbJIXF4VbDBwDftg9x80KozTWf/fscVapXQeevw87ejo6927N/S8EWN74ZfZPosGj8apjvZhq3bWz1YLKo+PvYKarXqIZ/1SrY29vRq28PtgTttLLZunEn/QaaL26NmzUgIT6BqMjMi/sTT/bMlgK5O6fd/bFOnDtzoci154bJKAq8lQT5jgYRQvwABALHgTtPMySwLI9mQUKI9Rk2d1ZM8AeGABvvWW0e2NlpmTz2FV56812MRiN9H+9GzRrVWPnHegAG9n2My9duMPnDj9FqNNQIqMq0t98A4NiJU6zduI1agQH0GzoagNdfGkq71i1sITVn/Votk8e8wMuTZmA0mejboyM1A/z5Za35FnFAr25cvh7KOx/NR6PREFjNj6lvvVxs+gAwmUhZOg/niR+BRkv6riBMoVdx6Gz+QqZvW4sp7DqGE4dxnb0ETJL0nRswhVwFwGn0u9jVbYhwdaPCvJWkrlpK+q6gPDq8f6TRxP73vqfnTxMQGg3nVu7i5vlQ6j7XCYAzP26n+qPNqdWvLSaDEUNqOtteyYzm9r33PR3nvYLGwY6Ea1Hseiu3KYyLDpPRxLz35vPRTzPRaDQErdzEtfPXePy5xwBY9+N63D3d+WrDfJxcnJAmSb/hfXmh4wiSE5OZ994CJs+bhL2DHeHXIpjz1sdFrtFoNDJl4kyW/foVWq2WX37+kwvnLvHssKcA+Gnpr2zfsoeOXR9h95H15qF7Y96ztC/vWJ5HOjzM5Dc/tDru2x+M5cF6dZBSEnI9jMlvTSty7blRUg8OC4rILxcmhDgDPCgLmjTLbNcT87pjVTBnuEKANRmzUeVLYdMgJY1MSShpCYUmedLYkpZQaH7dVaBn26WGFeS7tF6p42JKRP5GpYxrsSfu29NebdS1wD4n4PiWYvfsBRlnfRLQAYUaWyOlDAJsGzYpFApFEVG4cLT4KYiz9gBOCyEOAZYBqVLKJ+6lQyHEyLvWKlMoFIpSQWlPgxTEWX9QxH2W7jOiUCj+k5TUkLyCkq+zllLuupcDCyFamJvLw0KIB4EewFkp5df3cjyFQqGwJcayPjeIECKBzNcIHAB7IElKWSGPNu8DPQE7IcQWzItB7gQmCSEaSyln3K9whUKhKEr+DZG11fueQog+QH5j2voDjYByQATgJ6WMF0LMBQ4CylkrFIpSRWnPWRf6XWUp5Z9Ap3zMDFJKo5QyGbgkpYzPaJtCqV+PQaFQ/BeRsuBbSVCQNMjdr/RpgGbkOLuCFelCCKcMZ22Z4kwI4YZy1gqFohRS2iPrgowGuXsyBANwFfPLLnnRTkqZBiCl1Rv39sDQwghUKBSK4sBoKs5J0QpPQXLWzxf2oHccdQ7lMUBMTnUKhUJRkpT2l2IKsviAnxDiDyFElBAiUgjxmxCiJOe8VCgUiiLHJEWBt5KgIHH/d8AazAsOVAHWZpQpFArFv4bSPp91QZy1p5TyOymlIWNbCnjm10ihUCjKEmV+NAgQI4R4DrizdMvTgM0XKJSpRb9unC0xBC0taQmFZsmesjWDHcCitLMlLaFQJBlSSlpCoYlKKr51PUsTJZXeKCgFcdYvAPOBzzAP2dufUaZQKBT/Gv4No0GuA/c0w55CoVCUFUr5YJACjQb5XghR8a59dyHEt7aVpVAoFMVLaR8NUpA0SAMppSWJJaW8KYRobENNCoVCUeyU9omcCpKk0QghLMtsCyEqUTAnr1AoFGUGUyG2kqAgTvcTYL8QYhXmtM4A1Kx5CoXiX4Ys5euiFOQB4zIhxBHMM+0J4Ekp5WmbK1MoFIpixFDK0yAFSmdkOGfloBUKxb+WMh9ZKxQKxX+B0j53s3LWCoVCQemPrHMdDSKE2FycQhQKhaIkKe2jQfIauqcma1IoFP8ZjIgCb/khhOghhDgnhLgohJiUh11zIYRRCNE/v2PmlQZxy7KklxVSyt/zO7hCoVCUFYpqVS8hhBZYAHQFQoDDQog1WUfRZdh9BGwqyHHziqzdgMcxL+uVdXu8sL9AcbP30DF6DX2NRwe/ypLlf2Srv52QyOtT5vDk8Dd5etQkLly5XgIqYd+VaPp8u4snvtnJtwcvZav//vBlBi7bw8Ble+i/dDdNP93A7ZR00gxGnvtpHwOW7aHf0t18te98segNaN+AF3bM5cXdn9BiVK9s9YFdmzB000yGBM3guXXTqNL8AQBcfSoxYMVknt/2EcO2zqbJC91tqvORTg+z8a/f2HLoD0a+lvNKcu/OHMeWQ3+wZudyHmxQ21I+ZOQg1u1eyfo9Kxn60tOW8gnvv8bG/atYs3M5C5bOxbWCS5Hp7dC5LbsPrWNvcBCj3xieo8202W+zNziILXt/p16DupbyChVcWbT0M3YdXMvOA2to2ryhpe75Ec+w+9A6tu9fzTtT37pvnd26deDkyd2cOb2X8eNH52jz2afTOHN6L0eDt9C4Ub1827733ptcvXKEI4c3c+TwZnr0MK/H3bxZI0tZ8JEt9O7d477154UJUeAtH1oAF6WUl6WU6cAKcl4KcQzwGxBVEH15RdbXpJRlcnY9o9HIjC+XsGjOFHSelRg0ahIdH25GYIC/xWbJz79Tp2YAX0ybwOXrocz8cjFLPv6geHWaJLO3neKr/i3wdi3Psz/to31NLwIru1pshjavwdDmNQDYdSmSn4Kv4ubogJSSRU+1xMnBDr3RxAsr/qJNdU8a+Lrn1t19IzSCLtOH8uuzs0kIj+O5tdO4tCWY2AthFpvr+07x/ZajAHjU8afX/8bwXacJmIwmdk7/maiTV7F3Ls/g9R9ybc8/Vm2LCo1Gw/uzJ/L8U6OJCIvkt83L2LZxN5fOX7HYtO/ShoAa/nRt0ZeGTesxdc7bPNVjGLXqBDLgub707z4EfbqBb1Z+yc4te7l2+Qb7dh3kk+kLMBqNjHtvDC+9/jwffzivSPTOmPsOT/cdQXhYJBu2r2Rz0A4unMu8eHfq+gjVA6vRtmlPmjRrwKxPptCrq/lCMm322+zYtpeRw8Zib2+Po2N5AFq3bUH3RzvRpW1f0tP1VPaodN86v/xiBj0ffZqQkHAO/LWBdes2c+bMBYtNjx6dqFmzOnUfbEvLFk2YP38Wbdr2yrftF18u5rPPvrbq7+Sps7Rs1ROj0YhO50XwkS2sW7cFo9F4X79HbhRmIichxEhg5F1Fi6SUizJ+rgLcuKsuBGiZpX0VoC/m91eaF6TPvCLr0v1oNA/+OXuRqlV0+Pt6Y29vT8+Obdix/7CVzaVrIbRsXB+AGlWrEBoRTUxc8c7jezLiFv4VnfCr6IS9VkP32j7svBiZq/3Gs2H0qOMDgBACJwfztdZgkhhMEiFs+yfTNQrk5tVIbl+PxqQ3cnbtAQK7NbWy0SdnLr9p71TOMlN7UtQtok5eNdskpRJ3MQwX3f05j9xo0OQhrl29wY1roej1Btb/uZkuPdtb2XTu0Z4/Vm4A4O/gk7i6ueLpXZnABwL4O/gfUlPSMBqNHNp/lK6PdgRg386DFkfxd/A/6Hy9ikRv46b1uXr5BtevhaDX61n9+wa6Z/R5h+6PdmLVijUAHD1yAjc3V7y8PXBxdaZl66Ys/+E3APR6PfHxCQAMeWEgCz5fQnq6HoDYmLj70tmieWMuXbrKlSvX0ev1rPxlNb16Wd8hPdGrOz/+tAqAg4eO4lbRDZ3Oq0Bts5KSkmo53+XLl0PaeNb/wjxglFIuklI2u2tbdNehcvoiZhX/OTBRSlngK09eznqoEKJN1kIhxCNCiMCCHFwI4S2EaCKEaCyE8C6oqPslKiYOnaeHZd/bszKRWT6otWtUY+uegwD8c/YC4ZHRRMbYfE0Fa52JqXi7ls/U6epIdGKOaw2Tojey/2oMnWvpLGVGk2Tgsj10/morrap5UN+nYo5tiwpXnTsJYZnnMTE8Dlfv7JF8ze7NeH77HJ5cOo6N4xdnq6/g54HXQ9UIP5Y97VMUePt4ERGaedGLCIvC28cri40nEWERlv3IsEi8dV5cOHOJZg83pqK7G+Udy9G+Sxt8qmT/6PZ75gl2b9tfJHp1Pt6EhYZb9sPDItH5eGex8SIsNCKbTbVq/sTG3OSzBTPYtGsVc7+YiqOTIwA1agbQ4uGmrN2ynFXrltKwcT3uB98qOkJCMu+EQkPDqeKrs7bx1RFy4y6bELNNfm1HvfI8R4O3sHjRJ1Ss6GYpb9G8McePb+fY0W2MfnWSzaJqAJMQBd7yIQTwv2vfD8h6C9kMWCGEuAr0B/4nhOiT10HzctYzgYQcylMwXxVyRQjRSAhxANgJzAHmAruEEAeEEE3yaDdSCHFECHFkScbV+V6QOdzQZI06X3y6L/GJSfQfOY6f/wiiTq3q2Gm199znPVGIQGH3pUga+brj5uhgKdNqBCuHPMKmkZ04GXGLizE5/bmKkBw+pDkFOxc3HeG7ThNYPfwz2o6zfsht71SOJ75+nR1TfyQ90TarqOT0XcoaleV0FyKl5NKFqyyet4zvVi3gm5XzOHvqAgaDtYN4eewLGA1G1qwKKnG9Wjst9RvWZdm3K+jevj/JySm8mpHz1tppcatYgV5dn2b6lE9Y+N0n96kzZw0Fscmr7ddfL6N2ndY0bdaN8Igo5s6ZYrE5dPgYjRp14uHWjzJxwquUK1fuvn6HvDAWYsuHw0AtIUR1IYQDMAjzOrYWpJTVpZQBUsoAYBUwSkr5Z14HzStnHSClPJG1UEp5RAgRkI/YpcBLUsqDdxcKIVphXmy3YU6NMm4lFgGkh/xzz/c83h6ViYiOsexHRsfiVdk6AnRxdmL6hNF3+qXHs6Oooiua29qC4uVansiE1EydCSl4uuT8Ydx0LtySAsmKa3l7mvlVZv+VaGp6uOZoUxQkhMfh6puZunDxqURi1M1c7UMOnaNiVS8c3V1IuZmIxk7LE1+/zpk/9nNh4xGb6YwIi0J3VzSs8/UiKiI6u42vDvgbAG9fb6IizTarflrNqp9WA/DmO6OICMt8/tN34GN07NqWof1eKTK94WGR+FbJ/Nv6+HoTGRGVg40um42U5rpjwf8AsH7NZouzDg+NJGjtVgCOH/0Hk8lEpcruxMXm/jfLi9CQcPz8MpeCq1LFh7Bw67RdaGg4fv532fiZbRwcHHJtGxWV+V395puf+PPP77P1ffbsRZKSUqj3UG2Cj2ZzS0VCUY0GkVIahBCvYh7loQW+lVKeEkK8nFG/8F6Om1dkXT6POsd8juuc1VEDSCkPAM4FEXY/1KtTk2uh4YSER6LX6wnasY8Ora1z+PGJSej15lzebxu20rRBXVycnWwtzYqHdG5cv5VE6O1k9EYTm86F0yEw+y13Qpqe4JA4OtTMrItLTiMh1aw/VW/k4PUYAirZ9tRG/H0Z9+o63Pw90dhrqdOrFZcyHibeoWK1TI1e9QLQONiRcjMRgO5zhxN3MYzgJUUTkebGP8dOE1DdH7+qvtjb2/FYn25s27jbymb7pl30HfgoAA2b1iMxPpHoSHMarJKH+cLuU8Wbbo91Yt3v5pFVj3R6mBFjhvLy4DdJTck5XXUvHD96kuqBVfGvWgV7e3t6P/kom4N2WNlsDtpB/0HmBZuaNGtAfHwiUZExREfFEBYaQWDNAADatmvF+YwHk5s2bKNNO/NzrRqB1XBwsL9nRw1w+MhxatasTkCAP/b29gwc0Jt166zfnVu7bjPPPWu+m2rZognxt+OJiIjKs63uriCpT++enDp1DoCAAH+0GXe7VatW4YEHanD12g1sRRGOBkFKuUFK+YCUMlBKOSOjbGFOjlpKOUxKmW8qIa/I+rAQYoSU0irpKIR4EQjO57hBQoj1wDIyn4r6A0OAjfmJul/stFomjxnOyxOnYzSZ6NuzEzUD/PllrflLN6BXdy5fC+Gdj+ah0WgIrObH1HGjbC0ru06NhomdHmLUb4cwmaB3PT8CPVz59e9rADzVsBoAOy5E0qqaB472mX+umKQ0pgSdwCQlJinpWtuHdjk4+qJEGk1se+97+v0wAY1Wwz8rdxF7PpSGz5mHWv3943YeeLQ5D/Zri0lvxJCazrrR8wGo0vwBHur3CNFnrjMkyDzD7p45v3Blx99FrtNoNDLt7bl888s8tBotq5av4eK5ywwa2g+AFd//xs4t+2jfpQ1bD/1JSkoqb7821dJ+/ndzqOjuhkFvYOrEj4i/bU4vTZk9AQcHe5auWgDA8SMneX/8rCLR++6EGfz82yI0Wg0rf/qD82cvMfj5AQD88N0vbNu8m05d27HvaBApKam8OfpdS/v3Jsxk3qKPsHew5/rVEEvdih//4JP5H7Jt/5/o0/W88co7963z9TfeZf36n9FqNCz9fiWnT59n5IjBACxa/ANBQdvo2aMTZ8/sIyUlheHD38yzLcDsWe/SsOGDSCm5ei2EUaMmAtCmTQvGjx+NQW/AZDIx5rXJxN7HxSY/SvuyXiK3J6wZDwT/ANLJdM7NAAegr5QyIseGme17Yh5bWAXz09EQYI2UckNBhN1PGqQkMGwoeyud/W96dP5GpYxFKWp1c1tTFlc316eH3ncSY1mV5wrsc4aE/ljso+VyjayllJFAayFER+DOY+T1UsrtBTmwlDIIsO39rkKhUBQRZX7WPSnlDmBHfnYFRQgxMsuYRIVCoShxjKX8zZKSmCK1lJ8ShULxX6TMR9b3ihCiDuZ89UEpZeJdVdds1adCoVDcK6XdWRdkdfNCI4R4DViNeaKSk0KIuycxmWmLPhUKheJ+kKLgW0lgq8h6BNBUSpmY8QLNKiFEgJTyC1QaRKFQlEJKe2RtK2etvZP6kFJeFUJ0wOywq6GctUKhKIXYbtaRosEmaRAgQgjR6M5OhuN+HPAA6tuoT4VCobhnTKLgW0lgK2c9BLB6aUZKaZBSDgHa2ahPhUKhuGdK+xqMNkmDSClD8qjbZ4s+FQqF4n74r+asFQqFokxR2ue3UM5aoVAoKLlcdEFRzlqhUCgo/aNBSq2zNu7PviJ5aeaLGWVvBrv5CcdKWkKhiU2x8Wo4RYzBVNpdgOIOplKeCCm1zlqhUCiKE/WAUaFQKMoApTuuVs5aoVAoABVZKxQKRZnAIEp3bK2ctUKhUKDSIAqFQlEmUGkQhUKhKAOooXsKhUJRBijdrlo5a4VCoQBUGkShUCjKBMZSHlsrZ61QKBSoyFqhUCjKBFJF1gqFQlH6Ke2Rta2W9SoR9l0Io/fna+j12Wq+3X0qW/3SvacZsGADAxZsoN+8dTSZ8jO3k9O4Gh1vKR+wYANtpq/kx/1ni0VzjfYNGLl9Li/v+oRWr/TKVl+raxNe3DiTFzbMYNjaafg1e8BS9+jcEbwWvIDhm2fZVGOHzm3ZfWgde4ODGP3G8Bxtps1+m73BQWzZ+zv1GtS1lFeo4MqipZ+x6+Badh5YQ9PmDQEYP3kMW/b+zubdv/Hzb4vw1nkWqeauXdtz4sQOTp3azbhxo3K0+eSTqZw6tZvDhzfRqFE9S/nXX8/l+vWjBAdvydbmlVeGceLEDo4e3cqMGZPvS2P3bh04dXI3Z0/vZcL40TnafPbpNM6e3svR4C00vktjbm2nfjCeo8FbOHJ4M0Hrf8bHxxuA5s0aceTwZo4c3kzwkS307t2j1Gju1+9x/j6+nfTUGzRt0sBSXlSaC4oJWeCtJBBSls7QP+WXaYUSZjSZ6P35WhYO64R3BSeeXbiRWQPaEujllqP9rrMh/Lj/LItf6JLtON3m/sEPL3XHt6JLgfv/fPz5wsgFQGgEL+38mBXPziY+Io5ha6ax+rUFxF4Is9jYO5VDn5wGgGcdf/ouGMOizhMA8G9Rm/TkNHp9+hJLur1d6P7nx+c/RapGo2HPkfU83XcE4WGRbNi+klHDx3Ph3CWLTaeuj/D8yGcZ/NTLNGnWgKmz3qZX16cB+Px/Mzn4VzDLf/gNe3t7HB3LEx+fgIurM4kJSQC8MPJZHqgTyKQ3p+WrpyBTpGo0Gk6e3MVjjz1LSEg4+/atZciQMZw9e8Fi0717R0aNGkbv3kNp0aIxH3/8Ae3a9QagbdsWJCYm8803n9G0aVdLm/btH2bixDH06TOM9PR0PD0rEx0dm6eW3KZI1Wg0nDm1hx6PPk1ISDgH/trAc4NHceZMpsaePToxetTzPP7EYFq2aMJnn06lddteebZ1dXUhISERgFdHv0Ddug8w+tVJODqWJz1dj9FoRKfz4uiRLfhXa4LRWPApXG2luU6dmphMkq8WzGbCxA8JPnoCoFCaDemh9710wCsBAwrsc766+kuxL1Xwr4msT4bE4l/ZFb9Krtjbaelevxo7z9zI1T7oxFV6NAjIVn7wciR+lVwK5ajvFd9Ggdy8GsmtG9GY9EbOrD3AA12bWtnccdQADk7lrPJqNw6dI/VWok01Nm5an6uXb3D9Wgh6vZ7Vv2+g+6MdrWy6P9qJVSvWAHD0yAnc3Fzx8vbAxdWZlq2bsvyH38y/i15PfLzZ2d5x1ABOzo4UZdDQvHkjLl26ypUr19Hr9fz661p69epmZdOrVzd++sms69ChY1SsWAGdzguAvXsPcfPmrWzHHTFiMB9//D/S09MB8nXUedGieWMrjb/8sponenXPorE7P/y0CoCDh47iVtENnc4rz7Z3HDWAs7OT5bympKRanFz58uXu6XzbSvPZsxc5f/5Stv6KQnNhMCALvJUE/xpnHRWfgs7NybLv7eZEVEJKjrYp6Qb2Xwyny4P+2eo2/XOVnvUDbCXTChedO/HhcZb9hPA4XHXu2ewe6N6Mkdvm8NR349gwfnGxaLuDzsebsNBwy354WCS6jFvrTBsvwkIjstlUq+ZPbMxNPlswg027VjH3i6k4Ojla7Ca++xqHT26l71OPM3fm/CLT7OurIyQk8+4kNDQcX1/vHGzC77KJwNdXl+dxa9WqTps2Ldi9ezVbtvxC06YN8rTPU2MVHTfu0hgSGp6t/yq+OkJu3PV7hIRTxVeXb9sPp03kyqXDPP10Xz6YOtdS3qJ5Y/4+vp3jwpyK3wAAGPdJREFUR7cx6tVJhYqqba05N+5Xc2GQhfhXEtjUWQshvIUQTYQQjYUQ3gWwHymEOCKEOPLN1iOF6iunE5jbfcrucyE0quqJm1M5q3K9wcius6F0rVe1UH3fKyIHhTkFD+c3HWFR5wn8NuIzHnmrfzEoy0TkcBKzRjgiByMpJVo7LfUb1mXZtyvo3r4/yckpvHpXzvuj6V/SvF4X/vh1Hc+PeKYINeesx9ome7v8Ijc7O7v/t3fn8VFU2QLHfydNQFYJW1YwmIggDpshggKyGxBERRkU5LkAMwqjyDgMqKjM4I743EYGEQFBBEUEIusDxFGHJeyygyySFSKyJUDSfd8f3TRJp0MSSKer4Xz91MeuqlNVJ6E+t29u3bqX6tWvpV27Xowa9QozZvzLxzl6jynq2NEvvkH9mJbMnDmXIU8+6t6+dt1GmjbrSKvbujNyxFAqVKhQ4Dz+yrkwl5tzSThKsPiDTwprEWkmIquB74A3gbeAVSKyWkRaFHacMWaiMSbOGBP3eOe4El0ztFol0o5nudfTj2dRu2pFr7GLtx4k4Q/XFdj+w54UGoaHULOK9+NK28m036gWXsO9XjW8BqfSjxUa/+vaXYRcV4eKIb5vojkvNSWdiMhw93p4RCjpaRleYsIKxKSmpJOaks7G9VsB+Hb+Uv7QtBGe5n71Ld3v7lJg+6VKTk4lKirCvR4ZGU5qaoZHTBpRUeF5YsJITU0v8rzz5i0CIClpMw6HoVatGhc9ptBzHU6lbp4coyLDC1z/cHIqUXXz/BxR4aSkphfrWICZX8zl3nu7F9i+c+deTp/O5ubGN1ou58Jcas4lcbXWrKcATxtjGhljOruWhsAw4FNfXLBxZE0OZZ4k+dgpcnLtLNl6kDsaRhWIO3nmHOsPZNChUcEmkMVbDnptx/aVlM2/EFI/jGvr1iYo2Eajnq3Ys2xDvpiQ6y78QRJ6czS24HJkH/NtO3Vemzb8TP2YetStF0lwcDC97uvO0kUr88UsXbSS+/veDUCLuCacOHGKjPSjHMk4SkpyGjGx0QC0adeK3a4Hk/Wvv/DXS9eEDuzbvb/Uck5K2kxsbH2io+sSHBzMAw/0JDExf8+OxMRl9OvXG4D4+OYcP36SNI8vIU/z5y+lffvbAIiNrU/58sEcPfrbRY8pzLqkTfly7NOnFwsSl3rkuJSH+zn/kro1vgUnjp8gLS3josfGxtZ3H9+zR1d2uX7f0dF1sdlsANSrF0mDBtdz4GDhz3TKMufClEbOJWH1mrWv+llXNsas8dxojFktIpV9ccFytiBG9ojjiakrcDgMvVrEEBtanS/XOntpPBDv7PK2YvuvtI4Jp2L5/D969rlcVu9L5YVe8b5Izytjd7Dsxan0nTYCsQWxZfYqju5Jpnm/jgBsnLGCG7u15ObebXDk2Mk9e45vhlxo2+313hDqtW5ExZAqDFn9Hv95Zw5bZq0q1RztdjsvjHiFz+dMJMgWxKwZc9m9cx8PP9oHgM8+nc3ypd/TsUs7ftywiOzsMwwf8oL7+NEjXuX9iW8QXD6YQwcOu/eNemk4MTdE43A4SP41lZHDx5RqzsOGjWbBgs+w2WxMnTqLHTt2M3BgfwAmTZrO4sUrSEjowPbt/yErK5vBg591Hz9t2vu0bduaWrVC2Lt3DWPHjmfKlFlMnTqLiRPfYv36ZZw7d46BA4dfVo5PD3uBhd9+ji0oiClTZ7F9+24GD3oYgIkff8bCRctJSOjIrh0/kpWd7b5eYccCvPrKKBo0iMHhcHDoUDJPDhkJwO23xzPib0PIycnF4XAw9KnnyMws/K+4ssy5V68E3n1nLLVr12D+vGls3ryN7j36lUrOJfr5LNoz7jyfdN0TkfeAGGAacP6rsC4wANhvjBla1DlK2nXP3y6l656/FafrntXo7ObKm9LouvfQdfcWu8z5/ODcMu+655OatTHmKRHpBvQCInE+6zsMfGiMWeiLayql1OUozbZoEUkA3gVswCRjzOse+/sBf3etngKeMMZsvtg5ffa6uTFmEbDIV+dXSqnSVFpt0SJiAz4EuuCspK4TkfnGmO15wvYDdxhjjrkqthOBWy923jLvZy0ig8v6mkopVZRSfN08HthrjPnFGHMO+AJnK4ObMeYnY8z5BvjVQMHeEB788VJMmbf1KKVUUUrSdS/vOyGuJW8lNJILz+rAWbuOvMilH6cYrRD+GHXvnB+uqZRSF1WS3iDGmIk4my688VYh9XpyEemAs7BuU9Q1/VGzLr0+WkopVUpKsRnkMM7eb+dFASmeQSLSBJgE9DLGFDnQjE9q1iKypbBdQJGvnSulVFkrxZdd1gE3iEh9IBnoC+QbT0FE6gFfAw8bY4rV79dXzSChwJ2AZw92AX7y0TWVUuqSlVbXPWNMrogMBZbg7Lo32RizTUT+7No/AXgRqAn8yzVuSq4x5qJjbPiqsE4EqhhjNnnuEJHvfHRNpZS6ZKU5qYDrfZKFHtsm5Pk8EPA+k0chfPVSzOMX2Vd6w6sppVQpsepELOfpHIxKKQXYdcJcpZSyPn/NrVhcWlgrpRTaDHLJzKFD/k6hRG49E3jv+nzobboUi7u2QqWigyzk97Oniw6ymMfCWvs7Bb/QmrVSSgUAf80AU1xaWCulFNaffEALa6WUQptBlFIqIGhhrZRSAUB7gyilVADQmrVSSgUA7Q2ilFIBwG5KcZBUH9DCWiml0DZrpZQKCNpmrZRSAUDbrJVSKgA4tBlEKaWsT2vWSikVALQ3iJ8ERTemfMcHQYLI3fofctcuyre/XMs7KdfoVlewDakRTva/noEzZTukZY0OTblh7KOILYjUGcs5+P48r3FVm8UQt/AVfh78DkcS1xBUIZgW88Yg5cshNhtHElez/60vfZ5v+063M+bVkdhsNmZ+NocP3/2kQMw/XhtFxy5tyc4+wzNDnufnLTu4Pjaajz4Z546pFx3FuNc+4JMJ032SZ4dObRj7xvPYbEHMmPYV77/zcYGYV954nk5d25GddYannhzF1s3bAVi3ZTmnT53GbreTa7dzZ/v7AXjxn3+ja0IHcs7lcGD/IZ4e8hwnjp8slXy7dmnP22+/jM1mY/KnMxk37l8FYsa/PYaEhI5kZWUzcNBwNm36GYB//3sc3bt14siRTFrc0tkd/9JLz9KzR1ccDgdHjmQycNBwUlPTSyVfTzfd0ZQ+Lzrv4x9nLWfpR/nv45a92tD1z70AOJt1hpkvTCJ5x0EAxv7wAWdOncHhcODItfP63aN8kmNRtBnEH0Qo37kfZ78cjzl5jGv6v4B93yZMZqo7JHfdEnLXLQHAdn1TysV1LvOCmiDhxtcfZ2OfsZxNySRuyWscWZJE1u7kAnGxo/uRufLC/MOOszlsvG8M9qyzSDkbLRb8g8wVmzixfo/v0g0KYuybL/DQfYNITUnj2+WzWLp4JXt2/eKO6di5LfVj6tEmrjst4prw2tuj6dnlIX7Ze4A777jffZ6kbStYnLjcZ3m+/vaL9LnnMVKS01my8kuWLFzB7l373DGdurSjfsx1tGp+J7fENeXN8S/RrdMf3fvv6zGA3377Pd95V638iVdeHo/dbueFMX/lqeGDGfvS26WS77vvjqX7XQ9x+HAqP/2YSGLiMnbuvPBvmXBnB2Jj63NT47bExzfn/fdepW27uwH47LMv+eijKUz+5H/znXf8+AmMGeP8ghzy5KM8/9zTDP3Lc5edrycJEvr+43He6z+WY2mZjJz/GluWJZG298J9nPlrBu/88WWyTpymcftm9HttMG/e87x7/zsPjuH0sdL54rtUVm8GCfJ3Ar4QFFYfcywDc/woOOzk7lyLLaZZofG2RvHk7lhbhhk6VWsRS9b+NM4czMDk2Mn45idqJ7QsEBc1sBsZiWvIOXoi33Z71lkAJNhGUDkb+Lhm0OyWP3Bg/yEOHTxMTk4u875eRNduHfPFdO3ega++mA/AhqQtVKtWlTqhtfLFtLmjFQcP/Ery4VR8ocUtTdj/yyEOHjhMTk4O33y9kIS7OuWLSbirE1/OdNb+1idtptq11agTWvui51214kfsdrvzmHWbiYgIK5V8W7Zsxr59B9i//xA5OTnM/nI+PXt2zRfTs2dXps+YA8DatRupXr0aYWF1APjhhzUcO/Z7gfOePHnK/blS5Uo+uz2im8Vy5GAaR3/NwJ5jJ2nBTzTtmv8+/mXDbrJOOCtD+zfsISSspm+SuQwOY4q9+INPC2sRCRWRFiLSXERCfXmtfNetGoI5ecy9bk4dQ6qGeA8uVx5b9M3Y92woo+wuqBBWg7Mpme71symZVAirkS+mfFgItbvFkzx1acETBAktl79Jm22T+G3VVk5s2OvTfMPD65CanOZeT0tJJzy8Tr6YsPBQUvLEpKakExae/5/+7vu6MW/OQp/lGRYRSkryhS+ClOS0AjmEh4eSnCcmNSWN8IjzMYZZ33zC0lVzePiRPl6v8VD/3ixf9n2p5BsREcavh1Pc68nJqUR6fBFERIRx2COmOF8WY8aMYO/eNTzY917G/GNckfGXonpoDY7luY+PpWZSPbRGofG3/bEj277b6F43Bp767HlGLXidNg92KvQ4XzMl+M8ffFJYi0gzEVkNfAe8CbwFrBKR1SLS4iLHDRaRJBFJmrx6Z+kmVci3oS2mKY6UvWXfBALgZVotzxuhwT8fYd/YGeDwkr/DsK7TCH5q9meqtYihcsO6PkrUxVu+Hr9XKSImOLgcXRPakzjPy5dPKfE6W5nnv7+XmPN59uj6EF3a9eah3oN4dOBDtLotLl/csGf/RG5uLnNmLyilfC//91qYl156k9jYW5n5xVyeeOKRS87xYkqSW4PWjbntjx2Y+/oM97ZxvUfzWo+RfPDIq9wx4E5i4xv5JM+i2I292Is/+KpmPQV42hjTyBjT2bU0BIYBnxZ2kDFmojEmzhgT91irhpd8cXMyf01aqoRgThX8MxHA1rAluTvWXPK1LsfZ1EwqRFz4c7BCRE3OpR3LF1O1WQyNJzxN63UfULtnK258YyC1uuX/EzP3RBbHftxOjQ6FN/WUhtSUdMIjL9TmwiJCSUs74hGTRkSemPCIUNLTMtzrHTq3ZeuWHRw9komvpCanExEZ7l6PiAwjLU8OzjzTicwTEx4RRlqqM+Z8vkeP/sbCxP+j+S1N3HF9HryHLnd24MlBfyu1fJOTU6kbFeFej4wMJ8XjQWBycipRHjEleVg4a9Y33HtP98tP1otjaZmE5LmPQ8JrcjzjWIG4yIb16P/6n5gw6C1O/36hieZ87MnME2xaso7oprE+ybMoxphiL/7gq8K6sjGmQAlojFkNVPbRNd0caQeQkFDk2loQZKNcw3js+zYXDCxfEVvUjdj3bSq4rwyc3LiPSteHc0292kiwjTr33MbRJUn5Yv7bcqh7ObJgNbv+Pomji9YRXLMq5ao5J48NuiaYGu3+QNbeZG+XKTWbN/xM/evrUbdeJMHB5eh1XzeWLV6ZL2bpou+4v6/zwVeLuCacPHGKjPSj7v29enf3aRMIwMYNW7k+5jrqXRdJcHAw99zXnSULV+SLWbJwBQ886OydcEtcU06eOElG+hEqVapI5SrOW7RSpYq073g7O7fvBpw9TIYOG8iAvk+QnX2m1PJNStpMbGw00dF1CQ4Ops8Dd5OYuCxfTGLiMvr36w1AfHxzjh8/WeALyFNsTLT7c4+7urBrl2+ayQ5u3ked6HBqRtXGFmwjrudtbFmW/z4OiajJ4AnPMuWZD8jYf6H5qXzFClSofI37c6O2TUjZ7Z/Jsh2YYi/+4KveIItE5FtgGvCra1tdYACw2EfXvMA4OLf8cyr0HgZBQeRu/RGTmUK5pncAkLt5FQC2G5pjP7gNcvwzM7mxO9g9ajLNvngesQWRMnMlp3cdJmJAFwBSpi0r9NjyoSHc9N4QxBYEQULGvP+Sucy37e52u53RI15lxlf/JshmY9aMuezeuY/+rnbd6VNms2LZ93Ts0pYf1i/iTHY2w4eOdh9/TcVraNe+NSOfGePzPEc9+0+++PoTbLYgZk6fw66dexnwmLO3x7TJs/i/pavo1LUdazYtJTvrDE8PcfaSqF2nJp9O/wAAWzkbc79KZOXyHwB4bdxoypcvz+xvJgPOB5Mjnnm5VPIdNmw0iQumY7PZmDJ1Fjt27GbQwP4AfDxpOosWryAhoSM7tv9AVlY2gwb/1X38tGkf0K5tK2rVqsG+vWv559i3mTJlFmPHjqJBgxgcDgeHDh32SU8QAIfdwRcvTuYv054nyBbET7NXkrrnMG37Oe/j/8xYxl1P3U+VkCr0HTvQeYyri161Wtfyp4nPAhBks7Fu3g9sX+WlYlUGrD6Qk/gqQRHpBvQCInG2EB4G5htjilWtyho30Nq/OQ+r3zpRdJDFDMjZ7u8USizHnuvvFErk97N+eBZymR4La+3vFErsowOzvT2pKJHw6jcVu8xJ/X37ZV+vpHzWz9oYswhYVGSgUkpZgPaz9iAig8v6mkopVRS7cRR78Qd/vMFY5n8+KKVUUazeZu2zwlpEGnKhzdoAKTjbrP/tq2sqpdSlsvrYIL56KebvwBc4a9FrgXWuzzNFZKQvrqmUUpfD6v2sfVWzfhxobIzJybtRRMYD24DXfXRdpZS6JFaf1stXDxgdQISX7eGufUopZSlXa816GLBcRPZw4aWYekAsMNRH11RKqUt2VU4+YIxZLCINgHjyvxSzzhg/jYKilFIXYfUHjL58KcYBrPbV+ZVSqjRdtV33lFIqkFj9DUYtrJVSCq1ZK6VUQLB6m7XPRt2zMhEZbIyZ6O88iivQ8oXAyznQ8gXN+WpzRU6YWwyBNphUoOULgZdzoOULmvNV5WotrJVSKqBoYa2UUgHgai2sA63NLNDyhcDLOdDyBc35qnJVPmBUSqlAc7XWrJVSKqBoYa2UUgHgii2sRSRBRHaJyF5vEx6I03uu/VtEpIU/8syTz2QRyRCRnwvZb6l8XTnVFZGVIrJDRLaJyNNeYiyTt4hcIyJrRWSzK98xXmIsk29eImITkY0ikuhln+VyFpEDIrJVRDaJSJKX/ZbL2fJKMoZroCyADdgHXA+UBzYDN3nEdMc5+7oArYA1fs65HdAC+LmQ/ZbK15VTONDC9bkqsNvKv2dXDlVcn4OBNUArq+brkddw4HMgMUDujQNArYvst1zOVl+u1Jp1PLDXGPOLMeYczinGennE9AKmGafVQHURCS/rRM8zxnwP/HaREEvlC2CMSTXGbHB9PgnswDkkbl6WyduVwynXarBr8XzCbpl8zxORKOAuYFIhIZbLuRgCMWe/ulIL60guTHoAzrG0PQuR4sRYiaXzFZFooDnO2mpelsrb1ZywCcgAlhljLJ2vy/8CIyh8liUr5myApSKyXkS8vbVoxZwt7UotrMXLNs8aVHFirMSy+YpIFWAOMMwYc8Jzt5dD/Ja3McZujGkGRAHxInKzR4il8hWRHkCGMWb9xcK8bPP3vXG7MaYF0A0YIiLtPPZbMWdLu1IL68NA3TzrUUDKJcRYiSXzFZFgnAX1DGPM115CLJm3MeZ34DsgwWOX1fK9HbhbRA7gbM7rKCLTPWKsljPGmBTX/zOAuTibJvOyXM5Wd6UW1uuAG0SkvoiUB/oC8z1i5gMDXE+lWwHHjTGpZZ1oCVguXxER4BNghzFmfCFhlslbRGqLSHXX54pAZ2CnR5hl8gUwxowyxkQZY6Jx3scrjDH9PcIslbOIVBaRquc/A10Bz15Olso5EFyR41kbY3JFZCiwBGfPkMnGmG0i8mfX/gnAQpxPpPcCWcCj/soXQERmAu2BWiJyGHgJ5wMwS+brcjvwMLDV1Q4M8BzOyZGtmHc4MFVEbDgrKrONMYlWvi8KY/GcQ4G5zu9yygGfG+e8rFbO2fL0dXOllAoAV2oziFJKXVG0sFZKqQCghbVSSgUALayVUioAaGGtlFIB4IrsuqesRURqAstdq2GAHTjiWo93jd9SFnk8Aiw9/8KGUoFEC2vlc8aYTKAZgIi8DJwyxozzQyqP4Hw5QwtrFXC0GURZhjjHIN/gGm96uWtbDRH5xjXm8WoRaeLa/rKIPJvn2J9FJNq17BCRj11jVi8VkYoicj8QB8xwjbFc0T8/pVKXRgtrZQkiUhv4GOhtjGkKPODaNQbYaIxpgvPtyGnFON0NwIfGmMbA765zfgUkAf2MMc2MMdml/kMo5UPaDKKsohXwvTFmP4Ax5vzY3m2A3q5tK0SkpohcW8S59htjzr/+vh6I9kG+SpUprVkrqxC8D5FZ2FCaueS/f6/J8/lsns92tFKirgBaWCur+C9wh4jUB2dbtWv790A/17b2wFHXmNkHcE6Dhmv+vvrFuMZJnNOPKRVwtMahLMEYc8Q1o8jXIhKEcyaXLsDLwKcisgXn6Gz/4zpkDs4hNjfhHBJ3dzEuMwWYICLZQGttt1aBREfdU0qpAKDNIEopFQC0sFZKqQCghbVSSgUALayVUioAaGGtlFIBQAtrpZQKAFpYK6VUAPh/furSCUrvLgQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.heatmap(data=player_baseline_pivoted[::-1], annot=True);" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CT countT countWin probability
00.00.00.701897
10.01.00.431849
20.02.00.069738
30.03.00.051923
40.04.00.013245
50.05.00.246753
61.00.00.767359
71.01.00.314527
81.02.00.063484
91.03.00.016426
101.04.00.003314
111.05.00.001309
122.00.00.903884
132.01.00.730738
142.02.00.323620
152.03.00.091989
162.04.00.065905
172.05.00.005273
183.00.00.922530
193.01.00.900248
203.02.00.606403
213.03.00.357637
223.04.00.160770
233.05.00.074659
244.00.00.918157
254.01.00.923495
264.02.00.751979
274.03.00.556022
284.04.00.378026
294.05.00.277427
305.00.00.875318
315.01.00.819805
325.02.00.853229
335.03.00.735363
345.04.00.580107
355.05.00.480956
\n", + "
" + ], + "text/plain": [ + " CT count T count Win probability\n", + "0 0.0 0.0 0.701897\n", + "1 0.0 1.0 0.431849\n", + "2 0.0 2.0 0.069738\n", + "3 0.0 3.0 0.051923\n", + "4 0.0 4.0 0.013245\n", + "5 0.0 5.0 0.246753\n", + "6 1.0 0.0 0.767359\n", + "7 1.0 1.0 0.314527\n", + "8 1.0 2.0 0.063484\n", + "9 1.0 3.0 0.016426\n", + "10 1.0 4.0 0.003314\n", + "11 1.0 5.0 0.001309\n", + "12 2.0 0.0 0.903884\n", + "13 2.0 1.0 0.730738\n", + "14 2.0 2.0 0.323620\n", + "15 2.0 3.0 0.091989\n", + "16 2.0 4.0 0.065905\n", + "17 2.0 5.0 0.005273\n", + "18 3.0 0.0 0.922530\n", + "19 3.0 1.0 0.900248\n", + "20 3.0 2.0 0.606403\n", + "21 3.0 3.0 0.357637\n", + "22 3.0 4.0 0.160770\n", + "23 3.0 5.0 0.074659\n", + "24 4.0 0.0 0.918157\n", + "25 4.0 1.0 0.923495\n", + "26 4.0 2.0 0.751979\n", + "27 4.0 3.0 0.556022\n", + "28 4.0 4.0 0.378026\n", + "29 4.0 5.0 0.277427\n", + "30 5.0 0.0 0.875318\n", + "31 5.0 1.0 0.819805\n", + "32 5.0 2.0 0.853229\n", + "33 5.0 3.0 0.735363\n", + "34 5.0 4.0 0.580107\n", + "35 5.0 5.0 0.480956" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "player_baseline" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CT countT counttruthWin probability
05.05.010.480956
15.05.010.480956
25.05.010.480956
35.05.010.480956
45.05.010.480956
...............
2179210.05.010.246753
2179220.05.010.246753
2179230.05.010.246753
2179240.05.010.246753
2179250.05.010.246753
\n", + "

217926 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " CT count T count truth Win probability\n", + "0 5.0 5.0 1 0.480956\n", + "1 5.0 5.0 1 0.480956\n", + "2 5.0 5.0 1 0.480956\n", + "3 5.0 5.0 1 0.480956\n", + "4 5.0 5.0 1 0.480956\n", + "... ... ... ... ...\n", + "217921 0.0 5.0 1 0.246753\n", + "217922 0.0 5.0 1 0.246753\n", + "217923 0.0 5.0 1 0.246753\n", + "217924 0.0 5.0 1 0.246753\n", + "217925 0.0 5.0 1 0.246753\n", + "\n", + "[217926 rows x 4 columns]" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test = test[[('IsAlive', 'CT'), ('IsAlive', 'T'), ('Winner', '')]]\n", + "test.columns = ['CT count', 'T count', 'truth']\n", + "\n", + "preds = pd.merge(test, player_baseline, on=['CT count', 'T count'])\n", + "preds" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.7837721634898503" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import roc_auc_score\n", + "\n", + "roc_auc_score(preds['truth'], preds['Win probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6922854546956306" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import accuracy_score\n", + "\n", + "accuracy_score(preds['truth'], preds['Win probability'] > 0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "# WOAH. what is that??? that can't be right\n", + "\n", + "from sklearn.metrics import roc_curve\n", + "\n", + "fpr, tpr, _ = roc_curve(preds['truth'], preds['Win probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAG5CAYAAADVp6NgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3iUVfrG8e9JIyEhCaEX6ShIlxBQF1mkiIWigqg/DE2Uooi6CmtHdFHRFVyRIipdsCFgwYoNVEjoUqQTmgRCEkghZc7vj5lojAQpmbwp9+e6cjHlnZlnhkDunHOe9xhrLSIiIiJStPg4XYCIiIiI/JVCmoiIiEgRpJAmIiIiUgQppImIiIgUQQppIiIiIkWQQpqIiIhIEaSQJiLnxRgzzBjzmzHmpDGmwjk+9iljzFxv1eZtxpgBxpgfcl0/aYypV8Cv8U9jzP6CfM6zeE2vvy9vO5fvLWPMN8aYO71dk8j5UkgTycUYs8cYk+b54XTYGDPTGBOS55grjDFfG2NOGGOSjDFLjTGX5jkm1Bgz0Rizz/NcOzzXKxbuO/IOY4w/8F+gq7U2xFp7zOmanOT5DHY5XUdBK6nvS6S4UEgT+avu1toQoCXQCvh3zh3GmMuBz4HFQHWgLrAeWJEz4mCMCQC+ApoA3YBQ4ArgGBDlraKNMX7eeu7TqAIEAr8U4mtekEL+fERELphCmkg+rLWHgc9wh7UcLwCzrbWTrLUnrLUJ1trHgJ+ApzzHRAO1gButtZuttS5r7RFr7Thr7Seney1jTBNjzBfGmATPFOIjnttnGmOeyXXcn6bAPCN/o40xG4AUY8xjxpj38jz3JGPMK57LYcaYN4wxh4wxB4wxzxhjfPOpqYxn9O+g52ui57aLgW2ewxKNMV+f5rF1jDHWGHOX57GHjDEP5vdZG2Pe9YxcJhljvjPGNPHc3sbzefjlOvZmY8w6z2UfY8wYY8xOY8wxY8w7xpiIPDUMNsbsA742xgQaY+Z6jk00xqw2xlTJp6ac5z1hjNlsjLnxDPVbY0wDY0w7z/vwzXXfjZ6/nzPWe4bnfsQYc9Tzd/1/uW6/3hiz1hiTbIyJM8Y8leu+fN/nOX4PWGNMA8/lmcaYycaYjz2fyc/GmPq5jm2U63t4mzHmljO8p288r7vSM9K81BhTwRgzz/N+Vhtj6uQ6/grPbUmeP6/IdV9dY8y3npq+ACrmea12ntdJNMasN8b880yft0hRopAmkg9jTE3gWmCH53pZ3CNi757m8HeALp7LnYFl1tqTZ/k65YAvgWW4R+ca4B6JO1u3AdcD4cAc4DpjTKjnuX2BW4D5nmNnAVme12gFdAXyW5PzKNAOd0htgXsU8DFr7a+4RwkBwq21V5+hto5AQ8/rjDHGdM7nuE89x1UG1gDzAKy1q3GPQHbJdWw/z/sEGAn0Ajrg/uyOA5PzPHcHoDFwDdAfCAMuAioAQ4G0fGraCbT3HD8WmGuMqXaG94q19icgBcj9mdzOH5//2dSbW1XcoaOGp/bpxphLPPel4P6FIBz33/8wY0wvz31nep/n8j2Q1224P4vyuP9dPAtgjAkGvvC8z8qe417LCdv5uBW4w/Pe6gM/Am8BEcAW4EnPc0cAHwOveN7Lf4GPzR/rIOcDsZ7PaZznveN5bA3PY5/xPO+/gPeNMZXO8v2KOMtaqy996cvzBewBTgInAIs7LIV77qvpua3RaR7XDcj0XP4CeO4cXvM2YG0+980Ensl1/Z/A/jz1DsrzmB+AaM/lLsBOz+UqwCkgKM9rL8/ntXcC1+W6fg2wx3O5juez8MvnsTn3N8p12wvAG57LTwFz83lsuOexYZ7ro4F5nssRQCpQzXN9C9Ap12OrAZmAX64a6uW6fxCwEmh+Ht8b64CenssDgB9y3WeBBp7LzwBvei6Xwx2mav9dvad5vX/iDlPBuW57B3g8n/omAi+f6X3+3ffA37yvmcCMXPddB2z1XO4LfJ/ntaYBT+ZT6zfAo7muvwR8mut6d2Cd5/IdwKo8j//RU2ut03xG83O+tzzfO3PyPPYzoH+uOu481+8FfemrsL40kibyV72steVw/5BsxB/TJ8cBF+4frHlVA456Lh/L55j8XIQ7EJ2vuDzX5+P+wQt/HsWpDfgDhzxTP4m4f5BWzud5qwN7c13f67ntfGs77eONMb7GmOc8U4DJuIMn/PG5zwW6G3cDxy24w8ChXO9pUa73swXIxh1GTlfDHNw/pBcY9zTsC8bdBPEXxphoY8y6XM/dlDxTafmYD9xkjCkD3ASssdbmfI5nU29ux621Kbmu//4ZGmPaGmOWG2PijTFJuEfLcurL732e6/dAXodzXU4FcppqagNtc57T87z/h3skMD+/5bqcdprrOc+d9/sQz/UanvtO9xnlqA30yVPXPzi3f58ijlFIE8mHtfZb3KMHL3qup+D+Db7PaQ6/hT+mKL8ErvFMAZ2NONzTPaeTApTNdf10P/RsnuvvAv/0TNfeyB8hLQ73KEpFa2245yvUWpvflNRB3D/kctTy3HYuLjqLx98O9MQ9TRyGewQMwABYaw/g/txvxD2qMifXY+OAa3O9n3BrbaDnMTl+/3ystZnW2rHW2ktxT13fgHvK8E+MMbWB14F7gArW2nBgU05NZ2Kt3Yw7KFzLn0Py2dabW/k830e5P8P5wBLgImttGDCVPz6z/N7nuX4PnK044Ns87yvEWjvsAp8X/vp9CO7P4QBwiNN/RrnrmpOnrmBr7XMFUJeI1ymkiZzZRKCLMSaneWAM0N8YM9IYU84YU964F/ZfjnutDrhDRBzutS+NPIvFK3gWgF93mtf4CKhqjBll3Avzyxlj2nruW4d7jVmEMaYqMOrvCrbWxuOexnkL2G2t3eK5/RDuztSXjPsUIT7GmPrGmA75PNXbwGPGmErGfeqQJ3CPap2Lx40xZT1rkwYCC09zTDncweEY7kD6n9McMxt4GGgGLMp1+1TgWU+owlNrz/yKMcZ0NMY086zVS8Y91Zh9mkODcYe7eM/jBuIeSTtb83GvP7uKP69hPKd6PcYaYwKMMe1xh62c5ysHJFhr040xUbgD4Rnf53l8D5ytj4CLjTF3GGP8PV9tjDGNL/B5AT7xPPftxhg/Y0xf4FLgI88IZQx/fEb/wD1VmiNnFPYaz4htoHE339QsgLpEvE4hTeQMPIFnNvC45/oPuNdm3YT7t/i9uBdf/8Nau91zzCnco0Jbca9PSwZW4Z6K+vk0r3EC99qx7rink7bjXnAP7sC3HvcU4OecPuScznxPDfPz3B4NBACbcU/fvkf+Uz/P4P4BuAHYiHtB/zP5HJufb3EvMP8KeNFa+/lpjpmN+3M84Knrp9McswjPVGGeqa1JuEeTPjfGnPA8tu1pHp+jKu73nIx7qvFbThM8PaNhL+EewfsNdzhccYbnzett3NPlX1trj+a6/VzrPYz77+kg7maKodbarZ77hgNPe57nCdzr1c7mfZ7L98BZ8XwPd8XdDHDQU/fzQJkLeV7Pcx/DHU4fxB3kHwZuyPW53o77M0zA3WwwO9dj43CP0j6CO3DHAQ+hn31STBhr886UiIhcGOM+fcJuwN9am1VAz7kTuNta+2VBPJ+ISFGn3yZEpMgzxtyMe/rxL+dkExEpqbwW0owxbxpjjhhjNuVzvzHGvGLc2+VsMMZc5q1aRKT4MsZ8A0wBRlhrXQ6XIyJSaLw23WmMuQr3+aZmW2v/suDWs4D6Xtzn2mkLTLLWnmlthoiIiEip4bWRNGvtd7gXcuanJ+4AZ637LN3h5m/O5i0iIiJSWji54XAN/nySyf2e2w7lPdAYcxdwF0BwcHDrRo0aFUqBIiIicnouC5nZLjKzXWS7LNa6dzFyWXBZ93WXte7LgMvlvi/fY3Juc/qNFYScWUpjyDi846i19ry2InMypJ3upJCn/bux1k4HpgNERkbamJgYb9YlIiJSqmVmu/gtOZ2DiekcSkrjYGI6BxPT/riclEZiama+jzeer0BfH8r4+xDk70ugvy+BnstlPNeD/H08f7qv/+lYPx+CAjy3+/m6L/u5j/f1cUcIY8BgMAZ8jPFcd98Oua8bfHIde7Z8fAyGvM/9x+U/bjcYH/dtO3ZsZ+idg2jbth0vvPgSQQF+eXfMOGtOhrT9/Pls5DU597OZi4iIyDlwuSzHUjI8gSt3AHOHr4OJaRw5cYq8S9bDgvypFhZIjfAgLqsdTvXwIKqHBVEtLJDwsgH4+pjfQ1ig5ysnTJUGLpeLyZMnM3r0aAIDA7l/1CgC/X0v6DmdDGlLgHuMMQtwNw4k5dqPT0RERM6RtZYTp7I45AleB5PS/nw5KZ1DielkZP+5UTrQ38cduMIDuaphJaqFB1EjPJBqYUFU9/wZXMbJyFC07du3j4EDB/L1119z7bXXMmPGDKpXP9etjv/Ka5+4MSbnjNsVjTH7cZ8J2h/AWjsV91Yf1+E+G3kq7i1jRERE5DRcLsvRlFMcTkp3fyX/9c/fktJJyfjzTme+PoYq5cpQPTyI5jXD6dY08PcRsOrhQVQPD6J8WX/MucwDyp+kpqayceNGXn/9dQYPHlxgn2Wx23FAa9JERKSkSc/M5kjyKQ4nu9eA/ZaczuGkUxxOTvs9lB05cYos159/Zvv5GCqXK0PVsECqhgVSJTSQqqE54cv9Z6WQMvj56tz1Be3w4cPMmzePBx98EIC0tDSCgoL+cpwxJtZaG3k+r6GxSxERES+x1pKcnsVvyekcSnKPdB3KGfXKuS05nYSUjL88tmyArzt8hQbSrl6F34NY1dA//qwQUqZUrfsqKt555x2GDRtGamoqPXr0oGHDhqcNaBdKIU1EROQcZGW7SErLJDEtk8TUDBJTMzme6r58LCXj9yCWE8LSMrP/8hwVggOoEhpItbBAWtUK/1Pwyglj5cr4aQqyiDl27Bj33HMPCxYsICoqilmzZtGwYUOvvZ5CmoiIlErWWpLTsjiemsHx1Iy/hK6k1Ax3+PrT7RmcSM/K9zn9fIx7yjEskMbVQvnnJZWpFhZIlTB3IKsaGkjl0DKU8buwrj8pfC6Xi44dO7J161aeeeYZRo8ejZ+fd2OUQpqIiJQI6ZnZHE/NICHlj6/jOZdTc9+WybGUDBJTM/6yxiu3sCB/wsv6Ex7kT/myAdStGEz5sgGEBflTvqw/4WUD3PeXDXBfDwqgXKAfPpp+LFFOnDhB2bJl8fX1ZcKECVSpUoWWLVsWymsrpImISJHjclmS0jLzhCv3dGLu4JX7trxdjTmMgfAgfyKCA4gIDqBOxbJcVjuc8mXd18uXDaB8sCd0eQJZaJC/1noJy5cvZ+DAgYwcOZIHHniAa665plBfXyFNREQKVe6z2R9ITPX8mcaR5FMcSznFvmOpHE/NIL9BriB/398DV0RwAPUqhVC+bAAVQgJ+D17uL38igssQpsAl5ygtLY1///vfTJo0iQYNGtCuXTtH6lBIExGRApWcnsnBxDQOHHefvf6A52SqBxLd139LTv9LAKsQHEClcu5A1bVJVSr+JXD9MeoVFKD1XOI9sbGx/N///R/btm3jnnvu4bnnniM4ONiRWhTSRETkrGVlu/jtxCnPdkJ/BC93IHOHsROn/rywPsDXh2rh7hOoXlG/IjXKu89mn3Mi1ephQQpeUmSkpqaSnp7OF198QefOnR2tRSFNRET+4kR6JrF7j7Nm73H2JqT+vsfj4eR0svMMg5Uv60/18CBqVSjL5fUrUCMnfIW793msGFJGi+mlSNuwYQPffPMNI0eOpH379vz6668EBAQ4XZZCmoiIwLGTp1i9J4Gfdyewek8Cmw8m47LuLYWqe0bB2taNoHp4EDXKu0NYDe3pKMVcVlYWL774Ik888QQVK1akf//+hIWFFYmABgppIiKl0oHENFbtPsaq3cdZtfsYO+NTACjj58Nltcpzz9UNaVs3gla1wikboB8VUvJs376d6OhofvrpJ3r37s2UKVMICwtzuqw/0b88EZESzlrLzvgUVnlGyVbtTuBAYhoA5QL9aFMngt6tLyKqbgTNaoQR4Kd9HqVkO3nyJO3atcNay/z587n11luL5O4OCmkiIiVMtsuy5VCye+rSE8yOefaGrBhShqi65RnSvi5t6kbQqGqoTk8hpUZ8fDyVKlUiJCSEN998kzZt2lC9enWny8qXQpqISDF3KiubDfuTWLXbPUoWu/c4Jz0dlhdFBNHhkkq0rRtBVN0K1KlQtkiOGIh4k7WWWbNmcd999zF9+nT69u1Lz549nS7rbymkiYgUMydPZbFm7/HfF/qvi0skI8sFwMVVQujZsjpRdSOIqhtBtbAgh6sVcdbhw4e5++67WbJkCR06dCAqKsrpks6aQpqISBGXkJLB6j3uqctVexL45WAy2S6Lr4+hafVQotvVJqpuBJF1IogILhpdaSJFweLFixk8eDApKSm8/PLLjBw5Eh+f4rPmUiFNRKSIOZiY9vsC/1W7E9h+5CQAAX4+tLoonOH/rE9U3Qguq1Vep78QOYOMjAzq1avH7NmzadSokdPlnDNjbT6boxVRkZGRNiYmxukyREQKhLWW3UfdnZerPMFs/3F352VIGT8i65SnTZ0I2taNoFnNMMr46cz8ImfyySefcPDgQe68804AsrOz8fV17t+NMSbWWht5Po/Vr2AiIoUo22XZejg51+kwjnP05CnAvX9lVN0IBl1Zl6i6ETSups5LkbN14sQJHnjgAWbMmEGbNm0YOHAgvr6+jga0C6WQJiLiRRlZLjYeSPz9dBgxe49zIt3deVkjPIirGlakjWeRf72Kweq8FDkP33zzDQMHDmTfvn2MHj2asWPHFutwlkMhTUTEC06eymL6tzt544fdpGRkA9CgcgjdW1Qnqk4EbepGUCNcnZciF2rPnj107tyZunXr8v3333PFFVc4XVKBUUgTESlAmdkuFqyOY9KXv3L0ZAbXN6tG9xbVaVOnPBVCyjhdnkiJceDAAWrUqEGdOnV477336NKlC8HBwU6XVaAU0kRECoC1li82/8Zzy7ayKz6FqDoRvB7diFa1yjtdmkiJkpGRwbhx43j++ef56quvaN++Pb169XK6LK9QSBMRuUBr9x1n/CdbWbUngfqVgnk9OpLOjStrfZlIAdu4cSPR0dGsW7eOAQMG0Lx5c6dL8iqFNBGR8xSXkMpzy7by8YZDVAwJ4JleTbm1zUX4+Rafk2WKFBcvv/wyo0ePpnz58ixevJgePXo4XZLXKaSJiJyHRWv38/iHv5Dtsozs1JC7rqpHiE4sK+JVPXv2ZMqUKVSsWNHpUgqFTmYrInIOktMzefzDTSxed5A2dcrzct+W1Cxf1umyREocl8vFlClTqFq1KjfffDM5eaW4LSO4kJPZakxeROQsxe5N4LpJ3/PRhkM80OVi3h7STgFNxAv27dtH165dueeee1i0aBHgDmfFLaBdKI3Ni4j8jaxsF68u38H/vt5B9fBA3rn7clrXVtemSEGz1jJr1izuu+8+srOzmTZtGkOGDHG6LMcopImInEFcQir3L1xHzN7j3NiqBk/3bEK5QH+nyxIpkb777jsGDhzIVVddxVtvvUW9evWcLslRCmkiIvlYsv4gj36wEQtM7NuSXq1qOF2SSIm0c+dO6tevT4cOHVi6dCnXXXcdPj5akaVPQEQkj5OnsnjgnXWMfHstDauE8MnI9gpoIl6QkJDA7bffTpMmTfj1118BuOGGGxTQPDSSJiKSy7q4RO5bsJa4hFRGdmrIyKsb6LxnIl7w6aefMnjwYOLj43nyySdL/dTm6SikiYgA2S7L1G938vIXv1IlNJCFd19OmzoRTpclUuJYaxk2bBjTpk2jadOmfPzxx7Rq1crpsookhTQRKfUOJqZx/8J1/Lw7ge4tqvNMr6aEBak5QMQbjDGEhoYyevRoxo4dS5kyZZwuqchSSBORUu2TjYcY8/4Gsl2Wl/q04KbLapS6czGJeFtaWhqPPvoovXr14qqrruL555/Xv7OzoJAmIqVSyqksnl66mYUxcbSoGcakW1tRp2Kw02WJlDirVq0iOjqabdu2ERERwVVXXaWAdpYU0kSkVMnKdvHppsP894tf2XMshREd6zOq88X4qzlApEBlZGQwbtw4xo8fT7Vq1fj888/p0qWL02UVKwppIlIqnEjPZOHqON5asYcDiWnUqxjM/DvbcXn9Ck6XJlIizZs3j2eeeYb+/fszceJEwsPDnS6p2FFIE5ES7UBiGjNX7GbBqjhOnMoiqm4ET/VoQqdGlfHx0ZSLSEHKzs7m119/pXHjxvTv3586derQsWNHp8sqthTSRKRE2rg/ide/38XHGw8BcF2zagxpX5fmNfXbvIg3bN++nf79+7Nt2za2b99ORESEAtoFUkgTkRLD5bJ8tfUIM77fxc+7Ewgp48egK+sw4Mq61AgPcro8kRLJ5XIxZcoUHn74YQICApg8eTLly5d3uqwSQSFNRIq9tIxs3l+znzd/2M2uoynUCA/isesb07fNRdoMXcSL0tLS6NGjB19++SXdunVjxowZ1KihLdQKikKaiBRb8SdOMefHPcz5aS/HUzNpXjOMV25rxXVNq2orJ5FCEBQURO3atZk2bRpDhgzRqTUKmEKaiBQ7SWmZ/OfjLSxae4BMl4vOjaswpH092tQprx8SIl52+PBhRo4cydixY2ncuDEzZsxwuqQSSyFNRIqV2L3HeXTRRrYfOcltURcx6Mq61KsU4nRZIqXCe++9x9ChQzl58iQ33XQTjRs3drqkEk0hTUSKhSMn0nn+0228v2Y/VULL8Hp0a65uVMXpskRKhePHj3PPPfcwf/58IiMjmT17tgJaIVBIE5EiLTPbxayVe5j05XbSs7IZ2qE+91zdgJAy+u9LpLBMnDiRd955h6effpoxY8bg76+GnMJgrLVO13BOIiMjbUxMjNNliEghWLnjKE8u+YXtR05y1cWVeLL7pdTX1KZIoThx4gT79++ncePGpKWlsW3bNlq2bOl0WcWOMSbWWht5Po/Vr6IiUuQcSEzjPx9v4eONh7goIojpd7Smy6VV1BQgUki+/fZbBgwYgJ+fH1u2bCEoKEgBzQEKaSJSZKRnZjPj+128unwH1sL9nS/m7g71CPT3dbo0kVIhLS2NRx99lIkTJ1KvXj1mzpyJn5+iglP0yYtIkfDVlt8Yu3Qz+xJS6dakKo9e35iLIso6XZZIqXHw4EE6derE1q1bGT58OC+88ALBwcFOl1WqKaSJiKN2H03h6aW/sHxbPPUrBTNncBTtG1ZyuiyRUqdKlSq0atWKV155hS5dujhdjqCQJiIOSc3IYvLyHbz+3W78fQ2PXteY/lfUIcBPOwWIFJZNmzZx//33M2fOHKpWrcr8+fOdLklyUUgTkUJlreWjDYf4zydbOJSUzk2tajDm2kZUDg10ujSRUiM7O5uXXnqJxx9/nLCwMHbu3EnVqlWdLkvyUEgTkUKz7fAJnlyyiZ92JXBptVD+d1srIutEOF2WSKmyY8cO+vfvz8qVK7npppuYOnUqlSppiUFRpJAmIl6XnJ7JxC+2M+vHPYSU8WNcr6bcHlULXx+dUkOksI0bN47Nmzczd+5cbr/9dp3apgjTyWxFxGtcLst7a/bzwrKtHEvJ4LaoWvyr6yVEBAc4XZpIqRIXF0dGRgb169fn2LFjpKenU6NGDafLKhV0MlsRKXI27E/kicW/sC4ukctqhfPWgCia1QxzuiyRUsVay+zZsxk5ciSRkZF89dVXVKhQwemy5CwppIlIgUpIyWDCZ1tZsDqOCsFleKlPC25sVQMfTW2KFKrffvuNu+++m8WLF9O+fXtef/11p0uSc6SQJiIFIivbxfxV+3jp8185eSqLwVfWZWTnhoQGaiNmkcK2du1aunbtyokTJ3jxxRcZNWoUvr7auaO4UUgTkQu271gqQ+fGsvlQMlc2qMBT3ZvQsEo5p8sSKbUaNWpEly5deOyxx7j00kudLkfOk84aKSIXJHZvAr1eW8HBpDQm334Zcwe3VUATccCyZcvo0KEDJ0+eJCgoiPnz5yugFXMKaSJy3pasP8htr/9MaKAfi4ZfyfXNq6mdX6SQnThxgqFDh3Lttddy7NgxfvvtN6dLkgKikCYi58xay6tfb2fk22tpWTOcRcOvpG5FbcQsUti+++47WrRowfTp03nooYeIiYmhfv36TpclBURr0kTknGRkuXhk0Ubei93Pja1q8NzNzSjjpwXJIoXNWssTTzyBj48P33//PVdeeaXTJUkBU0gTkbOWlJrJ0Lmx/LjrGKM6N+S+Tg01vSlSyFavXs1FF130+4booaGhhISEOF2WeIFXpzuNMd2MMduMMTuMMWNOc3+YMWapMWa9MeYXY8xAb9YjIudv37FUbpqygti9x3m5bwtGdb5YAU2kEGVkZPDEE09w+eWX89hjjwFQvXp1BbQSzGsjacYYX2Ay0AXYD6w2xiyx1m7OddgIYLO1trsxphKwzRgzz1qb4a26ROTcxe5NYMjsWFzWMmdwFG3r6YzlIoVp06ZNREdHs3btWu644w5efPFFp0uSQuDN6c4oYIe1dheAMWYB0BPIHdIsUM64fx0PARKALC/WJCLnaOn6gzz47nqqhwXy1sAoNQiIFLKlS5fSu3dvwsLC+OCDD7jxxhudLkkKiTenO2sAcbmu7/fclturQGPgILARuM9a68r7RMaYu4wxMcaYmPj4eG/VKyK5WGuZvHwH9769lhY1w9TBKVLIrLUAXH755dxxxx1s2rRJAa2U8WZIO91iFZvn+jXAOqA60BJ41RgT+pcHWTvdWhtprY2sVKlSwVcqIn+SkeXiofc2MOGzbfRqWZ25d7alfHCA02WJlArWWl577TU6depEVlYWFStWZMaMGVSuXNnp0qSQeTOk7QcuynW9Ju4Rs9wGAh9Ytx3AbqCRF2sSkb+RlJpJ/zdX8V7sfkZ1bsjLfVvqFBsihSQuLo5rrrmGESNGEBAQwIkTJ5wuSRzkzZC2GmhojKlrjAkAbgWW5DlmH9AJwBhTBbgE2OXFmkTkDHI6OGP2JqiDU6QQWWuZNWsWTZs2ZeXKlUydOpVPP/2U8uXLO12aOBagoPcAACAASURBVMhrjQPW2ixjzD3AZ4Av8Ka19hdjzFDP/VOBccBMY8xG3NOjo621R71Vk4jkL3cH59zBbdXBKVKIMjIyGD9+PM2bN2fmzJnaNUAAMDkLE4uLyMhIGxMT43QZIiVK7g7ONwe0oV4lnXdJpDAsXbqUjh07EhISwoEDB6hatSq+vlpeUJIYY2KttZHn81jt3SlSiuXt4Pxg+JUKaCKF4Pjx4/Tr148ePXrwyiuvAFCjRg0FNPkTbQslUkplZLl4dNFG3o3dT6+W1Xm+d3M1CIgUgmXLljF48GCOHDnCU089xUMPPeR0SVJEKaSJlEK59+C8r1NDRnXWHpwihWHSpEmMGjWKSy+9lCVLltC6dWunS5IiTCFNpJTZdyyVgTNXsS8hlf/e0oKbLqvpdEkiJV52dja+vr7ccMMNHD58mCeffJLAwECny5IiTo0DIqVI7N7j3DU7hmxrmdavtTo4RbwsPT2dRx99lF27dvHBBx9oxLoUUuOAiPytpesPctvrP1Eu0I8Phl2hgCbiZTExMVx22WX897//pXr16mRlaWtqOTcKaSIlnDo4RQpXZmYmTz75JO3atSM5OZnPPvuMyZMn4+/v73RpUsxoTZpICZa7g7Nny+q8oA5OEa9LTk5m2rRp3H777bzyyiuEh4c7XZIUUwppIiVUUmomw+bFsnKnOjhFvC07O5s5c+bQr18/KlSowIYNG7QhulwwhTSREkgdnCKFZ8eOHQwYMIAVK1ZQtmxZbrnlFgU0KRBakyZSwsTuPc6Nr63g6MkM5gxuq4Am4iXWWqZMmUKLFi3YtGkTs2fPpk+fPk6XJSWIRtJESpCPNhzkgXe0B6dIYRgxYgRTpkyha9euvPHGG9SsqV+IpGAppImUANZaXvtmJxM+20abOuWZdkckEcEBTpclUuJYa8nKysLf358BAwbQrFkzhg4dqvWe4hUKaSLFXEaWi8c+3Mg7MergFPGmI0eOMHToUKpVq8bkyZOJiooiKirK6bKkBNOaNJFiLCk1kwFvreKdmP2M7NSQiX1bKqCJeMEHH3xAkyZN+OSTT6hXr57T5UgpoZE0kWIqdwfnS31acHNrrYcRKWjHjx9n5MiRzJ07l8suu4zZs2fTpEkTp8uSUkIjaSLFUN4OTgU0Ee9ISEhg6dKlPPXUU/z0008KaFKoNJImUszkdHBW83Rw1lcHp0iBOnnyJHPmzGHo0KHUr1+fPXv2aNcAcYRG0kSKiZw9OO+Zv5bmNcJYNPxKBTSRAvb999/TokULRowYQWxsLIACmjhGIU2kGMjMdjH6/Q1M+GwbPVtWZ+6dbXWKDZEClJ6ezkMPPUSHDh0A+Pbbb4mMjHS4KintNN0pUsQlpWUybK57D86RnRpyv/bgFClw119/PV9//TVDhw5lwoQJhIRolFqcZ6y1TtdwTiIjI21MTIzTZYgUiriEVAbOXM3eYyk8d1NzNQiIFKDMzEyMMfj5+bFs2TKMMVxzzTVOlyUljDEm1lp7XsOymu4UKaLW7DtOr8kriD9xSh2cIgXsl19+oV27dkyYMAGAbt26KaBJkaOQJlIEfbzhELdN/4mQQD8+GH4F7epVcLokkRIhOzubF198kdatWxMXF0fjxo2dLkkkX1qTJlKEWGuZ8u1OXli2jcja5ZkerT04RQrKzp07GTBgAD/88AO9evVi2rRpVK5c2emyRPKlkCZSRGRmu3hs0SYWxsTRo4V7D85Af23xJFJQjh49ypYtW5g9ezb9+vVTA44UeQppIkXAnzo4r27A/V0u1g8QkQKwf/9+li5dyrBhw2jbti179+4lODjY6bJEzopCmojDcndwag9OkYJhrWXu3Lnce++9ZGVl0atXL6pVq6aAJsWKGgdEHKQOTpGCd+TIEW6++Waio6Np2rQp69ato1q1ak6XJXLONJIm4pCPNxzigXfWUVV7cIoUmMzMTNq1a8eBAweYMGEC999/P76+WtspxZNCmkghUwenSME7ceIEISEh+Pv7M2HCBBo1akSTJk2cLkvkgmi6U6QQZWa7GPP+Rl5Yto0eLbQHp0hB+Oyzz2jcuDFz5swB4Oabb1ZAkxJBIU2kkCSlZTLgrVUsjIlj5NUNmHRrS51iQ+QCnDx5kmHDhtGtWzdCQ0O59NJLnS5JpEBpulOkEOTu4HyxTwt6q0FA5IKsXLmSO+64g927d/Pggw8ybtw4goKCnC5LpEAppIl42Zp9xxkyK4Ysl2X2oLZcXl9bPIlcqPj4eKy1fPPNN1x11VVOlyPiFZruFPGiTza69+AMLuPeg1MBTeT8xcbG8tZbbwHQs2dPtmzZooAmJZpCmogXWGuZ8s1Ohs9bQ9MaYSwafoVOsSFynjIzMxk7dizt2rVj3LhxnDp1CoAyZco4XJmId2m6U6SA5d6Ds3uL6kzQHpwi523z5s1ER0cTGxtLv379eOWVVxTOpNRQSBMpQElpmQyfF8uKHce49+oG3N/5Ynx8tAenyPmIj4+nTZs2BAcH8/7773PTTTc5XZJIoVJIEykg6uAUKRgJCQlERERQqVIlZsyYQadOnahcubLTZYkUOq1JEykAa/cd58bXVnAkOZ3Zg9oqoImcB2stU6ZMoXbt2nz55ZcA3HbbbQpoUmppJE3kAn2y8RD3L1xHldBAFt6tPThFzsf+/fsZPHgwn3/+OZ07d+aSSy5xuiQRx2kkTeQ8qYNTpGAsWLCApk2b8sMPPzB58mQ+//xzLrroIqfLEnGcRtJEzoM6OEUKTkJCAk2bNmXmzJk0aNDA6XJEigxjrXW6hnMSGRlpY2JinC5DSjF1cIpcuA8//JDMzEz69OmDtRaXy4Wvr37RkZLHGBNrrY08n8dqulPkHMQlpNJ7ykpW7U5gQu/mPNj1EgU0kXOQmJhIdHQ0N954I1OmTMFaizFGAU3kNBTSRM5STgfnb54Ozj6RWjMjci4+//xzmjZtyvz583nyySf57LPPMEa/5IjkR2vSRM5C7g7OBXe1oUFlNQiInIsNGzZwzTXX0LhxYz788EMiI89r9kekVFFIEzkDay1Tv93F88u20rp2eabf0ZoKIdqSRuRsHT58mKpVq9K8eXPmz59Pr169CAoKcroskWJB050i+cjMdvHvDzby/LKt3NC8GvPubKuAJnKW0tPTefjhh6lbty4bN24E3CemVUATOXsaSRM5jaS0TEbMW8MPO45yT8cGPNBFHZwiZ2vNmjVER0fzyy+/cPfdd1OnTh2nSxIplhTSRPKIS0hl0MzV7D6awoTezdUgIHIOnn32WZ566ikqV67Mp59+Srdu3ZwuSaTYUkgTyWXtvuMMmR1DRpaL2YOjuKJ+RadLEilWUlNT6du3L//73/8oX7680+WIFGsKaSIen248xCh1cIqck+zsbCZOnEjLli3p1KkT48aNw8dHy51FCoL+JUmp5+7g3MmweWtoUj2URcOvUEATOQu7du2iY8eO/Otf/+L9998HUEATKUAaSZNSLTPbxeMfbmLB6jhuaF6NF/u00B6cIn/DWsv06dN58MEH8fX1ZdasWdxxxx1OlyVS4iikSamVnJ7J8Lnq4BQ5V4sXL2bo0KF07tyZN998k4suUnONiDcopEmplLuD84XezblFHZwiZ2StZe/evdSpU4cePXrw/vvvc+ONN2pbJxEv0uIBKXXWxSXm2oMzSgFN5G/Ex8fTu3dvWrZsycGDB/Hx8eGmm25SQBPxMo2kSamS08FZObQMC+66XA0CIn/jww8/5K677iIpKYlx48ZRpUoVp0sSKTUU0qRUsNYy7btdPPfpVi6rFc7r0ZHa4knkDLKyshg8eDCzZ8+mVatWfP311zRt2tTpskRKFU13SomXme3ikUUbee5T9x6c84e0U0AT+Rt+fn74+fnx+OOP89NPPymgiThAI2lSoiWnu/fg/H77UUZ0rM+DXS5RB6dIPlJSUhgzZgx33XUXzZo1Y8aMGVp3JuIghTQpsdTBKXL2VqxYQf/+/dm1axcNGzakWbNmCmgiDtN0p5RI6uAUOTvp6ek8/PDDtG/fHpfLxfLlyxk5cqTTZYkICmlSAn268RB9p/1IUIAvHwy/kisaaJN0kfy89tprTJgwgSFDhrB+/Xo6dOjgdEki4qHpTikxrLVM/24X49XBKXJGmZmZ7N27lwYNGjBixAhatWpFx44dnS5LRPLw6kiaMaabMWabMWaHMWZMPsf80xizzhjzizHmW2/WIyVXTgfneHVwipzR5s2bueKKK7j66qtJTU2lTJkyCmgiRZTXRtKMMb7AZKALsB9YbYxZYq3dnOuYcOA1oJu1dp8xprK36pGSSx2cIn/P5XIxceJEHnnkEUJCQpg6dSply5Z1uiwROQNvTndGATustbsAjDELgJ7A5lzH3A58YK3dB2CtPeLFeqQEiktIZfCs1eyKVwenSH4SExPp2bMn3333HT169GD69OnaOUCkGPBmSKsBxOW6vh9om+eYiwF/Y8w3QDlgkrV2dt4nMsbcBdwFUKtWLa8UK8XPurhE7pwVw6msbGYPilKDgEg+QkNDqVSpEjNnziQ6Olqn1hApJry5Ju10/wvYPNf9gNbA9cA1wOPGmIv/8iBrp1trI621kZUqVSr4SqXY+XTjIW6d/iNBAT4sGn6FAppIHgcOHKBv377s378fHx8f3nvvPfr376+AJlKMeDOk7Qdyzz3VBA6e5phl1toUa+1R4DughRdrkmLOWsu0b3cybN4aLq0WyqLhV9KgcjmnyxIpMqy1zJs3j6ZNm7J06VLWrl3rdEkicp68GdJWAw2NMXWNMQHArcCSPMcsBtobY/yMMWVxT4du8WJNUoy5Ozg3Mf7TrVzv6eCsqA5Okd/Fx8fTu3dv+vXrR+PGjVm/fj3du3d3uiwROU9eW5Nmrc0yxtwDfAb4Am9aa38xxgz13D/VWrvFGLMM2AC4gBnW2k3eqkmKL3Vwivy9sWPH8tFHH/Hcc8/xr3/9C19fX6dLEpELYKzNu0ysaIuMjLQxMTFOlyGFaP9x9x6cu+JT+M+NzbiljTo4RXIkJiaSkJBAvXr1SExMJC4ujmbNmjldloh4GGNirbWR5/NY7TggRVruDs5Zg6K4Ug0CIr/74osvGDRoEFWrVmXVqlWEh4cTHh7udFkiUkC0d6cUWTkdnIH+7g5OBTQRt5SUFEaMGEHXrl0JCQlh8uTJ6toUKYE0kiZFTs4enM8t20rLi9x7cKpBQMRt586ddOvWjZ07d3L//ffz7LPPEhQU5HRZIuIFCmlSpGRmu3hi8S+8vWof1zevxkt9WhDor8XPIjlq1qzJpZdeyowZM+jQoYPT5YiIF2m6U4qM5PRMBs1czdur9jH8n/X5362tFNBEgDVr1nD99deTlJREmTJlWLx4sQKaSCmgkCZFwv7jqfSespIfdx7jhZub83C3RjrFhpR6mZmZPP3007Rt25a1a9eya9cup0sSkUKk6U5xnDo4Rf5qy5YtREdHExMTw+23387//vc/IiIinC5LRAqRQpo4atmmQ4xauI6KIWV4e0hbGlbRFk8iAA899BC7d+/m3XffpXfv3k6XIyIOUEgTR1href37XYz/VB2cIjl2795NmTJlqF69OtOmTcPX15eqVas6XZaIOERr0qTQ5ezB+Z9PtnJd02q8rT04pZSz1jJ9+nSaNWvGfffdB0CNGjUU0ERKOY2kSaHKvQfn8H/W519dtQenlG4HDhzgzjvvZNmyZXTq1ImXXnrJ6ZJEpIhQSJNCk3sPzhdubq49OKXUW7FiBTfccAMZGRm8+uqrDBs2DB8fTXCIiJtCmhSK9XGJDFYHp8ifNGnShE6dOjF+/HgaNmzodDkiUsToVzbxumWbDtHXswfnB8O0B6eUbosXL+baa68lIyOD8PBw3nvvPQU0ETkthTTxGvcenDsZNm8NjaqGsmj4lTrFhpRaSUlJDBgwgF69enHo0CHi4+OdLklEijiFNPGKzGwXj374RwfngrvaUamcOjildPrqq69o1qwZc+fO5bHHHmPVqlXUqFHD6bJEpIjTmjQpcOrgFPlDdnY2DzzwAMHBwaxcuZKoqCinSxKRYkIhTQrU/uOpDJ4Zw874kzx/czP6tqnldEkijvjxxx9p0qQJoaGhLF68mCpVqhAUFOR0WSJSjGi6UwrM+rhEek1eycGkNGYNilJAk1Lp1KlTjB49mn/84x8888wzANSpU0cBTUTOmUbSpEAs23SYUQvXag9OKdXWrl1LdHQ0mzZtYsiQITz++ONOlyQixZhCmlyQ3Htwtqjp3oNTDQJSGs2fP5/+/ftTqVIlPv74Y6677jqnSxKRYk4hTc5bVraLJ5b8wvyf93Fds6r895aWBPr7Ol2WSKGy1mKM4corryQ6OpoJEyYQERHhdFkiUgJoTZqclxPpmQyaFcP8n/cx7J/1efW2yxTQpFRxuVy8/PLL3HzzzVhrqV27Nm+88YYCmogUGIU0OWf7j6fSe8qPrNxxlOdvbsbobo10ig0pVXbv3k3Hjh154IEHyMzMJCUlxemSRKQE0nSnnJPce3DOHBjFPxpqiycpPay1zJgxgwceeAAfHx/eeust+vfvjzH6JUVECt45j6QZY3yNMf/njWKkaFu26fCf9uBUQJPS5sSJE4wdO5aoqCg2btzIgAEDFNBExGvyDWnGmFBjzL+NMa8aY7oat3uBXcAthVeiOM1ay+vf7WLYvFjtwSmljrWWJUuWkJGRQWhoKCtWrOCLL76gVi2dB1BEvOtMI2lzgEuAjcCdwOdAb6CntbZnIdQmRUCWZw/OZz/ZwrVNq2oPTilV4uPj6dOnDz179uTNN98EoHbt2vj4aDmviHjfmdak1bPWNgMwxswAjgK1rLUnCqUycdyJ9ExGzF/Ld7/GM7RDfR6+RntwSumxZMkShgwZwvHjxxk/fjxDhgxxuiQRKWXOFNIycy5Ya7ONMbsV0EqPA4lpDHprNTvjT/LcTc24NUpTO1J6jBs3jieeeIIWLVrwxRdf0Lx5c6dLEpFS6EwhrYUxJhnIGToJynXdWmtDvV6dOGLDfncHZ3qGOjildHG5XPj4+NC9e3cyMjJ4/PHHCQgIcLosESml8g1p1lqdmbQUytmDs0JwGeYNb8vFahCQUiAlJYUxY8aQlpbGjBkzaNmyJS1btnS6LBEp5c7U3RlojBnl6e68yxijc6qVYLk7OC+pGsqHI65UQJNSYeXKlbRs2ZJXX32VcuXK4XK5nC5JRAQ4c3fnLCASd3fndcBLhVKRFLqsbBePeTo4uzWpyoIh6uCUku/UqVOMGTOG9u3bk5mZyfLly3n55ZfVuSkiRcaZRscuzdXd+QawqnBKksKkDk4prX777TemTJnCoEGDeOmllwgN1TJbESlazra7M0tn1S55DiSmMXjmarYfUQenlA5ZWVksXLiQ22+/nVq1arF161aqVavmdFkiIqd1ppDW0tPNCe6OTnV3liC5OzhnqYNTSoGtW7cSHR3N6tWrqVy5Ml26dFFAE5Ei7UyLL9Zba0M9X+WstX65LiugFWOf/XKYW6b9SICvD+8P1x6cUrK5XC4mTpxIq1at2LVrFwsXLqRLly5OlyUi8rfONJJmC60KKRTWWt74YTfPfrKF5jXDmREdqQYBKfH69evH22+/zQ033MDrr79O1apVnS5JROSsnCmkVTbGPJDfndba/3qhHvGSrGwXTy75hXk/7+PaplX57y0tCQrQqfCkZLLW4nK58PX1ZeDAgXTp0oUBAwagtbUiUpycKaT5AiH8seOAFFO5Ozjv7lCP0dc0UgenlFgHDx7kzjvvpE2bNowdO1ZTmyJSbJ0ppB2y1j5daJWIV+w7lsqQ2THsiD/J+JuacZs6OKWEstayYMECRowYQXp6Ot27d3e6JBGRC3KmkKahlmIuLiGVnpN/ICvbMnNgG9o3rOR0SSJecfToUYYPH867775Lu3btmDVrFhdffLHTZYmIXJAzdXd2KrQqpMClZ2YzdG4sWdmWt+9qp4AmJVpcXByffPIJ48eP54cfflBAE5ES4UwbrCcUZiFScKy1/PuDjWw+lMwb/SNpWiPM6ZJEClxSUhIffvgh/fv3p1WrVuzdu5cKFSo4XZaISIHRJnUl0MyVe1i09gCjOl3M1Y2qOF2OSIH76quvaNasGYMHD2b79u0ACmgiUuIopJUwP+86xjMfb6Fz4yrce3UDp8sRKVApKSnce++9dO7cmaCgIFasWEHDhg2dLktExCvO1DggxcyhpDRGzF9D7Yiy/LdvC51mQ0oUl8tFhw4diI2NZeTIkYwfP56yZcs6XZaIiNcopJUQp7KyGTp3DWkZ2Sy4qx2hgf5OlyRSIDIyMvD398fHx4fRo0dTsWJFOnbs6HRZIiJep+nOEuLJxb+wPi6Rl25pQYPK5ZwuR6RArFu3jtatWzNjxgwA+vTpo4AmIqWGQloJMP/nfSxYHceIjvXp1rSa0+WIXLCsrCyeeeYZ2rRpw9GjR6lZs6bTJYmIFDpNdxZzsXuP8+SSTVx1cSUe6HKJ0+WIXLBt27YRHR3NqlWruPXWW3n11VfVuSkipZJCWjF25EQ6w+fFUi0siFdubYmvGgWkBNi9ezc7d+5k4cKF3HLLLU6XIyLiGIW0Yiojy8WIeWtITsvig+FRhJcNcLokkfO2Z88evv/+e+644w66devG7t27KVdOaytFpHTTmrRi6tmPN7N6z3Ge792cxtVCnS5H5LxYa5kxYwbNmjVj1KhRJCUlASigiYigkFYsvRe7n1k/7uXOf9SlR4vqTpcjcl4OHTpE9+7dGTJkCG3atGHNmjWEhWkLMxGRHJruLGY27k/ikUUbuaJ+BcZc28jpckTOS0pKCq1atSI5OZlXXnmFESNG4OOj3xlFRHJTSCtGjp08xdC5sVQKKcP/bmuFn69+qEnxkpKSQnBwMMHBwTz//PNcfvnlXHzxxU6XJSJSJOmnfDGRle3i3rfXEn/yFFP7taZCSBmnSxI5J0uXLqVBgwZ88sknAPTv318BTUTkDBTSiokXP/+VlTuP8WyvpjSrqXU7UnwkJSUxaNAgevToQZUqVXRiWhGRs6SQVgx8vz2eqd/u5LaoWvSJvMjpckTO2vLly2nevDmzZs3i0UcfZdWqVTRv3tzpskREigWtSSvijp08xQPvrKdh5RCeuOFSp8sROSe7du0iMDCQlStX0rZtW6fLEREpVjSSVoRZa3novQ0kpWXyym2tCArwdbokkb/1448/8u677wIwaNAg1q9fr4AmInIeFNKKsFkr9/D11iM8cm0jnbBWirxTp07x73//m3/84x88/fTTZGdnY4whMDDQ6dJERIolhbQiasuhZP7z6VY6NapM/yvqOF2OyBmtX7+eqKgonnvuOQYOHMiKFSvw9dXIr4jIhdCatCIoLSObe99eS1iQPy/0bo4x2jhdiq49e/YQFRVFREQES5cu5YYbbnC6JBGREkEhrQga9/Fmdhw5yZzBUTofmhRZiYmJhIeHU6dOHV577TV69epFhQoVnC5LRKTE0HRnEbNs0yHm/7yPu6+qR/uGlZwuR+QvXC4XkyZNolatWsTGxgIwePBgBTQRkQLm1ZBmjOlmjNlmjNlhjBlzhuPaGGOyjTG9vVlPUXcwMY3R72+kec0wHux6idPliPzFnj176NSpE6NGjeKqq66ievXqTpckIlJieS2kGWN8gcnAtcClwG3GmL+c6Mtz3PPAZ96qpTjIdlnuX7iOzGwXk25tRYCfBjmlaHnrrbdo1qwZsbGxvPHGGyxdupRq1ao5XZaISInlzSQQBeyw1u6y1mYAC4CepznuXuB94IgXaynypnyzg593J/B0z6bUrRjsdDkifxEXF0dkZCQbNmxg0KBBamgREfEyb4a0GkBcruv7Pbf9zhhTA7gRmHqmJzLG3GWMiTHGxMTHxxd4oU6L3Xucl7/cTo8W1bn5shp//wCRQrJw4UI++8w9yP3II4/w1VdfUadOHWeLEhEpJbwZ0k73a7bNc30iMNpam32mJ7LWTrfWRlprIytVKlmL6ZPTM7lvwVqqhQXyzI1NNTohRcKxY8fo27cvt956K1Onun+H8vPzw8dH0/AiIoXFm6fg2A/k3g28JnAwzzGRwAJPMKkIXGeMybLWfujFuooMay2PLdrEoaR03rn7ckID/Z0uSYSPPvqIIUOGcOzYMZ599lkefvhhp0sSESmVvBnSVgMNjTF1gQPArcDtuQ+w1tbNuWyMmQl8VFoCGsD7aw6wZP1BHuxyMa1rl3e6HBG+++47unfvTvPmzVm2bBktWrRwuiQRkVLLa3MX1tos4B7cXZtbgHestb8YY4YaY4Z663WLi91HU3hi8Sba1o1geMcGTpcjpdyRI+6+nfbt2/PWW2+xevVqBTQREYcZa/MuEyvaIiMjbUxMjNNlXJCMLBc3T1nJvoRUPr2vPdXDg5wuSUqp1NRUxowZw6xZs1i/fr2aAkRECpgxJtZaG3k+j9W2UA546YttbDyQxNR+rRXQxDE//fQT0dHRbN++nZEjR1K5cmWnSxIRkVzUqlXIfth+lGnf7uL2trXo1rSq0+VIKWSt5dFHH+XKK6/k1KlTfPXVV0yaNImyZcs6XZqIiOSikFaIjp08xf3vrKNh5RAev/4vmy+IFApjDPHx8QwYMIANGzZw9dVXO12SiIichqY7C4m1lofe20BSWiazB0URFODrdElSimRlZTFhwgS6du1K69atmTJlCr6++h4UESnKFNIKyayVe/h66xGe6n4pjauFOl2OlCLbtm2jf//+/PzzzyQnJ9O6dWsFNBGRYkDTnYVgy6Fk/vPpVq5uVJn+V9RxuhwpJVwuF5MmTaJly5Zs376dBQsWMH78eKfLEhGRs6SQ5mVpGdnc+/ZawoL8mdC7ubZ9kkIza9YsRo0aRadOndi0aRN9+/Z1uiQRETkHmu70snEfb2bHDxI7HQAAHclJREFUkZPMGRxFhZAyTpcjJZy1lgMHDlCzZk369etHSEgIvXv31i8HIiLFkEbSvGjZpsPM/3kfd19Vj/YNS9bG8FL0HDp0iB49ehAVFUViYiL+/v706dNHAU1EpJhSSPOSQ0lpjPlgA81rhvFg10ucLkdKuIULF9K0aVO+/PJLRo8eTWiomlNERIo7TXd6QbbLMmrBOjKyXEy6tRUBfsrC4h1paWkMGDCAd955h6ioKGbPns0ll+iXAhGRkkDpwQumfLODn3cn8HTPptStGOx0OVKCBQYGkpGRwbPPPsuKFSsU0EREShCFtAIWu/c4L3+5nR4tqnPzZTWcLkdKoOTkZEaMGMGePXswxvDBBx/wyCOP4OengXERkZJEIa0AJadnct+CtVQLC+SZG5tqwbYUuOXLl9OsWTOmTp3K8uXLAfR9JiJSQimkFRBrLY8t2sShpHQm3dqK0EB/p0uSEiQ1NZX7/r+9O4+Oqkr0Pf7dGQgQIQwBmUwYlDEBJCCIMnsFxVaU4ABCxAFpGvUh2MhytXRrNyoPGmcQ274+lrYujAi2IiCoARkUlCmIBGg0ECBhTpCQpFL7/ZHo5SJCkaTq1Kn6fdbKYqXqpPILmyQ/9j7n7EceoX///sTExLB69WpGjx7tdCwREfEjlbQq8v63OXy4eT//Z8AVpCTWdTqOhJhp06bx4osv8vDDD7Np0yZ69OjhdCQREfEzncRSBX44/BNPLsqke4t6jOt3udNxJEQUFxdz8OBBEhISmDx5Mtdddx19+/Z1OpaIiASIZtIqqdjj5eF3NxIdGcGsOzoTGaHzg6TyNm/eTLdu3bjxxhvxeDzUqlVLBU1EJMyopFXSzE93sGXfCZ4b2pEmdWo4HUdczuPxMG3aNLp160Zubi7PPPOMrtoUEQlT+ulfCV/uPMxrGf9hePcEBiU1cjqOuFxubi5Dhgxh3bp1DBs2jFdffZX4+HinY4mIiENU0iroyMkiJszfxOUNL+FPg9s7HUdCQL169ahVqxbvvPMOd9xxh26tISIS5rTcWQHWWh5L38KJUyW8eOeV1KgW6XQkcakff/yRu+66i6NHjxIdHc3SpUu58847VdBEREQlrSL+35of+Oz7PKbc2Jb2TbSRtVw8ay1vvPEGycnJfPTRR2zevBnQjWlFROR/qKRdpO0H8pn2yff0b9uQe3o2dzqOuNCBAwe4+eabuf/++0lJSWHr1q3069fP6VgiIhJkVNIuQmFxKQ+/s5G4GtH839SOmvWQCpk4cSLLly/n+eefZ8WKFTRv3tzpSCIiEoRU0i7CXz/+jp15J/n77Z2of0mM03HERY4cOUJOTg4AM2bMYOPGjTzyyCNEROhbUEREzk2/IXy0JPMgb3+VzYO9W9LrigZOxxEX+fjjj0lKSuLee+8FoEmTJrRt29bhVCIiEuxU0nxw4EQhjy/YQsdmcUy8vo3TccQl8vPzuf/++7npppto0KABzz33nNORRETERXSfNB/8MX0LxR4vL9x5JdWi1GvlwrZt28bgwYPZu3cvjz/+OH/+85+JidESuYiI+E4l7QJW7zrMqp2H+dNN7WkRH+t0HHGJyy67jNatW/Ovf/2Lnj17Oh1HRERcSNNC52GtZfrSHTStU4O7eyQ4HUeC3FdffcXQoUMpKiqidu3aLFu2TAVNREQqTCXtPJZuy2Xz3uM8ct0VxERpVwE5t+LiYp544gl69uzJ+vXr+eGHH5yOJCIiIUAl7TeUei0zl+2gVYNYbruyqdNxJEht2bKFbt26MW3aNNLS0ti6dStt2ujiEhERqTydk/YbFm7MYWfeSV4d0YWoSHVZ+TVrLWPHjiU3N5dFixZx8803Ox1JRERCiEraORR7vMxankVy0zhuSGrkdBwJMllZWcTHx1OvXj3eeustateuTXx8vNOxREQkxGiK6Bze+TqbfccKmTSwjbZ+kl94vV5eeuklOnfuzJQpUwBo2bKlCpqIiPiFZtLOcqrYw0uf7aJ7i3r0vkK/fKXMjz/+yL333stnn33GDTfcwNSpU52OJCIiIU4l7Sz/vfoHDp8s4rWRXTSLJgB8+umnDB06FGstr7/+Ovfdd5/+bYiIiN+ppJ3hxKkSXsvYzYC2DUlJrOd0HAkSHTp0oH///syaNYsWLVo4HUdERMKEzkk7w5yVuyko8jBpoG6hEO7mz5/PsGHD8Hq9NGnShIULF6qgiYhIQKmklcsrOM1/r97DzZ2a0K5xbafjiEOOHDnCXXfdxR133EF2djZHjx51OpKIiIQplbRyL3+2C0+pZcJ1rZ2OIg5ZvHgxSUlJpKen89e//pXVq1fryk0REXGMzkkD9h49xTtfZ3N7t8tork3Uw1JRURHjxo0jPj6eTz75hM6dOzsdSUREwpxKGvDK57uIMIaH+1/hdBQJsDVr1pCSkkJMTAzLli0jMTGRmJgYp2OJiIhoudPrtaz4Po//an8pjeKqOx1HAqSwsJAJEyZwzTXXMGvWLABat26tgiYiIkEj7GfStuac4FBBEf3bNnQ6igTI119/zahRo9ixYwfjx4/noYcecjqSiIjIr4T9TNqK7blEGOjXRiUtHMydO5err76aU6dOsXz5cl566SViY3UeooiIBJ+wL2nLt+eRkliXurHVnI4ifmStBaBnz57ce++9bN26lQEDBjicSkRE5LeFdUnLOV7IdwfyGdDuUqejiJ94PB6effZZ7r//fgCSkpJ4/fXXiYuLcziZiIjI+YV1Sftsey4A17XTUmcoysrKolevXkyZMoUTJ05QXFzsdCQRERGfhXVJW749j8T6NWnV4BKno0gV8nq9vPTSS3Tu3Jnvv/+et99+m/fee49q1bSkLSIi7hG2Je2nIg9rdx/hunaXYoxxOo5UoUOHDvHkk0/Sp08ftm3bxvDhwzXGIiLiOmFb0lbtPExxqZcBWuoMCdZaPvroI7xeL5deeikbNmxg8eLFNGnSxOloIiIiFRK2JW3F9lxqVY+iW/N6TkeRSjp48CC33HILv/vd70hPTwegVatWmj0TERFXC8uS5vVaPt+RR982DYmODMu/gpDx3nvvkZSUxLJly/j73/9Oamqq05FERESqRFg2lE37jnP4ZLGu6nS5SZMmcfvtt9OyZUs2btzIhAkTiIgIy3/SIiISgsJyW6gV23OJjDD0ba2S5kbWWowx3HjjjcTFxTFlyhSiosLyn7KIiISwsPzNtmJ7Hl0T6xJXM9rpKHIRCgoKmDhxIvXr1+eZZ56hf//+9O/f3+lYIiIifhF2a0MHT5zm+4MF9NOG6q6SkZFBx44deeONN4iIiPhlmycREZFQFXYlLSMrD4A+rRs4nER8UVhYyIQJE+jbty9RUVGsWrWKv/3tb7pyU0REQl4YlrRDNKpdnbaNajkdRXywZ88eZs+ezfjx49m0aRM9e/Z0OpKIiEhAhNU5aZ5SL6t2HubGpMaaiQlixcXFfPjhh6SmptK+fXt27dpFs2bNnI4lIiISUGE1k/Zt9nEKTnvo00ZLncFq69atdO/enWHDhrFhwwYAFTQREQlLYVXSMrLyiIwwXHN5vNNR5CylpaU8++yzpKSksH//fhYtWkTXrl2djiUiIuKYsFru/GLHIVIS6hJXQ7feCDa33HILH3/8MampqcyePZv4eBVpEREJb2Ezk5ZXcJpt+/O11BlEvF4vXq8XgLS0NN5++23mz5+vgiYiIkIYlbSVWYcB3XojWGRnZ3P99dfz6quvAjBs2DCGDx+uCzpERETK+bWkGWMGGWN2GGN2GWMeP8fzI4wxW8rf1hhjOvkryxc78oi/JIb2jWv761OID6y1vPnmmyQnJ7Nu3TpiY2OdjiQiIhKU/FbSjDGRwCvADUB74C5jTPuzDtsD9LHWdgSeBub6I0up17Jq52H6tG5ARIRmapxy8OBBhgwZwujRo+ncuTNbtmxh9OjRTscSEREJSv6cSbsK2GWt/Y+1thh4F7jlzAOstWustcfK310H+OVeC5v2HudEYQl9dT6ao7Zv386nn37KzJkz+fzzz2nZsqXTkURERIKWP6/ubArsPeP9fUD38xx/H/DJuZ4wxowBxgAkJCRcdJCMHXlEGOh1hU5ID7SjR4+yfPlybr/9dvr168cPP/xAw4baN1VERORC/DmTdq51xXPuim2M6UdZSZt8ruettXOttV2ttV0bNLj42bCMrEN0vqwOdWpWu+iPlYpbvHgxSUlJjBo1igMHDgCooImIiPjInyVtH3DZGe83A/affZAxpiPwD+AWa+2Rqg5x5GQRW3JO0LeNykGgFBQUMGbMGAYPHky9evVYs2YNjRs3djqWiIiIq/hzuXM9cIUxpgWQA9wJDD/zAGNMArAAGGmtzfJHiJU7D2Gtbr0RKCUlJXTr1o2srCz++Mc/8tRTTxETE+N0LBEREdfxW0mz1nqMMeOBpUAk8E9r7TZjzNjy5+cATwL1gVfL74/lsdZW6V5AGTsOUT+2GslN46ryZeUsJSUlREdHEx0dzWOPPUbbtm255pprnI4lIiLiWn69T5q1drG1trW1tpW19m/lj80pL2hYa++31ta11nYuf6vSgub1WlbuPExv3XrDr9avX0/Hjh1ZsGABAPfdd58KmoiISCWF9I4DW3NOcPSnYi11+klxcTF/+tOfuPrqqzl58iR16tRxOpKIiEjICOkN1jOyDmF06w2/yMzMZNSoUWzcuJG0tDSef/55lTQREZEqFNIlbfWuw7RvXJv6l+jE9aq2adMmcnJy+OCDDxgyZIjTcUREREJOyC53FhaXsjH7ONdcrlm0qrJz585fzjsbMWIEWVlZKmgiIiJ+ErIlbcOPRyku9XJ1q/pOR3E9r9fLK6+8QufOnXn44YcpKirCGENcnK6YFRER8ZeQLWmrdx0hKsJwVfN6TkdxtezsbAYOHMj48ePp3bs3X331le57JiIiEgAheU5aqdfySeYBuiTWJTYmJL/EgDh06BAdO3bE4/Hw2muv8cADD1B+PzsRERHxs5BsMJ9kHuDHI6d4fFBbp6O4UmFhITVq1KBBgwZMmzaNQYMG0bJlS6djiYiIhJWQW+601jInYzct4mO5vkMjp+O4Tnp6Oi1atGDt2rUAjBs3TgVNRETEASFX0r7cdZjMnHwe7N2SSO0y4LOjR48yYsQIhg0bRrNmzXTPMxEREYeFXEmbk7GbhrViuLVLU6ejuMaSJUtITk5m/vz5/OUvf2Ht2rW0a9fO6VgiIiJhLaTOSduy7zirdx1hyg1tiYmKdDqOa2zevJm6devy73//my5dujgdR0RERAixmbQ5GbupVT2K4d0TnI4S9FauXMmSJUsAmDRpEhs2bFBBExERCSIhU9L2HP6JTzIPMrJHIrWqRzsdJ2gVFhby6KOP0rdvX5566imstURGRlK9enWno4mIiMgZQqakzV25m+jICEZf08LpKEFr/fr1dOnShVmzZvH73/+eZcuW6b5nIiIiQSokzknLyz/N+9/kkNq1GQ1q6W7457JlyxauvvpqGjVqxNKlS7n++uudjiQiIiLnERIzaW+s3oPH62VML93P62wFBQUAJCcnM2vWLDIzM1XQREREXMD1JS3/dAn/WpfNDcmNaR4f63ScoFFaWsr06dNJTExk586dGGN46KGHdP8zERERl3D9cufb67IpKPLw+z6tnI4SNHbt2kVaWhpr1qzhtttuUzETERFxIdfPpL27PptrLq9PUtM4p6MEhdmzZ9OpUye+++473nrrLdLT02nQoIHTsUREROQiubqklZR62Xv0FCmJ9ZyOEjS+++47evfuTWZmJiNGjNDVmyIiIi7l6uXOgydO47XQrE4Np6M4xlrLvHnzaNOmDT169GDmzJlER0ernImIiLicq2fS9h0rBKBp3fAsabm5uQwZMoR77rmHOXPmAFCtWjUVNBERkRDg6pKWc7yspDUJw5m0999/n6SkJJYuXcqMGTN44403nI4kIiIiVcjVy5055TNpjePCa0ujRYsWkZqaSkpKCvPmzaN9+/ZORxIREZEq5uqZtP3HC4m/JIbq0ZFORwmII0eOADB48GBee+011q5dq4ImIiISolxd0k4WeahTM/Q3Uy8oKGDs2LG0b9+eQ4cOERUVxZgxY4iODv2vXUREJFy5uqQVeUqJiXL1l3BBK1eupFOnTsydO5e0tDRq1arldCQREREJAFc3nCKPN2RLmsfjYeLEifTt2xdjDCtXrmT69OlUrx5e59+JiIiEK1c3nNMlpcREheb5aJGRkezZs4exY8eyefNmrr32WqcjiYiISAC5+urOIo+X2FhXfwn/S0lJCc888wzDhw/n8ssvZ/78+URFhc7XJyIiIr5z9UxaUYmX6iEyk5aZmUn37t2ZOnUq6enpACpoIiIiYczVJe20p5SYaFd/CZSWljJ9+nRSUlLYt28fCxYs4PHHH3c6loiIiDjM1Q2nqMT9Fw688MILTJ48mcGDB5OZmcmtt97qdCQREREJAq5eTyu7BYf7ljutteTm5tKoUSMefPBBEhISGDp0qPbcFBERkV+4dhrKU+ol/7SHuBruuqHr3r17GThwIH369KGwsJDY2FhSU1NV0EREROR/cW1Jyy0ootRraVrXHZurW2uZN28eycnJrFmzhkcffVT3PBMREZHf5NrlzgPHyzZXb1In+Etafn4+aWlpLFy4kGuvvZY333yTVq1aOR1LREREgphrZ9Jyykta0zrBPxtVs2ZNjh8/zowZM/jiiy9U0EREROSCXFvS9h8/DUDjuOCcSTt27Bh/+MMfftkQfcWKFUycOJHISPdd6CAiIiKB5+KSVkhcjWhiY4JvxXbp0qUkJSUxd+5cMjIyAIiIcO1ftYiIiDjAtc1h//HCoDsf7eTJk4wdO5ZBgwZRp04d1q1bR2pqqtOxRERExIVcW9JyjhcG3flokydPZu7cuUyaNIlvvvmGlJQUpyOJiIiISwXfWqGP9h8v5KoW9ZyOwenTpzl27BiNGzdm6tSp3HnnnfTq1cvpWCIiIuJyrixpBadLyD/tcXy5c8OGDYwaNYp69eqxatUqGjZsSMOGDR3NJCIiIqHBlcudB06UXdnpVEkrKSlh6tSp9OjRg/z8fJ588kntGCAiIiJVypUzaU7eIy07O5tbb72Vb7/9lpEjR/LCCy9Qt27dgOcQERGR0ObKkrbvmHO7DdSvX5/q1avz/vvvc9tttwX884uIiEh4cOVy596jp6gWFcGltQIzk7Z7927S0tI4deoUsbGxfPnllypoIiIi4leuLGnZR06RUK8mERH+PQ/MWsvs2bPp2LEjixYtIjMzE0Dnn4mIiIjfubOkHS0raf60b98+Bg4cyLhx47j22mvJzMzkqquu8uvnFBEREfmZK0va3gCUtAceeIDVq1cze/ZslixZQrNmzfz6+URERETO5LoLB0qtpaDIQ1M/XDSQl5dHZGQk9evX5+WXXwagVatWVf55RERERC7EdTNpXm/Zn5dUr9p+uWDBAjp06MBDDz0ElJUzFTQRERFxivtKmrUAVI+umujHjh1j5MiRDB06lISEBJ544okqeV0RERGRynBdSbM/l7SoyEq/1vr160lOTuadd95h6tSprFu3jg4dOlT6dUVEREQqy3XnpHnLOhrVoytf0hITE2nVqhULFy6ka9eulX49ERERkariupm0n5c7a1arWElbtWoVI0eOpLS0lIYNG5KRkaGCJiIiIkHHdSXNU1p25UCDWjEX9XGnT59m0qRJ9OnThzVr1pCTk+OPeCIiIiJVwnUlraS0bCatYW3ft4TasGEDXbp0YebMmTz44INs3ryZhIQEf0UUERERqTTXnZPm8VrqVIvkkhjfopeWljJy5EgKCgpYsmQJAwcO9HNCERERkcpzXUkrKfX6NIu2fft2EhMTqVmzJunp6TRp0oS6desGIKGIiIhI5bluudNTaml4nvPRSktLmTFjBldeeSVPP/00AB06dFBBExEREVcJqZm03bt3c8899/Dll18yZMgQJkyYEOB0IiIiIlXDdSXN4z33TNrChQu5++67iYqKYt68edx9990YYxxIKCIiIlJ5ritpXmu5tPavS1q7du0YMGAAL7/8MpdddpkDyURERESqjuvOSQNoWKs61lreeustHnjgAay1tGnThkWLFqmgiYiISEjwa0kzxgwyxuwwxuwyxjx+jueNMebF8ue3GGO6+PK60cX5DB06lJEjR7J9+3Z++umnqg8vIiIi4iC/LXcaYyKBV4D/AvYB640xH1prvzvjsBuAK8rfugOzy//8Td7TJxl1U29O5uczffp0Hn30USIjK7+Pp4iIiEgw8edM2lXALmvtf6y1xcC7wC1nHXMLMM+WWQfUMcY0Pt+Lek7kkZiQwLfffstjjz2mgiYiIiIhyZ8XDjQF9p7x/j5+PUt2rmOaAgfOPMgYMwYYU/5u0cZvv81MSkqq2rQSKPHAYadDSIVo7NxN4+duGj/3alPRD/RnSTvX/S9sBY7BWjsXmAtgjNlgre1a+XjiBI2fe2ns3E3j524aP/cyxmyo6Mf6c7lzH3DmpZbNgP0VOEZEREQk7PizpK0HrjDGtDDGVAPuBD4865gPgVHlV3n2AE5Yaw+c/UIiIiIi4cZvy53WWo8xZjywFIgE/mmt3WaMGVv+/BxgMXAjsAs4BYz24aXn+imyBIbGz700du6m8XM3jZ97VXjsjLW/OgVMRERERBzmyh0HREREREKdSpqIiIhIEArakuavLaXE/3wYuxHlY7bFGLPGGNPJiZxybhcavzOO62aMKTXGpAYyn5yfL+NnjOlrjNlkjNlmjMkIdEY5Nx9+dsYZY/5tjNlcPna+nMctAWCM+acxJs8Yk/kbz1eoswRlSTtjS6kbgPbAXcaY9mcdduaWUmMo21JKHObj2O0B+lhrOwJPoxNig4aP4/fzcc9RdmGQBAlfxs8YUwd4FbjZWtsBGBbwoPIrPn7v/QH4zlrbCegLzCy/e4I4701g0Hmer1BnCcqShp+2lJKAuODYWWvXWGuPlb+7jrL740lw8OV7D+Ah4H0gL5Dh5IJ8Gb/hwAJrbTaAtVZjGBx8GTsL1DLGGOAS4CjgCWxMORdr7UrKxuO3VKizBGtJ+63toi72GAm8ix2X+4BP/JpILsYFx88Y0xS4FZgTwFziG1++/1oDdY0xXxhjvjHGjApYOjkfX8buZaAdZTd93wo8Yq31BiaeVFKFOos/t4WqjCrbUkoCzudxMcb0o6ykXevXRHIxfBm/54HJ1trSsv/QSxDxZfyigBRgAFADWGuMWWetzfJ3ODkvX8ZuILAJ6A+0Aj41xqyy1ub7O5xUWoU6S7CWNG0p5V4+jYsxpiPwD+AGa+2RAGWTC/Nl/LoC75YXtHjgRmOMx1q7MDAR5Tx8/dl52Fr7E/CTMWYl0AlQSXOWL2M3GnjWlt3gdJcxZg/QFvg6MBGlEirUWYJ1uVNbSrnXBcfOGJMALABG6n/vQeeC42etbWGtbW6tbQ6kA+NU0IKGLz87FwG9jDFRxpiaQHdge4Bzyq/5MnbZlM2AYoy5FGgD/CegKaWiKtRZgnImzY9bSomf+Th2TwL1gVfLZ2M81tquTmWW/+Hj+EmQ8mX8rLXbjTFLgC2AF/iHtfactw2QwPHxe+9p4E1jzFbKls8mW2sPOxZafmGMeYeyK27jjTH7gKlANFSus2hbKBEREZEgFKzLnSIiIiJhTSVNREREJAippImIiIgEIZU0ERERkSCkkiYiIiIShFTSRCQsGGNKjTGbznhrbozpa4w5YYzZaIzZboyZWn7smY9/b4yZ4XR+EQk/QXmfNBERPyi01nY+8wFjTHNglbX2JmNMLLDJGPNR+dM/P14D2GiM+cBauzqwkUUknGkmTUQEKN8m6RvK9kQ88/FCyvZLvOBmyCIiVUklTUTCRY0zljo/OPtJY0x9oAew7azH6wJXACsDE1NEpIyWO0UkXPxqubNcL2PMRsq2SHq2fCuevuWPb6Fsf8RnrbUHA5hVREQlTUTC3ipr7U2/9bgxpjXwZfk5aZsCHU5EwpeWO0VEzsNamwU8A0x2OouIhBeVNBGRC5sD9DbGtHA6iIiED2OtdTqDiIiIiJxFM2kiIiIiQUglTURERCQIqaSJiIiIBCGVNBEREZEgpJImIiIiEoRU0kRERESCkEqaiIiISBD6/3EKKfl9zGwcAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "plt.figure(figsize=(10, 7))\n", + "plt.plot(fpr, tpr)\n", + "plt.plot([0, 1], [0, 1], 'k--')\n", + "plt.xlabel('FPR')\n", + "plt.ylabel('TPR')\n", + "plt.xlim([0, 1])\n", + "plt.ylim([0, 1])\n", + "plt.title('ROC curve of players alive baseline model');" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
MatchIdRoundNumTickCT countT countWinner
041152575.05.01
141152905.05.01
241153235.05.01
341153565.05.01
441153895.05.01
\n", + "
" + ], + "text/plain": [ + " MatchId RoundNum Tick CT count T count Winner\n", + "0 4 1 15257 5.0 5.0 1\n", + "1 4 1 15290 5.0 5.0 1\n", + "2 4 1 15323 5.0 5.0 1\n", + "3 4 1 15356 5.0 5.0 1\n", + "4 4 1 15389 5.0 5.0 1" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# examine what is up with the weird numbers for 0 ct's\n", + "\n", + "train.columns = ['MatchId', 'RoundNum', 'Tick', 'CT count', 'T count', 'Winner']\n", + "train.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
MatchIdRoundNumTickCT countT countWinner
4974647193008350.05.00
4974847193009010.05.00
4974947193009340.05.00
4975047193009670.05.00
4975247193010330.05.00
1654882351114070.05.01
1654892351114730.05.01
1654902351115390.05.01
1654912351116050.05.01
1654922351116710.05.01
28142841210989680.05.00
28143041210992320.05.00
286213417253343490.05.00
286214417253344150.05.00
3377614741197710.05.01
3377624741198370.05.01
3377634741199030.05.01
4335135821192720.05.01
4335145821193380.05.01
4335155821194040.05.01
4335165821194700.05.01
4335175821195360.05.01
4335185821196020.05.01
5913899597990890.05.00
5913929597992870.05.00
5913939597993530.05.00
5913959597994850.05.00
5913969597995510.05.00
72813312711161770.05.01
72813412711162430.05.01
72813512711163090.05.01
72813612711163750.05.01
72813712711164410.05.01
72813812711165070.05.01
80155914191169650.05.01
80156014191170310.05.01
80156114191170970.05.01
80156214191171630.05.01
80156314191172290.05.01
8363871447121592220.05.00
8837131506243838230.05.00
8837141506243838560.05.00
8837151506243838890.05.00
8837171506243839550.05.00
8837181506243839880.05.00
8837211506243840870.05.00
8837221506243841200.05.00
8837231506243841530.05.00
\n", + "
" + ], + "text/plain": [ + " MatchId RoundNum Tick CT count T count Winner\n", + "49746 47 19 300835 0.0 5.0 0\n", + "49748 47 19 300901 0.0 5.0 0\n", + "49749 47 19 300934 0.0 5.0 0\n", + "49750 47 19 300967 0.0 5.0 0\n", + "49752 47 19 301033 0.0 5.0 0\n", + "165488 235 1 11407 0.0 5.0 1\n", + "165489 235 1 11473 0.0 5.0 1\n", + "165490 235 1 11539 0.0 5.0 1\n", + "165491 235 1 11605 0.0 5.0 1\n", + "165492 235 1 11671 0.0 5.0 1\n", + "281428 412 10 98968 0.0 5.0 0\n", + "281430 412 10 99232 0.0 5.0 0\n", + "286213 417 25 334349 0.0 5.0 0\n", + "286214 417 25 334415 0.0 5.0 0\n", + "337761 474 1 19771 0.0 5.0 1\n", + "337762 474 1 19837 0.0 5.0 1\n", + "337763 474 1 19903 0.0 5.0 1\n", + "433513 582 1 19272 0.0 5.0 1\n", + "433514 582 1 19338 0.0 5.0 1\n", + "433515 582 1 19404 0.0 5.0 1\n", + "433516 582 1 19470 0.0 5.0 1\n", + "433517 582 1 19536 0.0 5.0 1\n", + "433518 582 1 19602 0.0 5.0 1\n", + "591389 959 7 99089 0.0 5.0 0\n", + "591392 959 7 99287 0.0 5.0 0\n", + "591393 959 7 99353 0.0 5.0 0\n", + "591395 959 7 99485 0.0 5.0 0\n", + "591396 959 7 99551 0.0 5.0 0\n", + "728133 1271 1 16177 0.0 5.0 1\n", + "728134 1271 1 16243 0.0 5.0 1\n", + "728135 1271 1 16309 0.0 5.0 1\n", + "728136 1271 1 16375 0.0 5.0 1\n", + "728137 1271 1 16441 0.0 5.0 1\n", + "728138 1271 1 16507 0.0 5.0 1\n", + "801559 1419 1 16965 0.0 5.0 1\n", + "801560 1419 1 17031 0.0 5.0 1\n", + "801561 1419 1 17097 0.0 5.0 1\n", + "801562 1419 1 17163 0.0 5.0 1\n", + "801563 1419 1 17229 0.0 5.0 1\n", + "836387 1447 12 159222 0.0 5.0 0\n", + "883713 1506 24 383823 0.0 5.0 0\n", + "883714 1506 24 383856 0.0 5.0 0\n", + "883715 1506 24 383889 0.0 5.0 0\n", + "883717 1506 24 383955 0.0 5.0 0\n", + "883718 1506 24 383988 0.0 5.0 0\n", + "883721 1506 24 384087 0.0 5.0 0\n", + "883722 1506 24 384120 0.0 5.0 0\n", + "883723 1506 24 384153 0.0 5.0 0" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train[(train['CT count'] == 0) & (train['T count'] == 5)]" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Transforming raw data...\n", + "Transforming 1495/1495: 1649, de_dust2, 22\n", + "Done!\n" + ] + } + ], + "source": [ + "from csgo_wp.data_transform import transform_data, CSGODataset\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "dataset = CSGODataset(transform=transform_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([413319, 12, 10])\n" + ] + } + ], + "source": [ + "print(dataset.data.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Transforming raw data...\n", + "Transforming 642/642: 1786, de_dust2, 27\n", + "Done!\n", + "Transforming raw data...\n", + "Transforming 603/603: 1799, de_dust2, 30\n", + "Done!\n" + ] + } + ], + "source": [ + "val_dataset = CSGODataset(transform=transform_data, dataset_split='val')\n", + "test_dataset = CSGODataset(transform=transform_data, dataset_split='test')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([176370, 12, 10])\n", + "torch.Size([164819, 12, 10])\n" + ] + } + ], + "source": [ + "print(val_dataset.data.shape)\n", + "print(test_dataset.data.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.5100189291896169\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAG5CAYAAADVp6NgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3QUVR/G8e9NQiiBgNRA6L0bJAQUFZEqHQQLYgARREEUGxZAERQVVEARUJAqgogKKGIHERuhh15CCR1CCSQhyea+f+ziG2MSanZTns85OWd3587sb2c32Sf33pkx1lpEREREJHPx8nQBIiIiIvJfCmkiIiIimZBCmoiIiEgmpJAmIiIikgkppImIiIhkQgppIiIiIpmQQppIDmWMedQYc9QYc84YUyTFsvLGGGuM8bkOz7PZGHPHVaz3gDHm+2t9/qzA9R5UzIDt7jXGNL/e273Ec1pjTGXX7cnGmGHufP5rdSWffWNML2PMb+6oS3ImhTTJVlxfSrGuL70jxpgZxpj8KdrcYoz52RgTbYw5Y4xZYoypmaKNvzFmnDFmv2tbu1z3i7r3FWUMY0wu4B2gpbU2v7X2ZEY9l7W2lrV2+SXq+c8Xo7X2E2tty4yqKzNxvQd7PF3H9Wat7W+tHenpOkSyKoU0yY7aW2vzA0FAPeCFiwuMMTcD3wOLgFJABWADsOpiT4Yxxhf4CagFtAb8gVuAk0BIRhV9PXqtrkAJIA+w2Y3P6RHGGO/ruC13vkciksMppEm2Za09AnyHM6xd9BYwy1o73lobba2NstYOBf4EXnG1CQXKAp2ttVustUnW2mPW2pHW2qWpPZcxppYx5gdjTJRrCPFF1+MzjDGjkrW7wxgTmez+XmPMEGPMRuC8MWaoMebzFNseb4yZ4Lpd0BgzzRhz2Bhz0BgzKq0QYozJ7er9O+T6Ged6rCqw3dXstDHm50vtS2NMKWPMYtfr22WM6ZtsWV5jzExjzCljzFZjzHOpvMbmrtshxpgwY8xZ1356x9Xs12T1nDPG3JxyKCmtfZxKrTOMMZOMMUuNMeeBpq76FxpjjhtjIowxg66w/uTvkY8xppEx5ndjzGljzIbkw7muuve4emojjDEPuB6vbIxZ4eq9PWGMmZ9sneRDhAWNMbNcte5zfSa8km37N2PMWFe9EcaYuy7x9jUwxmxxtZ9ujMnj2tYNxpivXc9zynW79KVeh2vZQ659dcoY850xplw678Uo1+07jDGRxpinjTHHXJ/h3sna5na9rv2u93eyMSZvGtvtZYxZZYx51/Ue7DHOHvJexpgDru33TNY+vX3q7XreE8aYPUDbFM912b9zItebQppkW64vnLuAXa77+XD2iC1IpflnQAvX7ebAMmvtuct8ngLAj8AynL1zlXH2xF2u+3F+MRQCZgNtjDH+rm17A/cAc11tZwKJrueoB7QEHk5juy8BjXCG1Btx9gIOtdbuwNlLCFDIWnvnZdT4KRDpen1dgdeNMc1cy14GygMVce7DHulsZzww3lrrD1TCud8Bbk9WT35r7R/JV7qKfdwdeA0oAPwOLMHZYxoINAOeNMa0uoL6k79HJYBvgFFAYeAZYKExppgxxg+YANxlrS2A8/O23rWNkTh7cW8ASgPvpVH7e0BBVz1NcP7T0DvZ8oY4Q3ZRnP90TDPGmHT2xQNAK5z7uyow1PW4FzAdKIfzn5JY4H2A9F6HMaYT8CLQBSgGrMT5+bgcAa7XFgj0ASYaY25wLXvTVV8Qzvc3EBiezrYaAhuBIjh/P+YBDVzr9gDeN/+f6pDePu0LtMP5+xSM8/Od3JX8zolcX9Za/egn2/wAe4FzQDRgcX6RF3ItK+16rHoq67UGEly3fwDeuILnvB9Yl8ayGcCoZPfvACJT1PtQinV+A0Jdt1sAu123SwAXgLwpnvuXNJ57N9Am2f1WwF7X7fKufeGTxrr/LAfKAA6gQLLlo4EZrtt7gFbJlj2cymts7rr9KzACKJrW8yV7rBfw26X2cRr7fFay+w2B/SnavABMv4L6H0p2fwgwO8X2vgN6An7AaeDu5O+Tq80s4EOgdCo1W5whwNv1HtdMtuwRYHmyfbIr2bJ8rnUD0vl96J/sfpuLn6dU2gYBp1y303sd3wJ9kt33AmKAcslfS8rPP87PfmyK9/gYzn8kDHAeqJRs2c1ARBq19gJ2Jrtfx/W8JZI9dtL1mi61T39OsY9a8v/Pfrq/cyT7jOpHPxnxo540yY46Wed//3cA1XH2OACcApKAkqmsUxI44bp9Mo02aSmDMxBdrQMp7s/F+UUAzh6hi71o5YBcwGHXEM9pYApQPI3tlgL2Jbu/z/XYlSoFRFlro1NsKzDZ8uSvIeXrSa4Pzt6SbcaY1caYdpdZw5Xu4+Q1lANKXdxnrv32Is4vYLi8+lNur1uK7d0KlLTWngfuBfrjfJ++McZUd633HM4w8rdxHvH6UCrPUxTw5b/vW2Cy+0cu3rDWxrhu/uvgmHRq/+czYIzJZ4yZ4hr+O4szQBcyxnhf4nWUA8Yne+1RrteVvMa0nLTWJia7H+OqvRjOwLkm2XaXuR5Py9Fkt2MBrLUpH8vPpfdpyvc/ebsr/Z0Tua4U0iTbstauwPmf/FjX/fPAH0C3VJrfw/+Hz34EWrmGfC7HAZxDSak5j/PL56KA1EpNcX8BcIdruLYz/w9pB3D+V1/UWlvI9eNvra1F6g7h/JK5qKzrsSt1CCjsGnJMvq2DrtuHcfZSXlQmrQ1Za3daa+/H+SX3JvC5az+n3AcppbePU32qFOtGJNtnhay1Bay1ba6g/pTbm51ie37W2jcArLXfWWtb4Az624CPXI8fsdb2tdaWwtmT88HFeWjJnAAS+O/7dpCrl/z1JP8MPA1UAxpa5/DzxSFnk97rcL3+R1K8/rzW2t+vocYTOENVrWTbLGidBwBdq0vt08P8dx9ddKW/cyLXlUKaZHfjgBbGmIsHDzwP9DTGDDLGFHBNnh6Fc2hlhKvNbJx/nBcaY6obY7yMMUWMMS8aY9r89yn4GggwxjzpmvxcwBjT0LVsPc45ZoWNMQHAk5cq2Fp7HFiOc75QhLV2q+vxwzjnNL1tnKcI8TLGVDLGNEljU58CQ11zpYrinN8z51LPn0o9B3DO6xptjMljjKmLs0fsE1eTz4AXXPsyEBiY1raMMT2MMcWstUk4h9PAOZR6HGcvZ1rnCktvH1/K38BZ45z8n9c1Uby2MabBldbvMgdob4xp5dpWHuOcFF/aGFPCGNPBFTwv4Bx6d7heezfz/4n5p3AGP0fyDVtrHa56XnO9xnLAU1zF+5bMAFdthXH2IF48YKEAzmB02rXs5YsrpPc6gMk491ctV9uCxpjU/vG5bK7Pw0fAu8aY4q7tBiabN3gt277UPv0MGOTaRzfg/Btxcd0r/Z0Tua4U0iRbcwWeWcAw1/3fcM7N6oLzP+h9OCcD32qt3elqcwHnwQPbcM5PO4vzi74o8FcqzxGNc+5Ye5xDUTuBpq7Fs3FOWN+L84/9/JTrp2Guq4a5KR4PxTl0swXnF/3npD00OwoIwzm5ehOw1vXY1bgf57yxQ8CXwMvW2h9cy17FeVBBBM5eyM9xfrGnpjWw2RhzDudBBPdZa+Ncw3av4TwVymljTKPkK11iH6fL9SXdHuf8pAicPStTcU4kv9L6L4bWjjgDz3Gcgf5ZnH9PvXD2UB3COQzYBHjMtWoD4C/Xa18MPGGtjUjlKR7H2QO7B+f8xLnAx5fzWtMwF+dnb4/r5+JnYByQF+f++BPn8OJFab4Oa+2XOHtB57mGScNxHqBzrYbgPMjnT9d2f8TZ03c9pLdPP8I5p3ADzt+RL1KseyW/cyLXlbH2UqMMIiKXzxjzKM7wlSV7G7J6/SKSfagnTUSuiTGmpDGmsWsoqBrOHpgvPV3X5crq9YtI9pVhIc0Y87FxnlAwPI3lxhgzwThPjLnRGHNTRtUiIhnKF+cRb9E4T2ewCPjAoxVdmaxev4hkUxk23GmMuR3nZNNZ1traqSxvg3OeQBuc5zEab6293InAIiIiItlahvWkWWt/xTnhNC0dcQY4a639E+f5eTQZU0RERATnGZU9JZB/n0Aw0vXY4ZQNjTH9gH4Afn5+9atXr56yiYiIiIhHOZIs0XGJnI6JJzouAYwh/siuE9ba9E7MnCZPhrTUrjWX6tirtfZDnJdTITg42IaFhWVkXSIiIiKXJeLEeb5YG8kXaw9y8HQsCVEHubBsHA1uvpW3xoylcZVi+y69ldR5MqRF8u+zPJfm6s6GLiIiIuIWiY4kVu48wfdbjvLbruMciIoFILhsQYof+JlvZ79Dvrx5GHhva26pXPQSW0ufJ0PaYmCgMWYezgMHzrjO7iwiIiKSaVhr2Rh5hqWbDrNwbSQnzsXj6+3FzZWK8FDjCtQoEM9Lgx/j559/5q677mLq1KmUKnU1l0r+twwLacaYT3Fe4LqoMSYS5yVHcgFYaycDS3Ee2bkL50V2e2dULSIiIiJXatuRs8xffYDvNx/l4OlYfLwMTaoWo1twae6oVpw8ubyd7bZtY9OmTXz00Uf06dMHY1Kb0XXlstwVBzQnTURERDLKmdgE5q/ez4KwSHYeO/dPMGtWowRt6gRQKJ8vAEeOHOGTTz7h6aefBiA2Npa8efP+Z3vGmDXW2uCrqcWTw50iIiIiHmetZd2B08z5Yx9fbzxMvCOJuqUL8mrHWrSrW4rCfr7/av/ZZ5/x6KOPEhMTQ4cOHahSpUqqAe1aKaSJiIhIjhQTn8icP53BbGPkGfLn9qFDUCm61S9Nw4pF/tP+5MmTDBw4kHnz5hESEsLMmTOpUqVKhtWnkCYiIiI5Smy8g9l/7mXyij1EnY+nZME8vNy+Jl3rl6ZAnlyprpOUlETTpk3Ztm0bo0aNYsiQIfj4ZGyMUkgTERGRHCHBkcTXGw8x7sed7DsZQ4PyN/D+/fW4uVKRNCf7R0dHky9fPry9vRkzZgwlSpQgKCjILfUqpImIiEi2Zq1lxY7jvPHtNrYdiaZckXzM6dOQW6ukfx6zX375hd69ezNo0CCeeuopWrVq5aaKnRTSREREJNs6djaOgZ+u4++IKEr452Zyj5toVSsg3dNkxMbG8sILLzB+/HgqV65Mo0aN3Fjx/ymkiYiISLa0aP1Bhn4VzoWEJJ6/qzoPNa6Ar49XuuusWbOGBx54gO3btzNw4EDeeOMN/Pz83FTxvymkiYiISLZy8HQsw74K5+dtx6hf7gZe71yHagEFLmvdmJgY4uLi+OGHH2jevHkGV5o+hTQRERHJFpKSLDP/2Mvob7fh6+3Fs62q0e/2iuTyTr/3bOPGjSxfvpxBgwZx2223sWPHDnx9fdNdxx0U0kRERCTLO3g6lpe+3MTy7ce5o1oxXu1Qm7JF8qW7TmJiImPHjmX48OEULVqUnj17UrBgwUwR0EAhTURERLIway3TfotgzHfbscDwdjXp3bj8Ja+fuXPnTkJDQ/nzzz/p2rUrkyZNomDBgu4p+jIppImIiEiWFBvv4IUvNvLV+kPcVLYQ4++rR5nC6feeAZw7d45GjRphrWXu3Lncd9991+2i6NeTQpqIiIhkOZsPneHpzzaw7Ug0TzavwqA7q+DllX7QOn78OMWKFSN//vx8/PHHNGjQgFKlSrmp4iuX/kw6ERERkUzEkWSZ+MsuOk1cxcnz8UzrGcyTzaumG9CstcyYMYPKlSszf/58ADp27JipAxqoJ01ERESyiKNn43hmwQZW7jxBy5oleK1zHYoVyJ3uOkeOHOGRRx5h8eLFNGnShJCQEDdVe+0U0kRERCRTS3AkMe23CN7/eReOJMuoTrV5oGHZS84jW7RoEX369OH8+fO8++67DBo0CC+vrDOIqJAmIiIimdaxs3H0mRnGpoNnuLVyUV5uX5MqJS7vxLTx8fFUrFiRWbNmUb169Qyu9Poz1lpP13BFgoODbVhYmKfLEBERkQz2x+6TPPbJGmITHAxvV4v7Q8pcsvds6dKlHDp0iIcffhgAh8OBt7e3O8pNlTFmjbU2+GrWzTp9fiIiIpIjWGuZunIP3af+SZ5c3kzvFUL3SwxvRkdH07dvX9q2bcuHH36Iw+EA8GhAu1Ya7hQREZFM40BUDIPmrWPd/tM0r1GccffVI3/u9OPK8uXL6d27N/v372fIkCGMGDEiS4ezixTSRERExOOSkiyz/9zH2O+2k2QtQ9vW4KHGFS557rO9e/fSvHlzKlSowMqVK7nlllvcVHHGU0gTERERj9p74jwD5q5l86GzNKxQmFc71qZaQPoHBxw8eJDAwEDKly/P559/TosWLfDz83NTxe6hOWkiIiLiMUs2HKL1+F/ZfzKGUZ1qM69fo3QDWnx8PMOGDfun5wygU6dO2S6ggXrSRERExAOstXy0cg+vL91GvbKFmHAZ193ctGkToaGhrF+/nl69elG3bl03VesZCmkiIiLiVpGnYhg8fz2r956ieY3iTLi/Hvl8048k7777LkOGDOGGG25g0aJFdOjQwU3Veo5CmoiIiLiFtZYZv+9l7HfbcVjLK+1r0vOW8pc899lFHTt2ZNKkSRQtWjSDK80cdDJbERERyXBHz8bx0peb+HHrMZpWK8awdjWpWCx/mu2TkpKYNGkSAQEB3H333VzMK5cb6DILncxWREREMq2FayJp/vYKlm8/zvN3VefjXg3SDWj79++nZcuWDBw4kC+//BJwhrOsFtCulYY7RUREJEOcjUtg6JfhLN5wiJol/Xmvez0qpRPOrLXMnDmTJ554AofDwZQpU+jbt68bK85cFNJERETkuvs7Ior+c9ZwNjaBgU0rM7hFVbwvcWLaX3/9ld69e3P77bczffp0Klas6KZqMyeFNBEREbluHEmW6asiGP3tNgL88zCzdwh1ShdMd53du3dTqVIlmjRpwpIlS2jTpg1eXpqRpT0gIiIi18W5C4l0/+hPRn2zlZsrFuHbJ29LN6BFRUXRvXt3atWqxY4dOwBo166dApqLetJERETkmq3YcZwx320j/OBZXmxTnb63VUx3ov+3335Lnz59OH78OC+//HKOH9pMjUKaiIiIXJMv1kbyzIINFMrny5iudekWXCbNttZaHn30UaZMmULt2rX55ptvqFevnhurzToU0kREROSqnIlN4PmFG/k2/Ag1Svozr28jCubLle46xhj8/f0ZMmQII0aMIHfu3G6qNutRSBMREZEr9s3GwwyYuxaABxqW5ZUOtcjlnfpcstjYWF566SU6derE7bffzptvvpnjznl2NRTSRERE5LLFxCcy6putzP1rPzVL+jO0bQ1uqZz2ZZr+/vtvQkND2b59O4ULF+b2229XQLtMCmkiIiJyWdbtP8UzCzaw+/h5+t1ekWdaVsPXJ/Xes/j4eEaOHMno0aMpWbIk33//PS1atHBzxVmbQpqIiIik6+S5C0xavpuPV0VQJH9upvduQNNqxdNd55NPPmHUqFH07NmTcePGUahQITdVm30opImIiEiaFm84xLCvwjl3IZHO9UozvH1NCuZN/eAAh8PBjh07qFGjBj179qR8+fI0bdrUzRVnHwppIiIi8h9nYhN48ctNfLPxMH6+3iwe2JhapdI+Me3OnTvp2bMn27dvZ+fOnRQuXFgB7RoppImIiMi//LnnJE/OW8/xcxcY3Lwq/e+oSG4f71TbJiUlMWnSJJ577jl8fX2ZOHEiN9xwg5srzp4U0kRERASAC4kOXl2yhU/+2k9gobx83v9m6pVNO3DFxsbSoUMHfvzxR1q3bs3UqVMJDAx0Y8XZm0KaiIiIEH7wDM8s2MC2I9HcE1yal9vXwi93+jEhb968lCtXjilTptC3b1+dWuM6U0gTERHJwU7HxPPmsm0sCIuksJ8vk3vUp3XtgDTbHzlyhEGDBjFixAhq1KjB1KlT3VhtzqKQJiIikkOt3Hmcx+asJfpCIl3qBfJCmxoUK5D2ZZo+//xz+vfvz7lz5+jSpQs1atRwY7U5j0KaiIhIDhMdl8CrS7awYE0k5YrkY8GjN1M9wD/N9qdOnWLgwIHMnTuX4OBgZs2apYDmBgppIiIiOYS1lq83HmbEki1Enb9A39sqMKhZFQrkSf+i6OPGjeOzzz7j1Vdf5fnnnydXrvTby/VhrLWeruGKBAcH27CwME+XISIikqVEnorhmQUb+HNPFDVL+jOiYy0alC+cZvvo6GgiIyOpUaMGsbGxbN++naCgIDdWnD0YY9ZYa4OvZl31pImIiGRj1lqm/RbBqG+2ktvHixEdatGjUTm8vdI+EnPFihX06tULHx8ftm7dSt68eRXQPCD1q6KKiIhIlrcp8gxdJv3OqG+2UjvQn68GNKbnLeXTDGixsbE89dRTNG3aFG9vb2bMmIGPj/pzPEV7XkREJJux1vLhr3sY/e02iubPzcvta9LrlvLpnsfs0KFDNGvWjG3btvHYY4/x1ltv4efn58aqJSWFNBERkWzkxLkLDPsqnG/Dj9C8RgnevffGSx4YAFCiRAnq1avHhAkTaNGihRsqlUvRcKeIiEg28eOWo3SauIqfth5jULMqfPhg/XQDWnh4OC1atODIkSN4e3szd+5cBbRMRCFNREQki4tLcPDyonAenhWGj5fh036NeKpFVbzSmHvmcDh46623qF+/Phs2bGD37t1urlguh4Y7RUREsrANB04zeP569pw4T8egUrx5d13y5PJOs/2uXbvo2bMnv//+O126dGHy5MkUK1bMjRXL5VJIExERyaJm/bGXEUu2UDS/Lx+FBtOiZolLrjNy5Ei2bNnCnDlz6N69uy6KnonpZLYiIiJZzN4T53n16y38vO0YjSsX4b37b6Kwn2+a7Q8cOEB8fDyVKlXi5MmTxMXFERgY6MaKcy6dzFZERCQHOH8hkdeXbmX+6gMAPH5nZQbeWZncPqkPb1prmTVrFoMGDSI4OJiffvqJIkWKuLNkuQYKaSIiIlnApsgz9J+zhkNnYrn7ptI80awKZQrnS7P90aNHeeSRR1i0aBG33XYbH330kRurletBIU1ERCQTcyRZJq/YzZjvtlPCPzdzH27EzZXS7w1bt24dLVu2JDo6mrFjx/Lkk0/i7Z32wQSSOSmkiYiIZFKHz8Ty5Lz1/BURRbPqxXmlQ610e88uql69Oi1atGDo0KHUrFnTDZVKRtB50kRERDKhqSv30PLdX9kQeZrRXeowtWdwugFt2bJlNGnShHPnzpE3b17mzp2rgJbFKaSJiIhkMlNW7GbUN1upUjw/3wy6jftDyqZ5qozo6Gj69+/PXXfdxcmTJzl69Kibq5WMouFOERGRTOLchURGL93KJ3/tp3WtAN7rXo9c3mn3p/z666/06tWLvXv38uyzz/Lqq6+SJ08eN1YsGUkhTUREJBP4becJnpy/nhPnLtDrlvIMbVsDn3QCmrWW4cOH4+XlxcqVK2ncuLEbqxV3UEgTERHxoANRMQxfFM4v249TrEBuZvcJ4bYqaV+mafXq1ZQpU4aAgADmzp2Lv78/+fPnd2PF4i4ZOifNGNPaGLPdGLPLGPN8KssLGmOWGGM2GGM2G2N6Z2Q9IiIimUn4wTN0/uB3/twTxcCmlVnx7B1pBrT4+HiGDx/OzTffzNChQwEoVaqUAlo2lmE9acYYb2Ai0AKIBFYbYxZba7ckazYA2GKtbW+MKQZsN8Z8Yq2Nz6i6REREPO149AWGfRXOss1HKJDHh0/7NSKoTKE024eHhxMaGsq6det48MEHGTt2rBurFU/JyOHOEGCXtXYPgDFmHtARSB7SLFDAOA9ZyQ9EAYkZWJOIiIhHrdhxnIFz1xKX4KDXLeV5olkVbkjnuptLliyha9euFCxYkC+++ILOnTu7sVrxpIwMaYHAgWT3I4GGKdq8DywGDgEFgHuttUkpN2SM6Qf0AyhbtmyGFCsiIpKRYuMdTPh5J1NW7KZ4gTx8+VhjKhdPe6jSWosxhptvvpkHH3yQ119/neLFi7uxYvG0jJyTltoJXWyK+62A9UApIAh43xjj/5+VrP3QWhtsrQ0uViztyZQiIiKZ0Yodx2k7YSWTlu+mY1AgS5+4Lc2AZq3lgw8+oFmzZiQmJlK0aFGmTp2qgJYDZWRIiwTKJLtfGmePWXK9gS+s0y4gAqiegTWJiIi4TXxiEi98sYmeH/9NkrXMfCiEd+8NonAaw5sHDhygVatWDBgwAF9fX6Kjo91csWQmGTncuRqoYoypABwE7gO6p2izH2gGrDTGlACqAXsysCYRERG3WLf/FM99vpGdx87xUOMKPNe6GnlypX6Rc2sts2bNYtCgQTgcDiZPnky/fv3SvMqA5AwZFtKstYnGmIHAd4A38LG1drMxpr9r+WRgJDDDGLMJ5/DoEGvtiYyqSUREJKPFxCfy7g87+GhlBP55fHj33hvpXK90uuvEx8czevRo6taty4wZM6hUqZKbqpXMzFibcppY5hYcHGzDwsI8XYaIiMh/LNlwiGGLwjkdk0DneoEMa1czzaFNcB652bRpU/Lnz8/BgwcJCAjA2zv13jbJmowxa6y1wVezri6wLiIico0SHUm888MOHv90HeWK+DG3b8N0556dOnWKHj160KFDByZMmABAYGCgApr8iy4LJSIicg0On4ll0KfrWL33FO3qluTte24kt0/aYWvZsmX06dOHY8eO8corr/Dss8+6sVrJShTSRERErtKh07F0m/wHZ2ITePfeG+kUFJjuZP/x48fz5JNPUrNmTRYvXkz9+vXdWK1kNQppIiIiV+HviChCP/4LgLl9G3FT2RvSbOtwOPD29qZdu3YcOXKEl19+mTx58rirVMmidOCAiIjIFTgQFcOY77azeMMhSvjnZlrPBtQOLJhq27i4OF566SX27NnDF198oVNq5EDXcuCAetJEREQuQ1KSZdKK3Yz5bjteBh69oxKP3VGJAnlypdo+LCyM0NBQtm7dymOPPUZiYiK5cqXeViQ1CmkiIiKXcPRsHP3nrGHd/tM0r1Gcl9rWpEJRv1TbJiQkMGrUKF577TUCAgL47rvvaNmypZsrluxAIU1ERCQd328+wotfhhMTn8hbd9elW3DpdIctz549y5QpU+jevTsTJnpK33EAACAASURBVEygUKFCbqxWshOFNBERkVQkOpJ4+4cdTFq+m4rFnOc+q1qiQKptHQ4Hs2fPpkePHhQpUoSNGzfqguhyzRTSREREUjh3IZHQaX+xdv9putwUyOud66R53c1du3bRq1cvVq1aRb58+bjnnnsU0OS6UEgTERFJZufRaB7/dB3bjkTzVte6dKuf+vCmtZbJkyfzzDPPkCtXLmbNmkW3bt08ULFkVwppIiIiLit3HufhmWHk9vHiwwfr07JWQJptBwwYwKRJk2jZsiXTpk2jdOn0L6IucqUU0kREJMdzJFk+/i2CN5dto7CfL18OaExgobz/aWet/edUGr169aJOnTr0799f5z+TDKGQJiIiOdq2I2cZ+mU4YftOcWf14rx5d12KFcj9n3bHjh2jf//+lCxZkokTJxISEkJISIgHKpacwsvTBYiIiHjCmZgEBs5dS+txK9lxNJo3utRhWs/gVAPaF198Qa1atVi6dCkVK1b0QLWSE6knTUREchRrLQvWRDJ8UThxCUl0rhfIsHY1Kezn+5+2p06dYtCgQcyZM4ebbrqJWbNmUatWLQ9ULTmRQpqIiOQYp2PiefzTdazceYKgMoV4uX1N6qVzYfSoqCiWLFnCK6+8wosvvqjLOolbKaSJiEiOsOHAaXrPWE3U+XiGtq1B78YV8Pb674T/c+fOMXv2bPr370+lSpXYu3evrhogHqGQJiIi2VpMfCLPfr6RZeFHuCGfL5/2bcTNlYqk2nblypX06tWLiIgIGjRoQHBwsAKaeIwOHBARkWxr17Fo7hq/km82HqZ93ZJ8P/j2VANaXFwczz77LE2aNAFgxYoVBAcHu7tckX9RT5qIiGQ7FxIdTPhpJzN/34ePt2Huww25pXLRNNu3bduWn3/+mf79+zNmzBjy58/vxmpFUmestZ6u4YoEBwfbsLAwT5chIiKZkLWWL9Ye5JUlm4mOSySkQmHe6FKHisX+G7oSEhIwxuDj48OyZcswxtCqVSsPVC3ZmTFmjbX2qrpl1ZMmIiLZwvkLiTz2yVpW7DhOjZL+DG5eJc3LOm3evJnQ0FC6du3KCy+8QOvWrd1crcilKaSJiEiWt2ZfFI99spajZy/wRLMqDGpWJdUjNx0OB++++y5Dhw7F39+fGjVqeKBakcujkCYiIlnWhUQHU1bsYeIvuyiaPzfTezegabXiqbbdvXs3vXr14rfffqNTp05MmTKF4sVTbyuSGSikiYhIlrTtyFl6T1/N4TNxtKpVghEdahNQME+a7U+cOMHWrVuZNWsWPXr00EXRJdNTSBMRkSwlKckyacVu3vlhB/l8vZnY/Sba1i2ZatvIyEiWLFnCo48+SsOGDdm3bx9+fn5urljk6iikiYhIlrF2/yme+3wju46do2m1YrxzTxA3pHLNTWstc+bM4fHHHycxMZFOnTpRsmRJBTTJUnQyWxERyfQcSZaJv+yi2+Q/OBubwLh7g5jWs0GqAe3YsWPcfffdhIaGUrt2bdavX0/Jkqn3tIlkZupJExGRTC384Ble+nITGyLP0LJmCcbecyP+eVK/0HlCQgKNGjXi4MGDjBkzhsGDB+Pt7e3mikWuD4U0ERHJlGLiE3nj223M+XMfhf18GdO1Ll3rl051wn90dDT58+cnV65cjBkzhurVq1OrVi0PVC1y/Wi4U0REMp2wvVHc/9FfzPpjH/eHlOWnp+6gW3CZVAPad999R40aNZg9ezYAd999twKaZAvqSRMRkUzDkWQZ+/12Ji3fjd8ljtw8d+4czz77LJMnT6ZGjRrUrFnTzdWKZCyFNBERyRT2njjP4M/Ws27/adrfWIpRnWpTMG/qc89+//13HnzwQSIiInj66acZOXIkefPmdXPFIhlLIU1ERDzq4kXRX/hyE7m8TLpzzy46fvw41lqWL1/O7bff7sZqRdzHWGs9XcMVCQ4OtmFhYZ4uQ0REroPj0Rd46ctNfL/lKCHlCzOmW13KFUn9XGZr1qxh48aN9O7dG4ALFy6QO3dud5YrcsWMMWustcFXs6560kRExCPW7DvFI7PDOB2TwHOtq9Hvtor4eP/3eLaEhARef/11Ro0aRZkyZejevTu5c+dWQJNsTyFNRETcKj4xiXE/7mDSit2UKpiXrwc1pHqAf6ptt2zZQmhoKGvWrKFHjx5MmDBB4UxyDIU0ERFxm2Nn43hy/np+332SLvUCebl9LQrmS/3ggOPHj9OgQQP8/PxYuHAhXbp0cXO1Ip6lkCYiIm7xd0QUj32yhrOxibzeuQ7dG5ZNtV1UVBSFCxemWLFiTJ06lWbNmlG8eHE3VyvieTqZrYiIZChHkmXcjzu4/6M/yefrw6KBjVMNaNZaJk2aRLly5fjxxx8BuP/++xXQJMdST5qIiGSY9QdO88IXm9h6+Cwdg0rxaofaqQ5vRkZG0qdPH77//nuaN29OtWrVPFCtSOaikCYiItedI8ny8W8RvPvjDvLm8ubtbjfS5abAVM99Nm/ePPr3709CQgITJ07k0UcfTfccaSI5hUKaiIhcV8fOxvHEvPX8seckd1QrxthuN1I0f9pHZEZFRVG7dm1mzJhB5cqV3VipSOamk9mKiMh1E37wDA/PDCMqJp6RHWtxTxoXRf/qq69ISEigW7duWGtJSkrC29vbAxWLZKxrOZmtDhwQEZFrZq1l4i+76DhxFYlJSXzatxH3Nij7n4B2+vRpQkND6dy5M5MmTcJaizFGAU0kFRruFBGRa3LuQiKD56/nhy1HaVmzBKO71KFIKsOb33//PQ899BBHjhzh5Zdf5qWXXtLcM5F0KKSJiMhVO3U+nr6zwgjbd4rn76rOI7dXTDV4bdy4kVatWlGjRg2++uorgoOvavRHJEdRSBMRkasStjeKF77YxJ4T5xl/XxAdgwL/0+bIkSMEBARQt25d5s6dS6dOncibN68HqhXJejQnTURErsjZuASenLeOe6b8wdm4BKb2DP5PQIuLi+O5556jQoUKbNq0CXCemFYBTeTyqSdNREQuW+SpGPrPWUP4wbPcH1KWF9pUxz/Pv09Ou3btWkJDQ9m8eTOPPPII5cuX90yxIlmcQpqIiFyWhWsiGfpVOAmOJMbdG0Snev8d3nzttdd45ZVXKF68ON9++y2tW7f2QKUi2YNCmoiIpMtay7TfIhj1zVaqBxRg/H31qBZQINW2MTEx3Hvvvbz33nvccMMNbq5UJHtRSBMRkTQdPhPL8ws3sWLHcRpVLMyM3iHkyfX/c5o5HA7GjRtHUFAQzZo1Y+TIkXh5abqzyPWg3yQREUnVwjWRtHr3V/7Yc5IX21Rndp+G/wpoe/bsoWnTpjzzzDMsXLgQQAFN5DpST5qIiPzLhUQHL34RzsK1kTSqWJiRHWtTpcT/hzettXz44Yc8/fTTeHt7M3PmTB588EEPViySPSmkiYjIP/adPE/3j/7i4OlY+t5WgefvqoG3179PTrto0SL69+9P8+bN+fjjjylTpoyHqhXJ3hTSREQEgEXrDzL0y3CSrGV0lzrcH1L2n2XWWvbt20f58uXp0KEDCxcupHPnzrqsk0gG0uQBEZEcLsGRxNvfb+eJeeupFlCAJY/f+q+Advz4cbp27UpQUBCHDh3Cy8uLLl26KKCJZDD1pImI5GARJ87z2Cdr2Xr4LG3rlOSde28kt8//Dw746quv6NevH2fOnGHkyJGUKFHCg9WK5CwKaSIiOdTCNZG8+OUm8vl6M7lHfVrXDvhnWWJiIn369GHWrFnUq1ePn3/+mdq1a3uwWpGcRyFNRCSHOXnuAs8s2MAv249TJ7Ag73evR7kifv9q4+Pjg4+PD8OGDWPo0KH4+vp6qFqRnEshTUQkBzkQFcMDU//i5LkLDLqzMgPurPzP8Ob58+d5/vnn6devH3Xq1GHq1KmadybiQQppIiI5gCPJMuuPvbzz/Q4sMKlHfW6vWuyf5atWraJnz57s2bOHKlWqUKdOHQU0EQ9TSBMRyeaOnY3j3g//JOLEeW4qW4hx99ajbJF8AMTFxTF8+HDGjh1L+fLl+eWXX2jSpImHKxYRUEgTEcnWVu06wdOfbeDk+QtM7H4TbeoE/KuH7IMPPmDMmDH069ePsWPHUqBA6hdOFxH3U0gTEcmmvlp3kCfnr6dSMT+m9WpMrVIFAUhISGDfvn1UrlyZAQMGUK9ePZo2berhakUkpQw9ma0xprUxZrsxZpcx5vk02txhjFlvjNlsjFmRkfWIiOQECY4knvpsPU/OX09QmUJ82rfRPwFty5Yt3HLLLdx5553ExMSQO3duBTSRTCrDetKMMd7ARKAFEAmsNsYsttZuSdamEPAB0Npau98YUzyj6hERyQl2HTvH45+uY+vhszx8awWG3FWdXN5eJCUlMW7cOF588UXy58/P5MmTyZcvn6fLFZF0ZORwZwiwy1q7B8AYMw/oCGxJ1qY78IW1dj+AtfZYBtYjIpKtrd1/ip7T/sYCozrVpkejcgCcPn2ajh078uuvv9KhQwc+/PBDXTlAJAvIyJAWCBxIdj8SaJiiTVUglzFmOVAAGG+tnZVyQ8aYfkA/gLJly6ZcLCKS4/215ySPzFmDX24fZj4UQrWA/x8A4O/vT7FixZgxYwahoaE6tYZIFpGRc9JS+ytgU9z3AeoDbYFWwDBjTNX/rGTth9baYGttcLFixVIuFhHJsay1fLB8Fw9O+5sb8vkyt29DqgUU4ODBg9x7771ERkbi5eXF559/Ts+ePRXQRLKQjAxpkUCZZPdLA4dSabPMWnveWnsC+BW4MQNrEhHJNuISHDwxbz1vLdtOUNlCfPnYLVQo6scnn3xC7dq1WbJkCevWrfN0mSJylTIypK0GqhhjKhhjfIH7gMUp2iwCbjPG+Bhj8uEcDt2agTWJiGQLB0/H8sDUv/hm02GealGV+f0akXD+DF27dqVHjx7UqFGDDRs20L59e0+XKiJXKcPmpFlrE40xA4HvAG/gY2vtZmNMf9fyydbarcaYZcBGIAmYaq0Nz6iaRESyuouXd3p96VYcSZbXO9fhvhDnXN0RI0bw9ddf88Ybb/DMM8/g7e3t2WJF5JoYa1NOE8vcgoODbVhYmKfLEBFxu30nzzN4/nrW7j9NSIXCvNGlDoVzJRIVFUXFihU5ffo0Bw4coE6dOp4uVURcjDFrrLXBV7OurjggIpKJbTtylhe+2MTOo+c4dyGRArl9eOvuunQLLs2PP/5Ik4ceIiAggL///ptChQpRqFAhT5csIteJQpqISCaU6Ehi1h/7eGPZNgrlzcXdNwVSJH9uOgaVomgeGDhwIB988AHVq1dn4sSJOmpTJBtSSBMRyWSOnImj3+wwNkae4ZZKRXjnniACCuYBYPfu3QS1bs3u3bsZPHgwr732Gnnz5vVwxSKSERTSREQykWXhh3n+i00kJVnevfdGOgUF/quXrHTp0tSsWZOpU6fSpEkTD1YqIhktQy+wLiIilycuwcGwr8LpP2ctAf55mNfvZjrXK40xhrVr19K2bVvOnDlD7ty5WbRokQKaSA6gkCYi4mH7T8bQbfIfzP5zH93ql2bJ47dSs5Q/CQkJvPrqqzRs2JB169axZ88eT5cqIm6k4U4REQ/6ZdsxBs1bR4IjiXH3BtGpXiAAW7duJTQ0lLCwMLp37857771H4cKFPVytiLiTQpqIiAdcSHTwzIKNfL3xEOUK5+P97jdRO7DgP8ufffZZIiIiWLBgAV27dvVgpSLiKQppIiJu9sfukwyev54jZ+PoUi+QER1rUSBPLiIiIsidOzelSpViypQpeHt7ExAQ4OlyRcRDNCdNRMRNkpIs437cwf0f/Ym3l2HmQyG8c28Q+XP78OGHH1KnTh2eeOIJAAIDAxXQRHI49aSJiLjBqfPxDP5sPcu3H+e2KkV57/56FMrny8GDB3n44YdZtmwZzZo14+233/Z0qSKSSSikiYhkoKQky5KNh3jj220cORvH0LY16HNrBYwxrFq1inbt2hEfH8/777/Po48+ipeXBjhExEkhTUQkg+w5fo6nF2xg3f7TVA8owPj76hFS4f9HaNaqVYtmzZoxevRoqlSp4sFKRSQzUkgTEbnO4hIcvLVsOx+viiCfrzeju9ThnuAyeHsZFi1axOTJk1m0aBGFChXi888/93S5IpJJKaSJiFxHa/efYsjnG9l57Bwdg0rx/F3VKVkwL2fOnOGJJ55g5syZ3HjjjRw/fpzAwEBPlysimZhCmojIdTLxl12M/X47Rfx8md0nhNuqFAPgp59+onfv3hw6dIihQ4cybNgwfH19PVytiGR2CmkiItfoxLkLDF8UztJNR2hcuQjv3htE8QJ5AHA4HDz11FP4+fnx+++/ExIS4uFqRSSrUEgTEbkGC9dEMmLJZqIvJPJUi6r0b1IJXx8v/vjjD2rVqoW/vz+LFi2iRIkS5M2b19PlikgWomO9RUSuwpEzcQycu5anF2ygfFE/Fg1ozKBmVbCOBIYMGcKtt97KqFGjAChfvrwCmohcMfWkiYhcgURHEiOWbOGzsAPEO5IYdGdlnmheFW8vw7p16wgNDSU8PJy+ffsybNgwT5crIlmYQpqIyGXafiSa/nPWEHHiPHdUK8bQtjWpXDw/AHPnzqVnz54UK1aMb775hjZt2ni4WhHJ6hTSREQuw6w/9vL60q3k8/Xhgwduok2dkgBYazHG0LhxY0JDQxkzZgyFCxdOf2MiIpdBIU1EJB3WWt76bjuTlu+mUjE/ZvdpSKlCeUlKSmL8+PGsXLmShQsXUq5cOaZNm+bpckUkG9GBAyIiabiQ6GD4os1MWr6bu2oHsOTxWylVKC8RERE0bdqUp556ioSEBM6fP+/pUkUkG1JPmohIKtbuP8XwReGEHzxL6M3leLl9LbwMfPTRRzz11FN4eXkxffp0evbsiTHG0+WKSDZ0xSHNGOMN3Get/SQD6hER8ahERxKz/9zHyK+3UCR/bibcX48ON5YC4OzZs4wYMYKQkBCmT59O2bJlPVytiGRnaYY0Y4w/MAAIBBYDPwADgWeA9YBCmohkK7uORTNw7jq2HYmmYYXCvN/9Jorm92Xx4sW0bt0af39/Vq1aRZkyZfDy0mwREclY6f2VmQ1UAzYBDwPfA12Bjtbajm6oTUTEbWb+vpc2E37j0OlYPnjgJub1awRxZ+nWrRsdO3bk448/BqBcuXIKaCLiFukNd1a01tYBMMZMBU4AZa210W6pTETEDc5fSOTJ+ev5YctR7qhWjLfurktx/zwsXryYvn37curUKUaPHk3fvn09XaqI5DDphbSEizestQ5jTIQCmohkJ5GnYhjwyVo2RJ7hiWZVePzOyvh4ezFy5EiGDx/OjTfeyA8//EDdunU9XaqI5EDphbQbjTFngYuHLeVNdt9aa/0zvDoRkQxgreXLdQd5efFmkpIs4+8LomNQIElJSQC0b9+e+Ph4hg0bhq+vr4erFZGcKs2QZq31dmchIiLu8sS89SzecIiaJf15v3s9SuQzPP7448TGxjJ16lSCgoIICgrydJkiksOlOfvVGJPHGPOkMeZ9Y0w/Y4zOqSYiWdrJcxcY8MlaFm84RNf6pVny+K0c2bmRoKAg3n//fQoUKPBPb5qIiKelF7xm4pyXthJoA9QCnnBHUSIi11N8YhKz/tjLm8u2kZhkGdC0Ev0al+WlF19gzJgxlClThl9++YU77rjD06WKiPwjvZBWM9nRndOAv91TkojI9bP3xHn6zFzN7uPnubVyUV5sU4OapfzZv38/kyZN4qGHHuLtt9/G31/TbEUkc7ncozsTddkTEclq1uyLou+sNSQ6kpjcoz7Nqxdl/vz51OjenbJly7Jt2zZKlizp6TJFRFKVXkgLch3NCc4jOnV0p4hkCcfOxvHWd9v5Ym0kxQvk4dO+jbCnD3LLLR1YvXo1xYsXp0WLFgpoIpKppRfSNlhr67mtEhGR62DReuepNWIuOHiwUTkGt6jCjA8n8cILL+Dn58f8+fNp0aKFp8sUEbmk9EKadVsVIiLX6ExMAsMWhbN4wyFqlPRn/H1BVC1RgO7du/Ppp5/Srl07PvroIwICAjxdqojIZUkvpBU3xjyV1kJr7TsZUI+IyBVJSnKemPb1pVs5FRPPw7dW4Pm7qmNc/2f27t2bFi1a0KtXLzS3VkSykvRCmjeQn/9fcUBEJFPZdSyawfM3sOngGWqV8mdarwYU946hQ/t2NGjQgBEjRmhoU0SyrPRC2mFr7atuq0RE5DJZa/l41V7G/bgDL2N4q2tdutQLZMFn87lzwADi4uJo3769p8sUEbkm6YU09aCJSKZz8HQsT85bx+q9p6hZ0p/JPeqTz8bQ/f77WLBgAY0aNWLmzJlUrVrV06WKiFyT9EJaM7dVISJyCdZa5vy1n/E/7uBUTAIvtalB78bl8fH2Yt267SxdupTRo0fz7LPP4u2tSw+LSNaX3gXWo9xZiIhIWnYcjea5zzey/sBpapXy59O+jSieJ4lP5symZ8+e1KtXj3379lGkSBFPlyoict2keYF1ERFPS3Qk8dGve2j33m/sPXme0V3qsGTgrewP/5s6derQp08fdu7cCaCAJiLZTnrDnSIiHrPzaDSDP1tP+MGzNK5chLe7BVHAx8ETTwzi/fffp2rVqqxatYoqVap4ulQRkQyhkCYimYojyTLl1928/f0OCuXNxfj7gugYFEhSUhIhISGsWbOGQYMGMXr0aPLly+fpckVEMoxCmohkGgeiYnh6wQb+joiiSdVivHF3HYrk9cZai5eXF0OGDKFo0aI0bdrU06WKiGQ4zUkTEY87dyGRN5dto8W7K1h/4DQvtqnOjN4NOBqxnfr16zN16lQAunXrpoAmIjmGetJExKO2HTnLQ9NXc+hMHG3qBPBS25qUyJ+L1157jREjRlC0aFFKly7t6TJFRNxOIU1EPMJay4I1kQxZuJEb8vkyp09Dbq1SlO3bt9OlVSh///039913H++//76O3BSRHEkhTUTc7udtR5nw0y7WHzhNg/I38N79NxFQMA8AERER7N69m/nz53PPPfd4uFIREc9RSBMRt0lwJDH0y3Dmhx0gf24fXutcm3uCy3DwwH5mL17Jgw8+SOvWrYmIiKBAgQKeLldExKMU0kTELQ5ExTB4/nrC9p0i9OZyvNimBrl9vJg2bRqDBw/G19eXDh06ULBgQQU0EREU0kQkg1lrmfPnPsZ+v4O4BMc/5z07fPgwffv25ZtvvqFp06ZMnz6dggULerpcEZFMQyFNRDLMuQuJPP3Zer7bfJSQ8oV5s2tdKhT14/z589SrV4+zZ88yYcIEBgwYgJeXzggkIpKcQpqIZIgdR6N5eGYY+6NiGNK6Ov1ur0hcbAwAfn5+vPnmm9x8881UrVrVw5WKiGRO+tdVRK4ray1LNhyi/Xu/EROfyCcPN+TROyqx9JuvqVy5MkuXLgWgZ8+eCmgiIulQT5qIXDdR5+N57vMN/Lj1GHUCC/JhaH3yEc9DDz3E9OnTufHGG3ViWhGRy6SQJiLXxbebDjNs0WbOxibwbKtq9Lu9Ir/9uoJevXoRGRnJSy+9xPDhw/H19fV0qSIiWYJCmohck9h4B8MXhbNgTSR1SxdkRu8G1A50HqW5Z88e8uTJw++//07Dhg09XKmISNZirLWeruGKBAcH27CwME+XISLAuv2neOnLcLYcPsujd1TiyeZVWLv6byIjI+nWrRvWWi5cuECePHk8XaqIiEcYY9ZYa4OvZl0dOCAiV+xCooOXF4XT+YPfOXn+Ah88cBNPNq3AK8OGcuutt/Lqq6/icDgwxiigiYhcJQ13isgViUtwMHDuWn7ceowHGpblmZbV2L9rKyEhrdm4cSN9+vThnXfewdvb29OliohkaQppInLZNkaeZtCn69gfFcMr7WvSq3EF9u7dS0hICIULF2bJkiW0a9fO02WKiGQLCmkicll+3naUgXPXcUM+Xyb1qE/DQOcwZvny5fnggw/o1KkTRYoU8XCVIiLZh+akiUi6LiQ6GLFkMw/NCKPMDflY8Egjtv04n7Jly7JmzRoA+vTpo4AmInKdZWhPmjGmNTAe8AamWmvfSKNdA+BP4F5r7ecZWZOIXL7wg2d4+rMNbD8azf0hZbi/Rl4e6NKW5cuX07ZtW0qVKuXpEkVEsq0MC2nGGG9gItACiARWG2MWW2u3pNLuTeC7jKpFRK5MgiOJCT/tZPKK3fjl9mH8fUFErfuexiGDMMYwbdo0evfujTHG06WKiGRbGdmTFgLsstbuATDGzAM6AltStHscWAg0yMBaROQy/bLtGMMWhRN5KpaWNUvwxt11Kezny6uLDxAcHMz06dMpX768p8sUEcn2MnJOWiBwINn9SNdj/zDGBAKdgcnpbcgY088YE2aMCTt+/Ph1L1REnKfWeOPbbfSesRpj4IMHbqJZ7t2s/u0XAF588UV++uknBTQRETfJyJCW2jhIyssbjAOGWGsd6W3IWvuh/V97dx5nY93/cfz9NYMQkSX7EoMYY5nJkjC0iURRlrKlEKVo4b5b3LcS0YJCIbIkyTJUbqUiomTsxjohM9YwzBjDbN/fHzPd9/xkOYZzrnPmvJ6PxzzqnHONx9vja2be87muc32tDbPWhhUvXvy6BQSQYeeReD08YY0++ul3ta9XVp93Ddb0N59Xp06d9NFHGb9DBQYGKlcu3msEAJ7iztOdsZLKZXlcVtKhC44JkzQn87qWYpJaGWNSrbURbswFIIt9xxPVadKvkqQPOteVidmg2+u11IkTJzR8+HC9/PLLDicEAP/kzpK2TlKQMaaSpIOSOknqkvUAa22lv/7fGPOppK8paIDnrNt/Uk/PWq+U1HRF9G+sw7s2qlmbNgoJCdHSpUtVu3ZtpyMCgN9yW0mz1qYaY55Rxrs2AyRNtdZGGWP6Zr5+2evQALhPerrV20t3atrq/SpV+AZNeLiKssR2KwAAG0JJREFUgm4pqColmmjatGnq0qWL8uTJ43RMAPBrxtoLLxPzbmFhYTYyMtLpGIDPOnDirAbP36Jf9p5Qi8o3Kdf62fry88+0efNm3hQAANeZMWa9tTYsO5/LtlCAH5m3Plb/XLBVktQzKEWfvf2E9uzZowEDBqhEiRIOpwMAZEVJA/zAnwnn9WrEVn0bdVT1KxZRid0RGtb7XZUtW1Y//PCDWrRo4XREAMAFeD89kIMlJafpvWW71eKdFfo26qj6NLtVs55sqOQzp9SjRw9t2bKFggYAXopJGpADWWv1w45jeiViq47Gn1eDCjfplv3f6d4SJZUnMJcmTpyogIAAp2MCAC6DkgbkMNZajf52lyas+F0ViubXW82LatzQ5zV37VoVyJWi0NBQChoA+ABKGpCDnE5KUZ+Zkfp170k9VKeUyh1eqV7t/qH8+fNrzpw56tixo9MRAQAuoqQBOcT6P05q0NzNOhiXpMEtqyvv3p/Ua9BAtW7dWpMnT1apUqWcjggAuAqUNMDHWWv12doD+tfiKN2UL1DjHiynVg0rK6VxeRUsWFAdOnRQ5tZrAAAfQkkDfNjJxGT1nhGpyD/iVLNwmtJWjteTEzdq+/btKly4sB555BGnIwIAsomSBvioTTGn1P+zDTp4KkmNzS4tHT1cZ8+e1ciRI1WoUCGn4wEArhElDfAx51PT9OrCbZq/IVZF8kqVt07W7CWLVL9+fc2YMUPVqlVzOiIA4DrgZraAD9l9NEH3j12lL9fHqnVIaf3w8j0qlMdo+PDhWr16NQUNAHIQJmmAj/hx51H1+2yD8tnzCvljkV7oO1SF8+fRggULeGMAAORATNIAL5eSlq6hi7ap1/RIBR7Zrj+nD9A3c2do+fLlkkRBA4Acikka4MUOnkrS07PWa9O+o7pp2zxt+26OgoKCtHr1ajVs2NDpeAAAN2KSBngha63mRsborndXaPuheIXGrdC27+ZowIAB2rRpEwUNAPwAkzTAyySeT9W/Fkdp7m/7FFLU6oMn71XRvE20vlt7hYeHOx0PAOAhlDTAi2w7eFr9Ptug6J3bZFeM1778gSr7YhsFBgZS0ADAz1DSAC+xfOcx9Zu1TvFr5+vPn2ap6M03a8TYyQoM5MsUAPwR3/0Bh6WmpWvo4ijN+HGzTi8eoYQD2/XII49owoQJKlasmNPxAAAOoaQBDopLTNaAORu1as9xtawXpL07Suupt19Tx44dubUGAPg5ShrgkGXbj2rQ1GXat2Sy3hj1ngY+ECrb4zvKGQBAEiUN8LhDp5L0xtdRmvvZTJ1ePkV5A3OpToF4SdyYFgDwP5Q0wEOstVq48aCGzFypI9+MU8KetWrarJmmf/qpKlas6HQ8AICXoaQBHpCalq7B87dq/oZYnV85VckxmzVmzBg9++yzypWLe0oDAP6Okga42c4j8Xru01WKijmu/g/UV9dnpuvMmQRVr17d6WgAAC9GSQPcxFqrT37ep6EfztSxJWMVHByiIR9247ozAIBLKGmAG6SmpeupT1Zq3vgROrPlO91WI1jTJo6hoAEAXMbFMMB1lpScph7vLdDMlzoqcdv3Gjx4sDZuiFSdOnWcjgYA8CFM0oDrKOrQab0wd7O2H7KqXKWKpo5boMaNGzsdCwDgg5ikAdfJiOlfqX7zVjoSl6DpfZpp1/rVFDQAQLYxSQOu0ZG4M2rZfYA2fz1d+QoX15hWZRRevYTTsQAAPo5JGnANZn6zUrfeVlubv5qmsLvbad/u7QpvwLVnAIBrR0kDsiH+XIre+CpKT/Xpo9TEOH0wbbbWfTdftxS72eloAIAcgtOdwFX6aPEqTfzlmE7bG/T4kHf06kOhqlimpNOxAAA5DCUNcNGJhHN66Nmh+vmzsSoVdo8WfPapGtxa1OlYAIAcipIGuOCbNVvUpWsPxe/dqKDQJvr2iwmqVJ6CBgBwH65JA65gxOQv9GDzhkqM3alXR47RrnU/qVL5ck7HAgDkcEzSgEs4Fn9Ow5fs0PxN51WsaqgWzZqkhrVvczoWAMBPMEkDLmLQyImq2uhefbPloPo/cLtiNv5EQQMAeBSTNCCL7fsOqnWnntr/2zIVrnCbZj0erIY1KjodCwDgh5ikAZmeGz1VtUNqaX/kjwrv8qwO79pEQQMAOIZJGvzekdPn9K+FmzTlzX/oxkJFNGPRV3qwBXtuAgCcRUmD30pPtxo+LUKf7w1UqgnUS2Nm6NWOTVUgfz6nowEAQEmDf9q076ge7P6MYlbNU822fbVk0ihVKVHQ6VgAAPwX16TBr6SlW/3z44VqcHuYYlbN090duuuXmaMpaAAAr8MkDX7jjxOJavX0UG2f977yFy6uGRHfqGPbVk7HAgDgoihp8AsLN8RqyIKtSilSRfe066i5UyeocOHCTscCAOCSON2JHO3IqUTV69BfXXs8oZqlC+k//35M3y2YTUEDAHg9ShpypLPJqRr8yVLdGhymjfMnqNrNAZrZM1TVSnLtGQDAN1DSkONsiz2lmu2f1+i+7ZQWd1CjPpyiyOVLVCDfDU5HAwDAZVyThhzDWqtZaw9o6JzVivl+usIa3qGIL2apdOnSTkcDAOCqUdKQI5xOSlaX1yZoW0BlhYdUUf9f1+r2kNtkjHE6GgAA2cLpTvg0a60+/X6jKtZrpiXvDlSLPHs1rcftql+7BgUNAODTKGnwWYdOJenuZ99WrwfDFR+9QQNffVOf/PtZ5cpFOQMA+D5Od8InLdp0UE/2e07Hf5mv8tVq6et5n6tWcE2nYwEAcN1Q0uBTzianqt+s9Vqx+7jK126s7uE1NHLY6woM5J8yACBn4ScbfMbKqANq36OvkgMLaOiw4RrQ4n4FBnDGHgCQM/ETDl4vOTVd/d+dpbsa19fx9d+qbZ2yGnh3EAUNAJCjMUmDV1u757C69Hlee5fPVcESZTV9yTI91LKF07EAAHA7RhHwWt9GHVGX9xZr38qFuv/RHjq8dycFDQDgN5ikwetEHz6lfiM+1u78wape7TZ9vjFK9WsFOR0LAACPYpIGrzJh/o+qVS9Myz4YogdKJSmif2MKGgDAL1HS4BVSU1PVuf8Q9X/0PqWfOamPZszRh8910A25A5yOBgCAIzjdCcedS0lT1dubK2bzzypXr7lWRHymW8uVcjoWAACOYpIGx6Snp2v7oVNqNXaVkireqY4vjdbe376noAEAICZpcEj03v1q1b6LjhcLUbk7H9a8UYPUrGpxp2MBAOA13DpJM8a0NMbsMsZEG2OGXOT1x4wxWzI/1hhjarszD5xnrdWb709Q9Ro1FR21UcEVSmjZwKYUNAAALuC2SZoxJkDSeEn3SIqVtM4Ys9hauz3LYfskNbPWxhlj7pc0SVIDd2WCs/bHHFSbjt217ZcfVKBCLY3/aLK63VdfxhinowEA4HXcOUmrLynaWrvXWpssaY6ktlkPsNausdbGZT78VVJZN+aBg6IOndZDb81V1LqfdUeX5/XH1t/UvWUDChoAAJfgzmvSykiKyfI4VpefkvWS9J+LvWCM6S2ptySVL1/+euWDB5w4cUKvjf9cS85WUrEytfTliki1bxzsdCwAALyeOydpFxuR2IseaExzZZS0wRd73Vo7yVobZq0NK16ca5d8xZcLF6tc5eqaOGyQQm5O18J+d1DQAABwkTtLWqykclkel5V06MKDjDEhkqZIamutPeHGPPCQhIQEtevUTY8+3FapuQuo37uzteilB1Tu5vxORwMAwGe483TnOklBxphKkg5K6iSpS9YDjDHlJS2Q1NVau9uNWeAhcWeSVLVGbR2P3a9STR7V/Clj1ahqSadjAQDgc9xW0qy1qcaYZyR9KylA0lRrbZQxpm/m6x9Jel1SUUkTMi8gT7XWhrkrE9wnJSVF6w6c1msR22RrtdGjT9XV5JcfU6EbcjsdDQAAn2SsvehlYl4rLCzMRkZGOh0DWaxd+5vaPdpFafU6qkJYc73/aB3dGVTM6VgAADjOGLM+uwMotoVCtiUnJ2vAi4PV6I479GfcadUNKqMVL4ZT0AAAuA7YFgrZsnXrVrXp0Fl/7I7STSF3a+Tod/XkXcEKDKD3AwBwPVDScNXiEpM1cEKEYmIPqmHvEZo7YgDv3AQA4DqjpMFle/bs0edLf9a8E6V1ulBdvT3nRw1qXUe5crFrAAAA1xslDVeUnp6uUe9/oNdfGaL0PAXU4vU5mv1UQwWXucnpaAAA5FiUNFzWgQMH9OCjj2vz2lXKd2uo+r8+WkM7NdGNefmnAwCAO/GTFpcUuXO/7gytpeSUVIV0eklfvPeqqpcq5HQsAAD8AiUNf3P27Fl9uemYhn+zQ4WadFPn9m00uue9yhPIOzcBAPAUfuri/5k9Z66KlS6vIRPnKbRCEW2d+67GPtWSggYAgIfxkxeSpJMnT6pN+0f1WOeOSstXRA83rKpZTzbQLYVucDoaAAB+idOd0NKlS/V49546cfxPlWrRTTPHjdBdNUs7HQsAAL9GSfNz1lp9OO97xafnUb1nxitiaFduTAsAgBegpPmpFSt+0ortsVqXWl7bbm6qXu900PtdbtcNuQOcjgYAAMQ1aX4nKSlJAwcOVPMWzTVy+JuKT0rRW+1ra3zXBhQ0AAC8CJM0P7Ju3Tp169ZNO3fu1I11W6vXwFf07mMNFcC2TgAAeB1Kmp/YsmWLGjVqpII3F1fZzm+qfEgj/bNdXQoaAABeipKWwyUkJKhgwYIqXKaybrm3jwKqNlXjGhX0fsc6KlGQ22sAAOCtuCYth0pLS9OoUaNUoUIFjZ2/Uq3H/ax8dVprbPfG+rx3Q5W8iYIGAIA3Y5KWA0VHR6t79+5as2aNKoU11zs/xaphjYoa8XCIqpS40el4AADABZS0HGbixIl68cUXlSswt0q1fUkBNcL1VJNKevHeasodwOAUAABfQUnLYTZt2aayNUKVWL+XbqtcURMfD2V6BgCAD6Kk+ThrrWbMmKGqVasqNndZbSzVRufvul9ta5XWsLY1VfTGvE5HBAAA2UBJ82FHjx5V7969tXjxYlVv2kZJjfqoesmCmtQzRHXKFXY6HgAAuAaUNB81f/589e3bV/EJCSrbsrfO1mqtfuGV9eK91bj3GQAAOQAlzQctWrRIHTp0UIVqwSr8yHDdULyCZj7ZgOkZAAA5CCXNh5w4cUJFixbV7U3uUqNuQ3SwREPVrVJCozuEqELRAk7HAwAA1xH3ZPABCQkJ6tu3r2rUqKFZy7eq5bjVOl62qd54uLa+6N2QggYAQA7EJM3LrVy5Uj169ND+/ftV477H9Mo30bq1ZBF93DVUVW8p6HQ8AADgJkzSvFRqaqpeeOEFhYeH61xquir3fEfJ9broH21CtGxgUwoaAAA5HJM0LxUQEKB9+/apZYeuiirXRkWLFtH0J+qrWknKGQAA/oBJmhdJSUnRsGHDFB0draSUNIX1Gqbttz6qOpVKan6/OyhoAAD4ESZpXmLbtm3q1q2bNm7cqM0Hzyim/L06lnBeD9YurZHtayl/HpYKAAB/wiTNYWlpaRo1apRCQ0O1/0CManUfpvVFmqlC0fya26eRxnWuS0EDAMAP8dPfYWPHjtXgwYNVtX4Lna3/hHIVL64P2garTe3STkcDAAAOoqQ5wFqro0ePqmTJkqrSpJ0qdYzTuQoN1KNRRQ2+v7puzMuyAADg72gDHhYTE6NevXppz+/7FPLsx9p8JElB9e/W0DY1dWdQMafjAQAAL0FJ8xBrrWbOnKkBAwboXHKKCjZ7QrtPnNcrrW5Tz8YVFRjA5YEAAOB/KGkeEB8fr+7duysiIkLFqtRWgRbPqGlosMZ1rqviBfM6HQ8AAHghSpoHxCak6bddMSrS/AmVatJBg1vVUJf65WWMcToaAADwUpQ0N4mLi9Mzg16WrfuI1hxKUWCboXrlrqp6Orwyt9QAAABXRFtwg0VfL1HX7j2VcOqESieU0IAnu6p7o4oqedMNTkcDAAA+gpJ2HZ05c0adn+yvr7+YodxFy6vzmzM05pmHVaIg5QwAAFwdStp1EnPyrFp1fELbvp+ncs06avLYUbqvdnmnYwEAAB9FSbtGpxIS9d5XGzRra7zSbmur3vc+qHEDOytvYIDT0QAAgA+jpGWTtVZTFn6v559+Smm5C6jbW5/q1dbNVb5ofqejAQCAHIA7qGbDH3/Gq377PurdoaVSzyXqtdde1aRut1PQAADAdcMk7SqcS0nTyC9/1tsvPKlzR6IVeldbfTV7ikqVYDsnAABwfVHSXJCebvX11sMa/e1O/XEkTjcVzK8xI2erT/fOTkcDAAA5FKc7r2DFrmNq/M/Z6vJ4V+W1qZr9dDMd3rWJggYAANyKSdolnEtJ07CvovTxxx/r1PKpuiFvHg1rWkh3BHFqEwAAuB8l7SJ+2v2nBk79QTu+GKVz+zfq7nvu0bSpU1W2bFmnowEAAD9BScsiPd1qwopovfPdbsUvfE86uksTJ05Unz592AwdAAB4FCUt0+HTSXrsg2Xa82ei2tSvqn7dZypfnkBVrlzZ6WgAAMAPUdIkzfxlvwa/O0VHl3ygBneGa/yYCCZnAADAUX5d0o7Fn9OgmasVMXG4EqOWq3pwbU1+/y0KGgAAcJzf3oLjjxOJeuD16Zrzj45K2rFSr7z2mrZsWKeaNWs6HQ0AAMD/Jml/vTlg/PLfFZCniIKrV9WUCeMUFhbmdDQAAID/8ptJmrVW30UdUYPnPtSQAX0UVDyfFr/USpt+W0NBAwAAXscvJmmxcWf10pxILZk2RvGREbqldDl90LaiKhS/0eloAAAAF5WjJ2nnU9M0bfU+3fniFC14/XHFr1uop57qreidUapQoYLT8QAAAC4pR07STp9N0Sc/79WMX/9Q3JlzOrXkPRXJnabpS5fqvvvuczoeAADAFeWoknY0/pwmrvhdX0bG6NSh/WpUp5oGdKqrm7t9rTJlyqhIkSJORwQAAHBJjilpizYd1OD5W3QuOUVlY5crev5EBRUfqKZVm0sq7nQ8AACAq+LzJe3I6XN6a8kOLd58SLfmOaOEn8Zq9dpf1K5dOw0cONDpeAAAANnisyXtZGKy5q+P1bgf9uhsSpqa5N6nhe8NUWBgoGbMmKHHH3+cnQMAAIDP8rmSlpKWrhe/3KyIjQeVmm51R+WieqNdsFJPVlb8lmX68MMPVa5cOadjAgAAXBNjrXU6w1UpX62WzfXQSD0SWkbFjqxT9JbfNGnSJKZmAADA6xhj1ltrs3XXfLfeJ80Y09IYs8sYE22MGXKR140xZlzm61uMMfWu9GemWyslndbvnw/TkAG9tWPHDiUmJrrnLwAAAOAQt53uNMYESBov6R5JsZLWGWMWW2u3ZznsfklBmR8NJE3M/O8lJcafVsKUfjqcmqRRo0Zp0KBBCggIcM9fAgAAwCHuvCatvqRoa+1eSTLGzJHUVlLWktZW0gybcc71V2NMYWNMKWvt4Uv9oaeOHVLBMlX0y9IFqlmzphvjAwAAOMedJa2MpJgsj2P19ynZxY4pI+n/lTRjTG9JvTMfnk+I3b0tODj4+qaFpxSTdNzpEMgW1s63sX6+jfXzXdWy+4nuLGkXu5L/wncpuHKMrLWTJE2SJGNMZHYvwIPzWD/fxdr5NtbPt7F+vssYE5ndz3XnGwdiJWW9F0ZZSYeycQwAAIDfcWdJWycpyBhTyRiTR1InSYsvOGaxpG6Z7/JsKOn05a5HAwAA8BduO91prU01xjwj6VtJAZKmWmujjDF9M1//SNISSa0kRUs6K6mnC3/0JDdFhmewfr6LtfNtrJ9vY/18V7bXzuduZgsAAOAP3HozWwAAAGQPJQ0AAMALeW1Jc8eWUvAMF9buscw122KMWWOMqe1ETlzcldYvy3G3G2PSjDEdPJkPl+fK+hljwo0xm4wxUcaYnzydERfnwvfOm4wxXxljNmeunSvXccMDjDFTjTHHjDHbLvF6tjqLV5a0LFtK3S+phqTOxpgaFxyWdUup3srYUgoOc3Ht9klqZq0NkfSGuCDWa7i4fn8d97Yy3hgEL+HK+hljCkuaIOlBa21NSY94PCj+xsWvvf6Stltra0sKl/Ru5t0T4LxPJbW8zOvZ6ixeWdKUZUspa22ypL+2lMrqv1tKWWt/lVTYGFPK00HxN1dcO2vtGmttXObDX5Vxfzx4B1e+9iTpWUnzJR3zZDhckSvr10XSAmvtAUmy1rKG3sGVtbOSChpjjKQbJZ2UlOrZmLgYa+1KZazHpWSrs3hrSbvUdlFXeww872rXpZek/7g1Ea7GFdfPGFNG0kOSPvJgLrjGla+/qpKKGGNWGGPWG2O6eSwdLseVtftQ0m3KuOn7VknPWWvTPRMP1yhbncWd20Jdi+u2pRQ8zuV1McY0V0ZJu9OtiXA1XFm/MZIGW2vTMn6hhxdxZf0CJYVKuktSPkm/GGN+tdbudnc4XJYra3efpE2SWkiqLGmZMWaVtTbe3eFwzbLVWby1pLGllO9yaV2MMSGSpki631p7wkPZcGWurF+YpDmZBa2YpFbGmFRrbYRnIuIyXP3eedxamygp0RizUlJtSZQ0Z7mydj0ljbQZNziNNsbsk1Rd0m+eiYhrkK3O4q2nO9lSynddce2MMeUlLZDUld/evc4V189aW8laW9FaW1HSPEn9KGhew5XvnYskNTHGBBpj8ktqIGmHh3Pi71xZuwPKmIDKGHOLpGqS9no0JbIrW53FKydpbtxSCm7m4tq9LqmopAmZ05hUa22YU5nxPy6uH7yUK+tnrd1hjFkqaYukdElTrLUXvW0APMfFr703JH1qjNmqjNNng621xx0Ljf8yxnyujHfcFjPGxEoaKim3dG2dhW2hAAAAvJC3nu4EAADwa5Q0AAAAL0RJAwAA8EKUNAAAAC9ESQMAAPBClDQAfsEYk2aM2ZTlo6IxJtwYc9oYs9EYs8MYMzTz2KzP7zTGvON0fgD+xyvvkwYAbpBkra2T9QljTEVJq6y1DxhjCkjaZIz5OvPlv57PJ2mjMWahtXa1ZyMD8GdM0gBAUuY2SeuVsSdi1ueTlLFf4hU3QwaA64mSBsBf5MtyqnPhhS8aY4pKaigp6oLni0gKkrTSMzEBIAOnOwH4i7+d7szUxBizURlbJI3M3IonPPP5LcrYH3GktfaIB7MCACUNgN9bZa194FLPG2OqSvo585q0TZ4OB8B/cboTAC7DWrtb0ghJg53OAsC/UNIA4Mo+ktTUGFPJ6SAA/Iex1jqdAQAAABdgkgYAAOCFKGkAAABeiJIGAADghShpAAAAXoiSBgAA4IUoaQAAAF6IkgYAAOCF/g+zmJUNPCUSpgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import torch\n", + "\n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "lr = LogisticRegression(random_state=13)\n", + "lr.fit(dataset.data.view(-1, 120), dataset.targets)\n", + "preds = lr.predict_proba(val_dataset.data.view(-1, 120))\n", + "\n", + "from sklearn.metrics import roc_curve, roc_auc_score\n", + "\n", + "fpr, tpr, _ = roc_curve(val_dataset.targets, preds[:, 0])\n", + "\n", + "print(roc_auc_score(val_dataset.targets, preds[:, 0]))\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "plt.figure(figsize=(10, 7))\n", + "plt.plot(fpr, tpr)\n", + "plt.plot([0, 1], [0, 1], 'k--')\n", + "plt.xlabel('FPR')\n", + "plt.ylabel('TPR')\n", + "plt.xlim([0, 1])\n", + "plt.ylim([0, 1])\n", + "plt.title('ROC curve of logistic regression baseline model');" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 5 folds for each of 100 candidates, totalling 500 fits\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 12 concurrent workers.\n", + "[Parallel(n_jobs=-1)]: Done 26 tasks | elapsed: 6.1min\n", + "[Parallel(n_jobs=-1)]: Done 176 tasks | elapsed: 33.3min\n", + "[Parallel(n_jobs=-1)]: Done 426 tasks | elapsed: 76.2min\n", + "[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 88.2min finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.5017980159110792\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAG5CAYAAADVp6NgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeZxN9R/H8dd3ZqyDEWPfl6lB9rFWso9sSfZljPwsRVIilaSQkoRkCQklKQop0iaRGGnsy9gydoZmGNvMfH9/3KvGxNjmzp3l/Xw8PNx7z3I/59x7577v9/s95xhrLSIiIiKSsni4uwARERER+S+FNBEREZEUSCFNREREJAVSSBMRERFJgRTSRERERFIghTQRERGRFEghTSSdMsY8aYw5bow5Z4zJnWBacWOMNcZ4JcHzbDPG1L2D5TobY7672+dPDZyvQUkXrPeAMaZhUq/3Js9pjTGlnbenGmNeSc7nv1u38943xgQbY35NjrokfVJIkzTF+aV0wfmld8wY85ExJluCeWobY340xkQZY/42xiw1xpRNME8OY8x4Y8xfznWFOe/7Ju8WuYYxJgMwDmhsrc1mrT3tquey1paz1v58k3r+88Vorf3EWtvYVXWlJM7XYJ+760hq1to+1toR7q5DJLVSSJO0qIW1NhtQCagMvHh1gjGmFvAdsBgoCJQAQoE1V1syjDEZgR+AckATIAdQGzgNVHdV0UnRanUb8gGZgW3J+JxuYYzxTMJ1JedrJCLpnEKapFnW2mPAChxh7aoxwBxr7QRrbZS1NsJaOxRYBwx3zhMEFAUes9Zut9bGWWtPWGtHWGu/ud5zGWPKGWNWGmMinF2ILzkf/8gYMzLefHWNMeHx7h8wxrxgjNkMnDfGDDXGfJFg3ROMMROdt32MMTONMUeNMYeNMSNvFEKMMZmcrX9HnP/GOx+7F9jlnO2sMebHm+1LY0xBY8wS5/aFGWN6xpuWxRgz2xhzxhizwxgz+Drb2NB5u7oxJsQYE+ncT+Ocs/0Sr55zxphaCbuSbrSPr1PrR8aYKcaYb4wx54F6zvoXGmNOGmP2G2P632b98V8jL2NMTWPMWmPMWWNMaPzuXGfd+5wttfuNMZ2dj5c2xqxytt6eMsZ8Fm+Z+F2EPsaYOc5aDzrfEx7x1v2rMWass979xphHbvLyVTPGbHfOP8sYk9m5rnuMMV87n+eM83bhm22Hc9oTzn11xhizwhhTLJHXYqTzdl1jTLgxZqAx5oTzPdw93ryZnNv1l/P1nWqMyXKD9QYbY9YYY951vgb7jKOFPNgYc8i5/m7x5k9sn3o6n/eUMWYf0CzBc93yZ04kqSmkSZrl/MJ5BAhz3s+Ko0Xs8+vMvgBo5LzdEFhurT13i8+THfgeWI6jda40jpa4W9URxxdDTmAu0NQYk8O5bk+gHTDPOe9sIMb5HJWBxsD/brDel4GaOEJqRRytgEOttbtxtBIC5LTW1r+FGj8Fwp3b1wZ4wxjTwDntVaA4UBLHPuySyHomABOstTmAUjj2O0CdePVks9b+Fn+hO9jHnYBRQHZgLbAUR4tpIaABMMAYE3gb9cd/jfIBy4CRQC7geWChMSaPMcYbmAg8Yq3NjuP99qdzHSNwtOLeAxQG3rtB7e8BPs56Hsbxo6F7vOk1cIRsXxw/OmYaY0wi+6IzEIhjf98LDHU+7gHMAorh+FFyAZgEkNh2GGNaAS8BrYE8wGoc749bkd+5bYWAHsD7xph7nNPectZXCcfrWwgYlsi6agCbgdw4Ph/zgWrOZbsAk8y/Qx0S26c9geY4Pk8BON7f8d3OZ04kaVlr9U//0sw/4ABwDogCLI4v8pzOaYWdj/lfZ7kmwBXn7ZXAm7fxnB2BTTeY9hEwMt79ukB4gnqfSLDMr0CQ83YjYK/zdj7gEpAlwXP/dIPn3gs0jXc/EDjgvF3cuS+8brDsP9OBIkAskD3e9NHAR87b+4DAeNP+d51tbOi8/QvwGuB7o+eL91gw8OvN9vEN9vmcePdrAH8lmOdFYNZt1P9EvPsvAHMTrG8F0A3wBs4Cj8d/nZzzzAE+AApfp2aLIwR4Ol/jsvGm9QZ+jrdPwuJNy+pcNn8in4c+8e43vfp+us68lYAzztuJbce3QI949z2AaKBY/G1J+P7H8d6/kOA1PoHjh4QBzgOl4k2rBey/Qa3BwJ5498s7nzdfvMdOO7fpZvv0xwT7qDH/vvcT/cwR7z2qf/rnin9qSZO0qJV1/PqvC/jjaHEAOAPEAQWus0wB4JTz9ukbzHMjRXAEojt1KMH9eTi+CMDRInS1Fa0YkAE46uziOQtMA/LeYL0FgYPx7h90Pna7CgIR1tqoBOsqFG96/G1IuD3x9cDRWrLTGLPBGNP8Fmu43X0cv4ZiQMGr+8y5317C8QUMt1Z/wvW1TbC+B4EC1trzQHugD47XaZkxxt+53GAcYWS9cRzx+sR1nscXyMh/X7dC8e4fu3rDWhvtvHnNwTGJ1P7Pe8AYk9UYM83Z/ReJI0DnNMZ43mQ7igET4m17hHO74td4I6ettTHx7kc7a8+DI3BujLfe5c7Hb+R4vNsXAKy1CR/Lxs33acLXP/58t/uZE0lSCmmSZllrV+H4JT/Wef888BvQ9jqzt+Pf7rPvgUBnl8+tOISjK+l6zuP48rkq//VKTXD/c6Cus7v2Mf4NaYdw/Kr3tdbmdP7LYa0tx/UdwfElc1VR52O36wiQy9nlGH9dh523j+JopbyqyI1WZK3dY63tiONL7i3gC+d+TrgPEkpsH1/3qRIsuz/ePstprc1urW16G/UnXN/cBOvztta+CWCtXWGtbYQj6O8EpjsfP2at7WmtLYijJWfy1XFo8ZwCrvDf1+0wdy7+9sR/DwwE7gNqWEf389UuZ5PYdji3v3eC7c9irV17FzWewhGqysVbp491HAB0t262T4/y33101e1+5kSSlEKapHXjgUbGmKsHDwwBuhlj+htjsjsHT4/E0bXymnOeuTj+OC80xvgbYzyMMbmNMS8ZY5r+9yn4GshvjBngHPyc3RhTwzntTxxjzHIZY/IDA25WsLX2JPAzjvFC+621O5yPH8Uxpukd4zhFiIcxppQx5uEbrOpTYKhzrJQvjvE9H9/s+a9TzyEc47pGG2MyG2Mq4GgR+8Q5ywLgRee+LAT0u9G6jDFdjDF5rLVxOLrTwNGVehJHK+eNzhWW2D6+mfVApHEM/s/iHCh+vzGm2u3W7/Qx0MIYE+hcV2bjGBRf2BiTzxjT0hk8L+Hoeo91bntb8+/A/DM4gl9s/BVba2Od9YxybmMx4Dnu4HWLp6+ztlw4WhCvHrCQHUcwOuuc9urVBRLbDmAqjv1VzjmvjzHmej98bpnz/TAdeNcYk9e53kLxxg3ezbpvtk8XAP2d++geHH8jri57u585kSSlkCZpmjPwzAFecd7/FcfYrNY4fkEfxDEY+EFr7R7nPJdwHDywE8f4tEgcX/S+wO/XeY4oHGPHWuDoitoD1HNOnotjwPoBHH/sP0u4/A3Mc9YwL8HjQTi6brbj+KL/ght3zY4EQnAMrt4C/OF87E50xDFu7AjwJfCqtXalc9rrOA4q2I+jFfILHF/s19ME2GaMOYfjIIIO1tqLzm67UThOhXLWGFMz/kI32ceJcn5Jt8AxPmk/jpaVGTgGkt9u/VdD66M4As9JHIF+EI6/px44WqiO4OgGfBh4yrloNeB357YvAZ6x1u6/zlM8jaMFdh+O8YnzgA9vZVtvYB6O994+57+r74HxQBYc+2Mdju7Fq264HdbaL3G0gs53dpNuxXGAzt16AcdBPuuc6/0eR0tfUkhsn07HMaYwFMdnZFGCZW/nMyeSpIy1N+tlEBG5dcaYJ3GEr1TZ2pDa6xeRtEMtaSJyV4wxBYwxDzi7gu7D0QLzpbvrulWpvX4RSbtcFtKMMR8axwkFt95gujHGTDSOE2NuNsZUcVUtIuJSGXEc8RaF43QGi4HJbq3o9qT2+kUkjXJZd6cxpg6OwaZzrLX3X2d6UxzjBJriOI/RBGvtrQ4EFhEREUnTXNaSZq39BceA0xt5FEeAs9badTjOz6PBmCIiIiI4zqjsLoW49gSC4c7Hjiac0RjTC+gF4O3tXdXf3z/hLCIiIiIpQtTFK5yMusT5y7FcPhZ2ylqb2ImZb8idIe1615q7bt+rtfYDHJdTISAgwIaEhLiyLhEREZHbYq1l3b4Inp3+DQfmjiJTQX/GjH6bAY3uPXjzpa/PnSEtnGvP8lyYOzsbuoiIiIhbnDl/ma83H2HSD3vYs2ohZ3/+iMyZMzN+9FCeaOh38zOYJ8KdIW0J0M8YMx/HgQN/O8/uLCIiIpKihZ04x7RVe1kSeoTzEce48P0kzuz5g0aBTfjow5kULHgnl0q+lstCmjHmUxwXuPY1xoTjuORIBgBr7VTgGxxHdobhuMhud1fVIiIiIpIUDkVEM2TRZtaEnQagQ7Ui1Mqdm55fHGL69On06NEDY643ouv2uSykOS+inNh0C/R11fOLiIiIJIW4OMvSzUeY9/tfhBw8g6eHoeP92cl0YC3DH28GQOODB8mSJUuSPq87uztFREREUrQ1YacY//1uNhw4Q0lfb/73UAl8joTwyjNdiI6OpnP7x/Hz80vygAYKaSIiIiL/cTzyIq8v3c6yLUfxzZaJtx4vT/3iWenf/2nmz59P9erVmT17Nn5+fi6rQSFNREREJJ5zl2IIHP8LkReu0K9eafrVL01GT0OlSpXYuXMnI0eO5IUXXsDLy7UxSiFNREREJJ7jkRc5G32Fl5uWoUPlPGTwAA8PD95++23y5ctHpUqVkqUOl10WSkRERCQ1unglFoCIsE2UL1+eCRMmABAYGJhsAQ0U0kRERET+Ya1l5ZZDRHz/AUN6tCFDhgzUrFnTLbWou1NEREQE2H4kkmffX8SPU18hJiKcXn2eYtzYMXh7e7ulHoU0ERERSdeOnL3ACws3s3rPKTh2ihwZLHOXL6dpYKBb61JIExERkXRr3b7TdB2zgDN7Q3mybz+ea9QI7wz9yZgxo7tLU0gTERGR9OdyTBzTVu3mtZFvErH6E3x9fXm+3lv4eLs/nF2lAwdEREQkXVm79xR1hs7j+aBWnP55Ns1btGD71i34+Pi4u7RrqCVNRERE0oVLMbGMW7mbKSu3cWTqU2TJ4MlH8+bRoUOHJLsoelJSSBMREZE0b+vhv+kx9QdOxGSiXS0/qtScRd0Ha1GwYEF3l3ZDCmkiIiKSZsXFWWat2c9LY97j9MoPeGHUOEa1bQZUdHdpN6WQJiIiImnS8ciLPDPrJ5ZMeo0LYb/zwIN1+F/rxu4u65YppImIiEiaYq3li43hDBo7k/Al7+IRe4lx48bxzDPP4OGReo6ZVEgTERGRNOPUuUu88MVmfth5gpyZDd5+pVj42Tz8/f3dXdptU0gTERGRNGH51qP0e+tD/j59ghEv9Kd3nabExQ3F09PT3aXdkdTT5iciIiJyHecuxTBk/u+07RzM3o+Hkvfwano+WBxjTKoNaKCQJiIiIqnYnuNRPDRgEmP7PMr5Ld/z3POD+GP9b6k6nF2l7k4RERFJlVZuP86zM75j2wcDKVSkGAu+WU3t2rXdXVaSUUgTERGRVCU2zvLMzB/4eu8lShUqQv9Zn9D58RZ4e3u7u7QkpZAmIiIiqcbZc9HU6/w0f349hydGfcjkZ5qQySv1d21ej0KaiIiIpAp//BlKw5ZtOXNoD7WaPM64J1um2YAGOnBAREREUoHX3hhDtYAA/j59kv5vfsDab7/Ax8fH3WW5lFrSREREJMWKiY1jxq/7mfRTGJlL12DIyLG80qamu8tKFgppIiIikuLExcXx5jsT+GpXNCd8KxHY/glebVEOv3zZ3V1aslFIExERkRTl4MGDNG/bma0b1pD9/np8/HF3WlYs6O6ykp3GpImIiEiKYK1lyvSZ+JUpx7Y/N1KhwyB+W/5lugxooJAmIiIiKcTcL7/lqV7/w9O3BAOnLuaPT96iXKG0fXBAYtTdKSIiIm61d+9e9l70ZvQmDwq3H84Xb/SlRklfd5fldmpJExEREbeIiIigU6dO+JcpS/cJSyiQMzOrJz2vgOakljQRERFJdt9++y1PPNGDEydPkqN2B1o8WJHxHQPInCHtnpz2dqklTURERJKNtZY+ffrQtGlTIm1m8nV9hy5PPseETgpoCaklTURERJKNMYZj0QbfB9rh80AnJgfVoHG5/O4uK0VSSBMRERGXunDhAi+//DKtWrUizKMImwo0I6CqD1M6V6G4r7e7y0uxFNJERETEZdavX09QUBC7du1iXfgljpRsSj3/vEzpXJUsGdW9mRiNSRMREZEkd/nyZV555RVq167N+fPnafjcRI6UbErH6kWZERSggHYL1JImIiIiSe6TTz5h5MiRtOvUhZhqQWw8dpmhzcrwv4dKuru0VEMhTURERJJEbGwsu3fvpkyZMnTr1o1LmXPx3o5MnD92mZGt7qdzjaLuLjFVUUgTERGRu7Znzx66devGrl272LNnD3vOWt7dlhHfbBmZ17MKFYvkdHeJqY7GpImIiMgdi4uL4/3336dSpUrs2LGDCRMmMivkJJ1m/E5+n8x8+VRtBbQ7pJAmIiIid+TChQsEBgbSr18/6tSpQ8imUH6Ju4/3fgyjafkCLOn3IHlzZHZ3mamWujtFRETkjmTJkoVixYoxbdo0WncMouuHG9h9PIqXmvrT86GSGGPcXWKqppY0ERERuWXHjh2jXbt27NixA4AZM2bQqkMQ7T9YR9iJKN7rWJledUopoCUBhTQRERG5JV988QX3338/S5YsITQ0FIANByJo9O4vhJ+5wOwnqtO0fAE3V5l2KKSJiIhIos6cOUPnzp1p27YtJUqUYNOmTbRp245xK3fTbtpv5MjixdKnH6R2KV93l5qmaEyaiIiIJGr8+PEsWLCA119/nSFDhmA8PHl2QShLQ4/QrEIBXmtZDt9smdxdZppjrLXuruG2BAQE2JCQEHeXISIikqZFRUURHh5OmTJluHDhArt27aJSpUrsP3WeJz/eyM5jUfSrV5rnA+9zd6kpmjFmo7U24E6WVUuaiIiIXGPVqlUEBwfj5eXFjh07yJIlCxUqVGTqqr2M/343GT09eK9jZVpULOjuUtM0jUkTERERwHHes+eee4569erh6enJRx99hJeXF0fOXiD4ow28+e1OapTIzdKnH1RASwZqSRMRERGOHDlCgwYN2LlzJ0899RRjxozB29ub1XtO8uxnfxJ5MYZhzcvS/YHiOr1GMlFIExEREfLly0flypWZOHEijRo1IiY2jtHf7mDaqn0UvicL83vVonTebO4uM11Rd6eIiEg6tXXrVho1asSxY8fw9PRk3rx5NGrUiK2H/6b1lLVMW7WP1pUL8d2zdRTQ3EAhTUREJJ2JjY1lzJgxVK1aldDQUPbu3QtAXJzlvR/28PiUtRyKiGZcu4q8064iWTOq480dtNdFRETSkbCwMLp168batWtp3bo1U6dOJU+ePOw+HsWA+X+y/WgkFQr7MKNbAHmz6+Lo7qSQJiIiko6MGDGC7du38/HHH9OpUyeMMcxf/xcjl+3Ay9Mwrl1FHqtcSAcHpAA6ma2IiEgad+jQIS5fvkypUqU4ffo0Fy9epFChQlyOiWPcyt1MXbWXioV9mNSpCkVyZXV3uWmKTmYrIiIi/2GtZc6cOfTv35+AgAB++OEHcufODUDIgQie/zyUA6ejaR9QhDdal8fTQ61nKYlCmoiISBp0/PhxevfuzeLFi3nooYeYPn06ABHnLzNs8Va+3nyUnFkz8H6nKjQtn1/dmymQQpqIiEgas2nTJho3bkxUVBRjx45lwIABYDxYEHKI0d/s4NylGPrXL03POiXJnjmDu8uVG1BIExERSWP8/f1p1KgRQ4cOpWzZsmw78jcDF4Sy81gU/vmzM7dtRe4v5OPuMuUmdJ40ERGRNGD58uU8/PDDnDt3jixZsjBv3jy88xWj+6z1NJv4K4fPXGB06/Is6/+QAloqoZY0ERGRVCwqKopBgwYxbdo0ypUrx/Hjx/HKlIVJP4bxwep9ZPAwDGjoR/faJfDJqq7N1EQhTUREJJX65ZdfCA4O5sCBAwwaNIjXX3+dA2cv02T8Lxw4HU3d+/LwxmPlKZgzi7tLlTugkCYiIpIKWWsZNmwYHh4erF69mho1azF33UHe+GYHmbw8ea9jZVpULOjuMuUuKKSJiIikIhs2bKBIkSLkz5+fefPmkSNHDo5fgMcmr2XL4b95yM+Xd9pV1CWd0gCXHjhgjGlijNlljAkzxgy5znQfY8xSY0yoMWabMaa7K+sRERFJrS5fvsywYcOoVasWQ4cOBSBPvvzM33SCwHd/Yd/Jc0zoUIk5T1RXQEsjXNaSZozxBN4HGgHhwAZjzBJr7fZ4s/UFtltrWxhj8gC7jDGfWGsvu6ouERGR1Gbr1q0EBQWxadMmunbtytixY9l1LIr+n25i1/EoapXMzbvtK5HfR+EsLXFld2d1IMxauw/AGDMfeBSIH9IskN04TnOcDYgAYlxYk4iISKqydOlS2rRpg4+PD4sWLaJVq1bMW/8Xr3y1Fd9smXivY2WalS+Ahy7plOa4MqQVAg7Fux8O1EgwzyRgCXAEyA60t9bGJVyRMaYX0AugaNGiLilWREQkJbHWYoyhVq1adO3alTfeeIOzNgstJv3K1sOR1CqZm3faVdSRm2mYK8ekXS/S2wT3A4E/gYJAJWCSMSbHfxay9gNrbYC1NiBPnjxJX6mIiEgKYa1l8uTJNGjQgJiYGHx9fZk0ZRofrD9Fk/G/cPjMBV5pXpa5PaoroKVxrmxJCweKxLtfGEeLWXzdgTettRYIM8bsB/yB9S6sS0REJEU6dOgQPXr0YOXKlQQGBhIVFcWes5ZBX4Ry8HQ0zSsUYHCgP0VzZ3V3qZIMXNmStgHwM8aUMMZkBDrg6NqM7y+gAYAxJh9wH7DPhTWJiIikONZaZs+ezf3338/atWuZOnUqi5cu45NNp2j/wW9EXYzhw+AAJnWqooCWjrisJc1aG2OM6QesADyBD62124wxfZzTpwIjgI+MMVtwdI++YK095aqaREREUqLLly8zevRoKlSowEcffUTeQkUJnrWB3/adpln5AoxtW5EsGT3dXaYkM+PoaUw9AgICbEhIiLvLEBERuWtLly6lXr16ZMuWjcOHD5M/f37W7I1g4OehnI2+zLDmZelaq7i7y5S7YIzZaK0NuJNlXXoyWxEREfmvM2fO0KVLF1q2bMnEiRMB8PHNx4tfbiXoQ8ew7BndqimgpXO6LJSIiEgyWr58OT169ODEiRMMHz6cQYMGEXbiHE9+vJE9J87RsXpRXm5WhmyZ9BWd3ukdICIikkwmTJjAgAEDKFu2LEuWLKFKlSos/OMwwxZvxcvD8GFwAPX987m7TEkhFNJERERcLDY2Fk9PT5o3b86xY8d49dVXOR9j6DknhO93nKBCYR8md65C4Xt05Kb8SwcOiIiIuMjFixd5+eWX2bdvH4sWLcJxFUT4cedxhizcwpnoyzzX6D561ympyzqlUXdz4IBa0kRERFwgJCSEoKAgduzYwVNPPUVMTAwHz1zijW928OPOExTKmYXP+9SmUpGc7i5VUiiFNBERkSR05coVRo4cyahRo8ifPz8rVqygfoOGTPtlH2+v2EWOzF4MbnIfPR4sQSYvnftMbkwhTUREJAlFRkYybdo0OnXqxMSJEzkQBc3f+5Wdx6IoWyAHHz1RjbzZM7u7TEkFFNJERETuUmxsLHPnzqVLly7kzp2bzZs34+2Ti/d+DOPDNfvJmtGTd9tXpFWlQv+MSxO5GYU0ERGRuxAWFkZwcDBr1qwha9astG3blo3HY3ltxiqORV4ksFw+Xn/0fvLlUOuZ3B6FNBERkTtgrWXq1Kk8//zzZMiQgTlz5vBAo+a0nLSGLYf/plQeb+Y8UZ069+Zxd6mSSimkiYiI3IG+ffsyZcoUGjduzIwZMwg948mj76/h1DnHNTe71CxGRi9dfVHunEKaiIjILbLWEhMTQ4YMGQgODqZ8+fLUa9WZ4St28cPOE5TM4820rlWpWiyXu0uVNEAhTURE5BacOHGCPn36UKBAAd5//31Kl6vEh7s8eWvCajJ4GgYF3kefh0vhqZPSShJRSBMREbmJRYsW0bt3b6Kiohg1ahQ/7DjOsMXbOBZ5kV51StL9geIU8Mni7jIljVFnuYiIyA2cOXOGrl278vjjj1O0aFHWrlvP5bJN6TE7BA8P+LhHDV5qWkYBTVxCLWkiIiI3EBERwdKlSxk+fDitn+jHkC+3s+1IJM3KF2BMmwp4Z9LXqLiOWtJERETiOXfuHFOmTMFaS6lSpQjbu4/stTrQfvoGjpy9wLSuVXm/cxUFNHE5vcNEREScVq9eTXBwMPv376datWoUu688I1ceZPGfR6hdKjdj21akYE51bUryUEuaiIikexcvXmTQoEE8/PDDAPz888/85ZGfBu/8zOI/j9Dn4VLM61lTAU2SlUKaiIike82aNWPs2LH07t2bP//8k5URuXhuQSgl82Tj66cfZMgj/u4uUdIhY611dw23JSAgwIaEhLi7DBERSeWuXLmCMQYvLy+WL1+OMYbqD9Zj6FdbWbblKF1rFuPVFmXx8lR7htw5Y8xGa23AnSyrd56IiKQ727Zto2bNmrz99tsABAYGctLHnwfe+pFlW44ysNG9vP5oOQU0cSsdOCAiIulGbGws7777LkOHDiVHjhyUKVOGA6fO88LCzfy+P4KSvt6Ma1+JSkVyurtUEYU0ERFJH/bu3UtwcDC//vorrVq1YsKkySzZdY4XJ6zGGBjWvCzdahfXZZ0kxVBIExGRdOHUqVPs2LGDOXPmUKJmE7p9uo39p85TvUQu3m1fiUI6clNSGHW2i4hImhUeHs6UKVMAqFGjBivXb+WHmPvoMnM9l2PimNqlKgt611JAkxRJLWkiIpLmWGv5+OOPefrpp4mJiaF5i5Ys2H6OKT/vJXMGT56uX5q+9UqTOYOnu0sVuSGFNBERSVNOnDhBnz59+PLLL3nggQcY+940+i0+QEcX1T0AACAASURBVOihs7SuUogXHylDnuyZ3F2myE0ppImISJpx5coVatasyeHDhxkzZgxlGnVkyMo9HI+8xIQOlWhZsSDG6MAASR0U0kREJNWLiooiW7ZsZMiQgTFjxhCZKS8rj2bk/fmhFMmVhelBATzo5+vuMkVuiw4cEBGRVG3FihWUKVOGuXPncvFKLGvjSvP6mij2njzHkEf8+WlgXQU0SZXUkiYiIqnSuXPnGDRoEFOnTqVMmTKUvvc+es3dyC+7T9L9geK80MRfBwZIqqaQJiIiqc7atWvp2rUr+/fvZ8Czz1G0cXf6f3+MU+cuMSjwPvrWK+3uEkXumkKaiIikOidPnsRay9RPl7D89D18+fNBapbMxbvtK/KQXx53lyeSJBTSREQkVdi4cSObN2+me/fuNGvegv2ZSzP65wP4ZrvA2LYVaVO1sLtLFElSCmkiIpKiXblyhTfeeIORI0dSpEgRilVvzKvLdnEo4gLNKhTgrccrkC2Tvs4k7dG7WkREUqzt27cTFBTExo0bad+xE8Wa9+WJuX9SwtebqV2qEFguv857JmmWQpqIiKRIJ0+epFq1anh7ezNs/Ey+v1CcdZvP0D6gCK+2LEvWjPoKk7RN73AREUlRIiIiyJUrF3ny5GHYWxP55Xw+Zh81FMttWPRUbaoUvcfdJYokC4U0ERFJEay1TJ06lcGDB/Ppgi/YbIsy62gBcmTOwIhW99KhWhEyeOoc7JJ+KKSJiIjbhYeH06NHD7777jtqPVSXEavPcjwuhmblCzCy1f3c453R3SWKJDuFNBERcav58+fTp08frly5wsT3JjEv8j7ORF9hTnAAde7VOc8k/VK7sYiIuFVERAT3338/P67ZwPosARyNvMTgwPsU0CTdM9Zad9dwWwICAmxISIi7yxARkbvw1VdfceXKFdq2bYu1lv0no/jf3D84FBFN//p+9KtfWqfWkDTBGLPRWhtwJ8uqJU1ERJLN2bNnCQoK4rHHHmPKlClciYllyqq9NJm4hhORl/i0Z02ebuCngCaCxqSJiEgy+e6773jiiSc4duwYr776KkFPPku7D9ax6a+zNC6bj6HNylI0d1Z3lymSYiikiYiIy23evJnAwEDKlCnDwkVfstfmo/n7vxETZ3m7TQXaBhRxd4kiKY5CmoiIuMyxY8fInz8/FSpUYN68eQTUaczLS3ez/sAWAordw9i2FSnu6+3uMkVSJI1JExGRJHfx4kUGDx5MiRIl2LJlCwD5qzSg7cyNbD58ljGPV2BB71oKaCKJUEuaiIgkqT/++IOgoCC2bdtG7969uSdvIUYt286MX/dTwtebaV2q4pcvu7vLFEnxFNJERCTJjBo1iuHDh5M3b16+/fZbilSoRftZGzl89gJNy+dnXLtKZM7g6e4yRVIFdXeKiEiSiY6Opn379qxcs4HvowrQ4r1fib4cw+TOVZjcuaoCmshtUEuaiIjcsdjYWMaPH0+lSpVo0KABI0aMYPm24zw+M5SYuDiCahXnmQZ+uvamyB1QSBMRkTuyb98+goODWb16NU8++ST169fn/Z/28s7K3fjnz87ULlV1YIDIXVBIExGR22Kt5YMPPmDgwIF4enoye/ZsajRuRZupv7Hx4BkCy+VjfPvKZMmork2Ru6ExaSIiclsWL15Mnz59qFWrFmtDNrEpUwUCx69m59FIRrcuz9QuVRXQRJKAWtJEROSmrLUcPHiQ4sWL07JlSxYuXIhf9fo89ekmDp+5QJ+HS9GrTklyaeyZSJJRS5qIiCTq5MmTtGnThkqVKnHkyBHOXY7lq7OFaTFpDWfOX2ZOj+oMecRfAU0kiaklTUREbuirr76iV69e/P3334wYMYKD0Rl4ed4aDpw+T/cHitPzoZIUzJnF3WWKpElqSRMRkf+IiYmhW7duPPbYYxQuXJgl36/mz3vq0HHGes5euMKs7tV5tUU5BTQRF1JLmoiI/IeXlxdeXl688sortO/5DO2mb+BybBxP1i1F33qlyZZJXx8irqaWNBERAeD8+fM8/fTT/1wQfcaMGTTq+jRdZm3kYkwcn/epzQtN/BXQRJKJPmkiIsKaNWvo1q0b+/btw8/Pj+J+/oxatoP5Gw5R0CczM4OrUalITneXKZKuKKSJiKRjFy9eZNiwYYwdO5bixYvz008/UcC/Cs3f+5WDp6MJqlWMZxveq8s6ibiBujtFRNKxyZMn8/bbb9OzZ09C/tjEpisFaDphNSciLzGrezVef/R+BTQRN1FLmohIOnPlyhUOHjxI6dKl6du3L5UqVeJUDj9aTN3I4bMXeLC0L++2r0Se7JncXapIuubSljRjTBNjzC5jTJgxZsgN5qlrjPnTGLPNGLPKlfWIiKR327dvp3bt2tSvX5/o6GjOXrJ8fsSHwV9sJne2jMzsFsDH/6uhgCaSArisJc0Y4wm8DzQCwoENxpgl1trt8ebJCUwGmlhr/zLG5HVVPSIi6VlcXBzjx4/npZdeIlu2bEyZMoXv95zljWU7OHnuEgMa+vFMAz+MMe4uVUScXNmSVh0Is9bus9ZeBuYDjyaYpxOwyFr7F4C19oQL6xERSZfOnj1LvXr1GDhwIIGBgSz5+XcWnilM/083kTWjJ18//SADGt6rgCaSwrhyTFoh4FC8++FAjQTz3AtkMMb8DGQHJlhr5yRckTGmF9ALoGjRoi4pVkQkrcqRIwd58uTh/WkzCPetRudPdpItoxeDAu+jz8Ol8PRQOBNJiVzZkna9T71NcN8LqAo0AwKBV4wx9/5nIWs/sNYGWGsD8uTJk/SVioikMYcPH6Z9+/aEh4djMTzQ+w3G7MvPvPWHaFu1MKsG16NvvdIKaCIpmCtb0sKBIvHuFwaOXGeeU9ba88B5Y8wvQEVgtwvrEhFJs6y1zJs3j379+nHp0iUatWzDl6fzs+1IJNWL5+LVlmUpV9DH3WWKyC1wZUvaBsDPGFPCGJMR6AAsSTDPYuAhY4yXMSYrju7QHS6sSUQkzTp58iRt2rShS5cu+PuX4aUZSxm3KzsHTp3nzdbl+ax3TQU0kVTEZS1p1toYY0w/YAXgCXxord1mjOnjnD7VWrvDGLMc2AzEATOstVtdVZOISFr22muv8fXXXzPw5dfYmedhZmw+RwP/vLzSvCzFfb3dXZ6I3CZjbcJhYilbQECADQkJcXcZIiIpwtmzZ4mIiKBkyZKcOh3BiM9Ws/SQF94ZvXjt0XK0rlLY3SWKpGvGmI3W2oA7WVaXhRIRSaVWrlxJ+fLlad++PccjL/D8kjAW/+VFff+8/PD8wwpoIqmcQpqISCpz/vx5+vbtS+PGjfH2zkbT3i/TZPxq1oadZkSr+5nRrRp5s2d2d5kicpd07U4RkVRk7969NGnSxPF/hx4cLv0os8M8qFLUmzdal8c/fw53lygiSUQhTUQkFSlcuDD5i5XGp3E/dmQvTfXCuRjQwI/apX3dXZqIJDF1d4qIpHB//PEHzZo14+DRk4xeEUZ4tX5kKlKet9tU4LNeNRXQRNIotaSJiKRQV65cYfTo0YwYMYJsOXPxyIiFXPApQodqRRnarAzemfQnXCQt0ydcRCQF2rFjB0FBQYSEhFA4oBHUfoKy/kV5tUU5yhfWCWlF0gOFNBGRFKj/swPZuisM30eHkLtKPQY2upcuNYthjK61KZJeKKSJiKQQ+/fvJ0OGjHy77xKHynbGt3QnnmpalafqlsYnawZ3lyciyUwhTUTEzay1TJ8+nWefew4fv2pkDHyeiiWLMb5DZUrock4i6ZZCmoiIGx0+fJjuT/Rg5Xcr8C5Riex1n+DlR8vRVV2bIumeQpqIiJus+mU1TZs35+LFS+Rq1IfANl0Z1bqiWs9EBFBIExFxi83hZ3lz3TkocD8Pte3L60GNqHNvHneXJSIpiEKaiEgy+nzhlwweOZa4hoPI4+PNrE/m06ZKYTw81LUpItdSSBMRSQZ///03nXv0YdnC+WTIW4In/bPzesc6OmpTRG5IIU1ExMXmf7WMnv/rwbmIkxSo25lp40bRonIxd5clIimcQpqIiItcjonj7W+3M7LP08SRkT7vzGPsU4/rck4ickv0l0JExAU+WbKSOTtj2RURS7OB43i9/QOULaoDA0Tk1imkiYgkoV2HI2jX61k2f/sxeWs/zszJ42leoaC7yxKRVMjD3QWIiKQFMbFxDPlgMRUqV2HzN3Oo2aQNGxdOVUATkTumljQRkbsQExvHjF/3M27Kh+z5/C2y5riHGZ8tomu7x9xdmoikcgppIiJ3KOzEOZ77bBObD0fiV7YyJR9txyfT3yN37tzuLk1E0gCFNBGR22St5eN1B3hu2GguHNrGJ/MX0LJiQYxp4+7SRCQN0Zg0EZHbEHbiHI+++SU927fk1PfTqV0iJw1K++hi6CKS5NSSJiJyi778I5w+r7zNqe+nkymDFzNnfkj37sEKaCLiErcd0owxnkAHa+0nLqhHRCTFORQRzdjvdvHl72FErf2U2jVr8Mnc2RQtWtTdpYlIGnbD7k5jTA5jzIvGmEnGmMbG4WlgH9Au+UoUEXEPay0LNx6iRu+3+ObPQ/QNLM/mjb+z6qcfFNBExOUSa0mbC5wBfgP+BwwCMgKPWmv/TIbaRETcJuRABC/OW8Pa2W8SvXstb46bwAtNWrq7LBFJRxILaSWtteUBjDEzgFNAUWttVLJUJiLiBnFxlvE/7OHNqR9zZsV72EvnGTXqDZ7v39fdpYlIOpNYSLty9Ya1NtYYs18BTUTSsvAz0QxbvI1FMyfw96+fUL5CBT6eO5cKFSq4uzQRSYcSC2kVjTGRwNXDlrLEu2+ttTlcXp2ISDJZGnqEwV/8SZw1DHiiIzEPF2fYsGFkzJjR3aWJSDp1w5BmrfVMzkJERNzhbPRlBs5bz+dT3iJXZvjxq08pmScb0MzdpYlIOnfDkGaMyQz0AUoDm4EPrbUxyVWYiIirrQk7Ra+357H78zeJOXOU4P7PUDx3VneXJSICJN7dORvHuLTVQFOgHPBMchQlIuJKJ6Mu8cwn61n20UQi1y+iQMFCzFv0E3Xr1nV3aSIi/0gspJWNd3TnTGB98pQkIuIa1lqWhB5h5LIdnDp6mEtblhPcPZgJ775LjhwaZisiKcutHt0Zo8ueiEhqtnrPSV5eGMr2Ncvxf/ARvn6pFblebkyBAgXcXZqIyHUlFtIqOY/mBMcRnTq6U0RSncNnLzB2xS4WfL+OyOXjORe+i6F9G1GuoA/g4+7yRERuKLGQFmqtrZxslYiIJKFzl2L4POQQo7/ZzqnfFxO1eg4+2bMx87PPaNIk0N3liYjcVGIhzSZbFSIiScRay7ItRxm+ZBunzl0m7scJnNmwkubNmzN9+nTy58/v7hJFRG5JYiEtrzHmuRtNtNaOc0E9IiJ3bEv43zzz2Sb2njhH6TxZmda1FqfrZ+Dw4Y4EBwejsbUikpokFtI8gWz8e8UBEZEUJy7OEnnxCjNW7+f9n8PIHhuFz+qp1GpYh6rF6kOxxu4uUUTkjiQW0o5aa19PtkpERG7D8ciLPD1vExsORmCto5uzcMQfbF84nksXL1IoqL27SxQRuSuJhTS1oIlIihMTG8cHq/cx/vs9xMZZWlQoSHHvWJZNHcGP3y6hZs2azJ49m3vvvdfdpYqI3JXEQlqDZKtCROQW7D15jhcXbWH9/ghqlMjF8JblKFMgB5s2bWLYLz8wevRoBg0ahKenLj0sIqlfYhdYj0jOQkREbuRyTByTfgpj2qq9WAsjWt1PC38fFi/+kjLdulG5cmUOHjxI7ty53V2qiEiSSawlTUTE7daGnWLwws2En7nAA6VzM6pVefaGrqNChe4cOXKE2rVr4+fnp4AmImmOh7sLEBG5nguXYxkwfxOdZvzOxStxzAgK4IOO5XnntSE0bNiQLFmysGbNGvz8/NxdqoiIS6glTURSnBXbjjFy2XYORVzgybql6FevNFkyeFC9enU2btxI//79GT16NFmzZnV3qSIiLqOQJiIpRsT5ywxfso0loUfIlyMTH/eoQfViOciQwRNjDC+88AK+vr7Uq1fP3aWKiLicujtFJEX4POQQD7/9E8u3HqP3wyVZNage2c6HU7VqVWbMmAFA27ZtFdBEJN1QS5qIuNWuY1G8890uvtt+nDIFcjDm8QqUye/Nm2+O5rXXXsPX15fChQu7u0wRkWSnkCYibhEbZ/nw1/2M+mYHXh6GQYH30ePBEhzcF8YDDwSxfv16OnTowKRJk3TkpoikSwppIpLsVu0+yWtLtrHv1HkqF83JuHaVKOHrDcD+/fvZu3cvn332Ge3atXNzpSIi7qOQJiLJJuriFd75bjcfrT1AyTzevNu+Iq0qFeLgwYPM/XYRXbt2pUmTJuzfv5/s2bO7u1wREbdSSBMRl/s7+gpjVuxkaegRIi/G0LVmMV5uVoZMXh7MnDmTZ599lowZM9KyZUt8fHwU0EREUEgTERey1vL5xnDeXrGLk1GXqHtfHvo38KNK0Xs4evQoPXv2ZNmyZdSrV49Zs2bh4+Pj7pJFRFIMhTQRcYk/D53l5S+3sO1IJMVzZ2VG3weoWCQnAOfPn6dy5cpERkYyceJE+vbti4eHzggkIhKfQpqIJKmY2Dimr97PW8t34pstE6Nbl6ddQBE8PQznz5/H29sbb29v3nrrLWrVqsW9997r7pJFRFIk/XQVkSRhreWbLUdp/O4vvLV8Jw3L5OXH5x+mY/WieHoYli5dSunSpfnmm28A6NatmwKaiEgi1JImInft8NkLjF+5m883hlMoZxY+6FqVRmXzYYzh77//5tlnn2XWrFlUrFhRJ6YVEblFCmkicseuxMYxbdVexn63G4Dg2sV5qWkZMno5Gul/+ukngoODCQ8P5+WXX2bYsGFkzJjRnSWLiKQaCmkicke2Hv6b15ZuY8OBM/jnz86kTpUpnffaU2fs27ePzJkzs3btWmrUqOGmSkVEUidjrXV3DbclICDAhoSEuLsMkXTrSmwck34M4/2fwsjk5cHwluVoG1Dkn+m//fYb4eHhtG3bFmstly5dInPmzG6sWETEfYwxG621AXeyrFrSROSWHYqIpv/8TWz66ywNy+TjrcfLkztbJgAuXbrE8OHDGTNmDGXLlqV169Z4enoqoImI3CGFNBG5qbg4y/TV+3h7xS6Mgbced5xWwxgDQGhoKEFBQWzevJkePXowbtw4PD093Vy1iEjqppAmIonaf+o8Q7/awpqw0wSWy8fQZmUpkivrP9MPHDhA9erVyZUrF0uXLqV58+ZurFZEJO1QSBOR67LW8vHvfzFi6XYw8GzDe+nfoPQ/rWdnz54lZ86cFC9enMmTJ9OqVSty587t5qpFRNIOncxWRP5j1e6TPD5lLa98tZUyBXOwenA9nmnohzGGuLg4JkyYQNGiRdm4cSMAPXr0UEATEUliLg1pxpgmxphdxpgwY8yQROarZoyJNca0cWU9IpK4/afOM2D+Jrp9uJ6/Ii7wXKN7WfRkbfLlcAz+P3DgAA0aNGDAgAHUqVOHggULurliEZG0y2XdncYYT+B9oBEQDmwwxiyx1m6/znxvAStcVYuIJM5ay6rdJ+n/6SYuXomj50MlGNj4PjJn+Hfw/6xZs+jfvz/GGGbOnEn37t3/6foUEZGk58oxadWBMGvtPgBjzHzgUWB7gvmeBhYC1VxYi4jcwKlzlxiycDPf7zhB0VxZ+ah7NUrmyfaf+Q4dOkRAQACzZs2iePHiyV+oiEg648qQVgg4FO9+OHDNKceNMYWAx4D6JBLSjDG9gF4ARYsWTfJCRdKrkAMRtJv2G3EWXnzEn+AHipPJ69/Ws88++4ycOXMSGBjISy+9xNChQ/Hw0FBWEZHk4Mq/ttfrB0l4eYPxwAvW2tjEVmSt/cBaG2CtDciTJ0+SFSiSXl28EsvIr7fTbtpvFL4nKzOCAuj9cKl/Atrp06dp3749HTp0YOrUqQB4eXkpoImIJCNXtqSFA0Xi3S8MHEkwTwAw3zmuxRdoaoyJsdZ+5cK6RNK1X/ec4oWFmzl89gKtqxTi1ebl8Mma4Z/pX3/9NT179uT06dOMGjWKwYMHu7FaEZH0y5UhbQPgZ4wpARwGOgCd4s9grS1x9bYx5iPgawU0Ede4eCWWqav28v5PYfhmy8S8/9Wgdmnfa+b55ZdfaNGiBRUqVGD58uVUrFjRTdWKiIjLQpq1NsYY0w/HUZuewIfW2m3GmD7O6VNd9dwicq2NByN4bkEoB09H07BMXt5tX4nsmf9tPTtx4gR58+bloYceYtasWXTq1ImMGTO6sWIRETHWJhwmlrIFBATYkJAQd5chkipcvBLL6G92MPu3gxTKmYW3Hq/Ag37/tp5FR0czZMgQZs+eTWhoqI7aFBFJYsaYjdbagDtZVpeFEkmjfthxnFeXbCP8zAU6Vi/Ki039yRGv9WzdunUEBQWxZ88e+vfvT968ed1YrYiIJKSQJpLGHIqI5o1vdvDt1mMUypmFD4MDqO+f75/p1lqGDh3Km2++SeHChfnhhx+oX7++GysWEZHrUUgTSSOstcxdd5BRy3YA0L9+afrV9yOj17WnzTDGcPLkSYKDgxk3bhw+Pj7uKFdERG5CIU0kDdh78hzDl2xj9Z5TPOTnyxuPladIrqz/TI+JieHtt9+mcePGVK1alSlTpuDp6ZnIGkVExN0U0kRSMWstn/z+F68u2UZmLw+GNivDEw+UwMPj33NJ79q1i27duvH7778TGRlJ1apVFdBERFIBhTSRVOqv09G89OUWfg07RZWiOXmvUxUK5czyz/S4uDjee+89hgwZQtasWZk/fz7t27d3Y8UiInI7FNJEUpmY2Dim/LyXiT/uwdPD8FJTf/73YMlrWs8AZs+ezYABA2jWrBnTp0+nQIECbqpYRETuhEKaSCoSfiaa5z4LZf2BCCoW9mFyl6rXtJ5Zazl8+DCFCxemS5cuZMuWjTZt2uC89JqIiKQiCmkiqcClmFhmrN7P+z+FERNrGd26PB2qFbkmfB09epRevXqxceNGtm/fTs6cOWnbtq0bqxYRkbuhkCaSwoWdOMcz8zex/WgktUvl5rWW91M6b7Zr5vnss8946qmniI6O5s033yRHjhxuqlZERJKKQppIChV58QoTv9/DR2sPkDmDJxM7VKZFxYLXzHPhwgWCg4NZsGAB1atXZ86cOdx3331uqlhERJKSQppICvT7vtM8/0UohyIu0LpKIV58pAx5smf6z3yZM2fm8uXLjBo1isGDB+PlpY+0iEhaob/oIimItZZ56/9i+JJt5PbOxLyeNahdyveaeSIjI3nxxRcZNGgQxYsXZ9GiRTowQEQkDVJIE0kh9p86z5CFm/l9fwQBxe5hateq+Ga7tvXsp59+Ijg4mPDwcAICAujevbsCmohIGqWQJpICfLbhL4Yt3kYmLw9GtLqfztWLXnPes+joaF588UUmTpyIn58fa9asoWbNmm6sWEREXE0hTcSNTp+7xNjvdvPp+r8onTcbU7tU/c+RmwBvvPEGEydOpH///owePZqsWbNeZ20iIpKWKKSJuEFMbBzz1v/F28t3EXUpht4Pl+S5RveSyevfa2pevnyZY8eOUbRoUV544QUaNmxI3bp13Ve0iIgkK4U0kWR2PPIi/T/dxO/7I6heIhevP1oO//zXntcsNDSUoKAgYmNj+fPPP8mePbsCmohIOqOQJpJMrLV8HhLOyGXbuRQTxzttK9K6SqFrBv7HxMQwZswYhg8fTq5cuZg+fbpOqyEikk7pr79IMjh/KYZBX4TyzZZjBBS7h7faVKBUnmvHnh0/fpxWrVqxbt062rZty+TJk/H19b3BGkVEJK1TSBNxsY0HIxi4IJQDp6MZ8og/PR8qiafHf0+bkStXLrJnz86nn35K+/btdWoNEZF0zsPdBYikZQtCDtFu2jrOXYphVnA1+jxc6pqAdvDgQTp27EhERAQZMmRgxYoVdOjQQQFNREQU0kRc4djfF+nx0QYGf7GZasXv4ZtnHqKef95/pltrmTlzJuXLl+frr78mNDQUQOFMRET+oe5OkST2/fbjDF64mQuXYxnyiD89HixBBs9/fw8dPXqUXr168fXXX1O3bl1mzZpF8eLF3VewiIikSAppIklo9toDvLpkG3myZ2JJvwfwy5f9P/MMHDiQ7//f3n1HV1UlbBz+7RRCDxCKIbTQA1ITPmlKUTGAStdBIaEoAoIVQcSRUawUwREFEbCBOgiCCijIjEM1kiAQSqRj6C1Iggmk7e+PZBCkBeTm3Ju8z1pZrNxzctfL2oS82eecvZctY9KkSQwdOhQvL01oi4jIxYy11ukM1yQsLMzGxMQ4HUPkAr8lp/Lq4jjmxOynda0yTH6gMUX9/vgd6MSJE5w5c4agoCAOHjxIYmIitWvXdjCxiIjkBmPMOmtt2PV8rX6FF/mLthw8Rfu3VjInZj+PtKrK+xFhFxS0RYsWcfPNN9OvXz8Aypcvr4ImIiJXpcudItfJWss7P+xk0rId+Hp7MW9QM0Irlzp3PDExkaeeeurcAwJvvPGGg2lFRMTTqKSJXIcjiWf4+4LNLN16hHZ1yvFip7oE+hc6d3zLli107NiRffv28eyzz/KPf/wDPz8/BxOLiIinUUkTuUax+3+jzwfR/H42nafurMnQttUvWjqjYsWK1KxZk08//ZTmzZs7lFRERDyZSppIDp1KTmPqil3MWLkH/8K+zBvUnJuD/M8d/+mnnxg7diyffvopxYsXZ+nSpQ6mFRERT6cHB0RyYO2eBMLfWsGU/+6iXd1yfPv4recKWmpqKqNGjaJ58+ZER0ezd+9eZ8OKiEieoJk0kSuw1vLKojimr9pDycK+Fz0cEBsbS+/evYmNjaVv375MnDgRf3//K7yjiIhIzqikiVzGoVMpPDtvE8u3H7vk2mfWWgYOHMiRI0f46quvuPfe0BRbKQAAG3dJREFUex1MKyIieY1Kmsgl7DiSxIPTf+JUShqjOoTQr2XwuY3Rt2/fTunSpSlVqhSzZs2iePHilC5d2uHEIiKS1+ieNJE/+XfcEe6dvJqUtAzmPNKMh2+rireXITMzk7fffpuGDRsycuRIAKpWraqCJiIiLqGZNJFsmZmWN777hfdW7KZG2aLM7NOEiqUKA/Drr7/Sr18//vOf/9C+fXtGjx7tcFoREcnrVNJEgNNn0xkxL5ZFsYfoWC+QCfc1oKCvNwDff/893bp1w1rL+++/T//+/S9aF01ERORGU0mTfO+n3ScY+tl6jiad5bG21XnyzpoXlLC6devStm1bJk6cSHBwsINJRUQkP9E9aZJvWWuZtmIX90+LomhBH+YNasZT7WphjGHOnDn06NGDzMxMypcvz4IFC1TQREQkV6mkSb508vdUhny6nlcX/0K7OuVY8GgLQiuX4sSJE/Ts2ZP777+f+Ph4EhISnI4qIiL5lC53Sr6z7tcEHvnkZ35LTuXpO2vyaJvqeHkZFi9eTP/+/Tl+/Dgvv/wyI0aMwMdH3yIiIuIM/QSSfMNayzs/7OTN77cTUNSP+YNbUK9C1u4AZ8+eZfDgwZQuXZpvv/2Whg0bOpxWRETyO5U0yRf2JSTz4jdbWBZ3lI71AnmpU10CivqxZs0aQkND8fPzY+nSpVSuXBk/Pz+n44qIiOieNMnbzqZn8Ob327n9zeWs2H6c4eG1eLtnIwp7Z/Lkk0/SokULJk6cCEDNmjVV0ERExG1oJk3yrB93nWDU/E3sPv47rWqW4bWu9ShfohBr164lIiKCbdu2MWTIEIYOHep0VBERkYuopEmec+L0WcYs3MqCDQcp71+Qqb1CuatuOYwxTJs2jUGDBhEUFMSyZcu4/fbbnY4rIiJySSppkmckp6YzOyqeyT/sJCU1g0daVeXJO2pS0Ncbay0AzZs3p1+/fowfPx5/f3+HE4uIiFye+d8PL08RFhZmY2JinI4hbmbzgVMMmr2OfQkp/F9wKV64uw43B/mTnp7O+PHj2bFjBzNmzHA6poiI5DPGmHXW2rDr+VrNpIlHO5J4hjELt7Iw9hDlivsxq/8ttKgegDGG7du3ExkZSVRUFN26dSM1NZUCBQo4HVlERCRHVNLEY3214QDPfBFLakYmD7UMZmDrapQu6kdmZiaTJ09mxIgR+Pn5MXv2bHr27KlN0UVExKOopInH2ZeQzKgFm1mx/RgNKpbgpXvr0qBiiXPHjx07xgsvvECrVq2YMWMG5cuXdzCtiIjI9VFJE4+RkprBW//ewdTluzAGhofX4qGWVSng44W1lkWLFtGhQwfKlStHTEwMVatW1eyZiIh4LC1mKx5h59HTdH5nNVOX76JTw/KseKYNg1tXp4CPF4cPH6ZTp07cc889zJ07F4Bq1aqpoImIiEfTTJq4NWstX8TsZ/i8WIoU8OaDvk1oU6vsueNffPEFgwYN4vTp07z55pt0797dwbQiIiI3jkqauK3jp8/y7LxNLIs7QvNqAbzRrT4VSxU+d3zYsGFMmDCBJk2a8NFHHxESEuJgWhERkRtLJU3cTnpGJl+uP8Cri+M4fSadR1pV5dnw2ucuX1prMcbQoUMH/P39GTlyJD4++qcsIiJ5i36yiVvZl5DMM3M3ErU7gdDKJXm5882EBBYHICkpiaeffpqAgABee+012rZtS9u2bR1OLCIi4hp6cEDcQlpGJtNX7iZ80gp+jv+NUR1CmDuw2bmCtnz5curXr8+MGTPw8vLC03bKEBERuVaaSRPHbdz3GyO/3MTWQ4lULVOET/rfQlCJQgCkpKTw3HPPMWnSJKpXr87KlStp3ry5w4lFRERcTyVNHJOWkcmL32xh9k/x+BfyZVz3+nQPrXDB0hl79uxhypQpDBkyhNdff50iRYo4mFhERCT3qKSJIw78lsKgWeuI3X+KiGaVefz2GgQU9QMgNTWVr7/+mu7du1OnTh127txJhQoVHE4sIiKSu1TSJFdlZFq+iNnHmIVbMcYw6f6GdG4UdO74pk2biIiIYMOGDURHRxMWFqaCJiIi+ZJKmuSabYeTGDEvlg37fqNJlZKM7d6A4NJZly8zMjIYN24cL7zwAiVLluSrr74iLCzM4cQiIiLOUUmTXDEr6lfGLNxKET8fJvRoQJdGQXh5/XHvWadOnVi0aBHdu3dnypQplC5d2sG0IiIizlNJE5c6cfosz83fxJItR7i1Rmkm3NeAssUKApCZmQmAl5cXkZGRPPDAA/Ts2VN7boqIiKCSJi5ireW/244x7IuNnExO5dE21Xjqzlp4Z8+excfH069fPzp37syQIUPo0aOHw4lFRETci0sXszXGhBtjthljdhpjnr3E8QeNMbHZH2uMMQ1cmUdyx7Gks/T5IJq+H0ZTqIA3sx9qyjN31cbby2Ct5cMPP6RevXpERUVpSQ0REZHLcNlMmjHGG3gHuBPYD0QbY7621m4977Q9QCtr7UljTHtgGnCLqzKJa51Nz+DLnw/w2uI40jMtI8Jr069lFfx8vAE4fPgwjzzyCF9//TW33XYbH3zwAVWrVnU4tYiIiHty5eXO/wN2Wmt3AxhjPgc6AedKmrV2zXnnRwFaa8FDbT2YyMBZ64hPSKZu+eKM696AOuWLX3BOXFwc33//PRMmTOCJJ57Ay0u7komIiFyOK0taELDvvM/3c+VZsv7At5c6YIwZAAwAqFSp0o3KJzfA0aQzTFq2gznR+wgoWoDJDzSiY73Aczf/JyQksGzZMu677z7atGnD3r17KVu2rMOpRURE3J8rS9qlHtG75K7Yxpg2ZJW0lpc6bq2dRtalUMLCwrSzthtIy8hkxqo9vLVsBylpGXRqWJ7nO9ahTDG/c+csXryYhx56iISEBG699VYCAwNV0ERERHLIlSVtP1DxvM8rAAf/fJIxpj4wHWhvrT3hwjxyg6zacZzn5m8iPiGZNrXK8Gz7EGrdVOzc8aSkJJ5++mnef/996taty8KFCwkMDHQwsYiIiOdxZUmLBmoYY4KBA8DfgAfOP8EYUwn4Euhtrd3uwixyA5xJy+Ctf+9gyn93EVCkADP7hNGmVtkL1jVLS0ujSZMmbN++neHDh/PSSy/h5+d3hXcVERGRS3FZSbPWphtjhgBLAG9gprV2izFmYPbxqcALQADwbvYP+nRrrfYCckPr40/y3PzNxB1KpEujIMZ0vpmifn/880lLS8PX1xdfX1+eeeYZateuTYsWLRxMLCIi4tmMtZ51i1dYWJiNiYlxOka+cSYtg5cXbWVWVDzF/HyYeH9D7qhT7oJzoqOjiYiI4JVXXqFr164OJRUREXE/xph11zsBpTUQ5LISfk+l+9Q1zIqKp1fTSqwe2faCgpaamsrf//53mjVrxunTpylRooSDaUVERPIWbQslF8nMtHwS9Suvf/sL6ZmZvHlfA7o2vnAJu82bNxMREcH69euJjIxk0qRJKmkiIiI3kEqaXGDn0dM89tl6th5K5JbgUrzerT7BpS/eumnDhg0cOHCA+fPn07lzZweSioiI5G26J02ArNmz91fuZvJ/duLlZRjVIYTuoRXw8vrjyc0dO3awadMmunbtirWWxMRE/P39HUwtIiLi3v7KPWmaSRPiDiXy9JyNbD2USPNqAbzRrT4VSxU+dzwzM5MpU6YwfPhwSpYsSceOHfHz81NBExERcSGVtHxuTsw+np+/meKFfBjfowHdGgddsO5ZfHw8/fv3Z9myZYSHhzN9+nSteyYiIpILVNLyKWstM1fvZczCrTSpUpJ3HmhM2eIFLzjn2LFj1K9fn/T0dN577z0efvjhCwqciIiIuI5KWj50KiWNUfM3sTD2EHeElOOdBxvh5+N97nhKSgqFChWiTJkyvPrqq4SHh1O1alUHE4uIiOQ/WictnzmadIa/TYvi282Heez2GrzXO/SCgjZ37lyCg4P58ccfARg8eLAKmoiIiANU0vKRuEOJ3P3PVew4ksTkno146s6aeGc/vZmQkMCDDz5Ijx49qFChgtY8ExERcZhKWj7x7aZD9Jj6I5kW5g1qTvt6geeOfffdd9SrV485c+bw4osv8uOPPxISEuJgWhEREdE9afnAothDPPb5ekICizG1VygVSha+4PjGjRspWbIk33zzDY0bN3YopYiIiJxPi9nmYRmZlnFLtjF1+S4aVSrBJ/1voahfVi9fsWIFycnJhIeHk5GRQVpaGgULFrzKO4qIiMi10AbrcpHTZ9N55JMYpi7fRaeG5fnXgGYU9fMhJSWFp556itatW/PSSy9hrcXb21sFTURExM3ocmcetGL7MUbMi+XQqTOM6hDCQ7cGY4whOjqaiIgIfvnlFwYPHswbb7yhdc9ERETclEpaHvPB6j28vCiOgCIFmDeoGaGVSwEQGxtLs2bNuOmmm1iyZAnt2rVzOKmIiIhciUpaHjJj1R7GLNxKi+oBTOkVSvGCviQlJVGsWDHq1avHxIkT6d27t5bXEBER8QC6Jy2PmBO9jzELt9KsagAzIptQxNeLsWPHUrlyZXbs2IExhqFDh6qgiYiIeAjNpOUB7/53J2O/28YtwaWYFhHK/l/3EBkZyZo1a+jatauKmYiIiAfSTJoHs9YybcUuxn63jXZ1yjHroVuY9cF0GjRowNatW5k1axZz586lTJkyTkcVERGRa6SZNA+VnpHJuKXbeG/5bu4IKcvbDzTC19uLrVu3cttttzF9+nSCgoKcjikiIiLXSSXNAyWdSWPw7J9ZueM4PUKDqHN6A+tjMmjatCkTJkzA19dXS2uIiIh4OF3u9DBHE8/Qa8Za1uw6wfDbyrF91mj69evL1KlTAShQoIAKmoiISB6gmTQPsmL7MYZ9sZHfktN4oOxBRkdGkpSUxPjx43niiSecjiciIiI3kEqah/hsbTx/X7CZygGF6RV4lMf7P0xoaCgff/wxderUcTqeiIiI3GAqaW4uLSOTF77azGdr91GzhGXOoOYULeBFwfTT9O3bF19fX6cjioiIiAuopLmx35JTGfDxOqK27af01i/YuGE5af0341O4DAMGDHA6noiIiLiQSpqb2nEkiT4fRLN3cwzpP0xmw6H9DBs2jGLFijkdTURERHKBSpobmhO9j5e+3sTRf8/geNR8goODmbdiBS1btnQ6moiIiOQSlTQ3kplpmbhsO2//Zye1yhWlQql0qg4cyNixYylatKjT8URERCQXqaS5ieTUdB6fHcMXMyfTtft9THm0Jd5DW+DjoyESERHJj7SYrRs4fvos9770GR+P7MWpVbOpkbwFPx9vFTQREZF8TC3AYRvjE+g8cCR7l86keHF/Pv/yS7p06eJ0LBEREXGYSpqDVu44RtfBz3F82XRatevInE9mUrZsWadjiYiIiBtQSXNAZmYmM7/fwPhVRwhp05U+kW3p++DftOemiIiInKOSlsviduwmvNuDHDywj3ajPmJG/xbc5F/Q6VgiIiLiZvTgQC6x1jLx3fepV78++37ZwD0PPsyCx1qroImIiMglaSYtFyQmJnJv954s/34xhSvV5cMPPqRH2zCnY4mIiIgb00yai2VmWuasP8LabfsJ7jiQn6NWq6CJiIjIVWkmzUVOnjzJyOdGkdmoO0t3p3DvyCm8F9kE/0K+TkcTERERD6CS5gJLliyhX79+HD5ylFJ3+zNsYCTD76qlpzdFREQkx3S58wY6ffo0AwcOJDw8nHSfQpTtNZ6nH4lkRHhtFTQRERG5JppJu4FGjBjBtGnTCL07gmO1OtOtSTDD76rldCwRERHxQCppf9GZM2c4efIkgYGBjHjueXYXr0+crUCfZpUZfU9dvLw0gyYiIiLXTpc7/4KYmBgaN25Mjx49OJKYwgOz4oizFRgRXpsXO92sgiYiIiLXTSXtOqSlpTF69GiaNm1KYmIiAx4fTuTMaPafTGFa71AGta7mdEQRERHxcLrceY3i4+Pp0qULP//8M7179+auh0Yw9ocDpGUkM7NPGG1rl3M6ooiIiOQBKmnXKCAggIIFC/Lpv74g1qcmoxbv5eag4ky6vyHVyxZzOp6IiIjkEbrcmQO7du0iMjKS5ORkihQpwisz5zNlbwCfrd1Hn+ZVWDC4hQqaiIiI3FCaSbsCay1Tp05l2LBh+Pr6MnjwYGKSAxi3ZBtVAgrz2cNNaVYtwOmYIiIikgdpJu0y9u/fz1133cXgwYNp2bIlMes3MmObN+OWbOOOkHJ898RtKmgiIiLiMppJu4yHH36Y1atXM2XKFLo92IdBs34m5teTDG1bnSfvqKnlNURERMSlVNLOc/ToUby9vQkICGDy5MkA+JYI5O63V3Hy9zTGdqvPfU0qOpxSRERE8gNd7sz25ZdfUrduXYYOHQpAtWrV+N0vgO5T15CcmsHnjzRVQRMREZFck+9L2smTJ+nduzfdunWjUqVKjBo1ioxMy/gl27h38moyreWzh5vSuFJJp6OKiIhIPpKvL3dGR0fTpUsXDh8+zOjRoxk1ahTJ6fDQR9H8sO0Yd9cPZFTHEAL9CzkdVURERPKZfF3SKleuTLVq1ViwYAFhYWFsOXiKAR+v4+CpFEbfU4c+zatgjB4QEBERkdyX7y53rly5kt69e5ORkUHZsmVZvnw5VWrX48VvttDxn6s4k5bBvwY0o2+LYBU0ERERcUy+mUk7c+YMzz//PG+++SbBwcEcOHCAihUr8unaeF7/9hd+P5tO18ZBjAivTbniBZ2OKyIiIvlcvihpMTExREREEBcXx8CBAxk3bhzJ1of7p0Wxdk8CTaqU5JUu9ahZTls7iYiIiHvI8yUtIyOD3r17k5SUxHfffUertnfwz3/v4IPVe8mwljGd6tKraWVd2hQRERG3kmdLWlxcHJUrV6Zw4cLMnTuX8uXLE7X/DLeN/YGjSWdpf/NNDLurFtXKFHU6qoiIiMhF8tyDAxkZGYwfP55GjRoxZswYAAKr1OD5b/cwaPbP+Pl68WHfJkzpFaqCJiIiIm4rT82k7dq1iz59+rBq1So6d+7MY48/wUdr9jJ+6TaSUzMY0qY6j91egwI+ea6bioiISB6TZ0raggUL6NWrFz4+Pnz44UeUD2vHQ3O2s+VgIs2qBvD83SHULe/vdEwRERGRHMkzJS0kJIRWbdrQKnIEM/ek8esn6wgoUoA372tA54ZBeHnpwQARERHxHB5b0qy1zJ49m+XLlzP53aks3e/F3kaPsiXmFGGVS/LkHTW5u34gPt66tCkiIiKex6UlzRgTDrwFeAPTrbWv/+m4yT7eAUgG+lhrf77a+x49epSBAwcyf/58qtcL5c6xS4lPyuSOkLIMaVuDhhVLuOBvIyIiIpJ7XFbSjDHewDvAncB+INoY87W1dut5p7UHamR/3AJMyf7zso4nJFCjdh1OJyVSqk0/UsM6UaxYUd7vUpM765RzzV9GREREJJe5cibt/4Cd1trdAMaYz4FOwPklrRPwsbXWAlHGmBLGmEBr7aHLvemve3+lQNlg6g8Zy33tmtEjtALVy2qnABEREclbXFnSgoB9532+n4tnyS51ThBwQUkzxgwABmR/ejb1yK7NGyb1Z8MkeO7GZhbXKw0cdzqEXBeNnWfT+Hk2jZ/nqnW9X+jKknapxyntdZyDtXYaMA3AGBNjrQ376/HECRo/z6Wx82waP8+m8fNcxpiY6/1aVz76uB+oeN7nFYCD13GOiIiISL7jypIWDdQwxgQbYwoAfwO+/tM5XwMRJktT4NSV7kcTERERyS9cdrnTWptujBkCLCFrCY6Z1totxpiB2cenAovJWn5jJ1lLcPTNwVtPc1FkyR0aP8+lsfNsGj/PpvHzXNc9dibrwUoRERERcSdajl9ERETEDamkiYiIiLghty1pxphwY8w2Y8xOY8yzlzhujDH/zD4ea4xp7EROuVgOxu7B7DGLNcasMcY0cCKnXNrVxu+885oYYzKMMd1zM59cWU7GzxjT2hizwRizxRizPLczyqXl4P9Of2PMN8aYjdljl5P7uCUXGGNmGmOOGmM2X+b4dXUWtyxp520p1R6oA/Q0xtT502nnbyk1gKwtpcRhORy7PUAra219YAy6IdZt5HD8/nfeG2Q9GCRuIifjZ4wpAbwL3GutrQv0yPWgcpEcfu89Cmy11jYAWgMTsldPEOd9CIRf4fh1dRa3LGmct6WUtTYV+N+WUuc7t6WUtTYKKGGMCcztoHKRq46dtXaNtfZk9qdRZK2PJ+4hJ997AEOBecDR3AwnV5WT8XsA+NJaGw9grdUYuoecjJ0FihljDFAUSADSczemXIq1dgVZ43E519VZ3LWkXW67qGs9R3LftY5Lf+BblyaSa3HV8TPGBAFdgKm5mEtyJifffzWBksaY/xpj1hljInItnVxJTsZuMhBC1qLvm4DHrbWZuRNP/qLr6iyu3Bbqr7hhW0pJrsvxuBhj2pBV0lq6NJFci5yM3yRghLU2I+sXenEjORk/HyAUuB0oBPxojImy1m53dTi5opyM3V3ABqAtUA343hiz0lqb6Opw8pddV2dx15KmLaU8V47GxRhTH5gOtLfWnsilbHJ1ORm/MODz7IJWGuhgjEm31i7InYhyBTn9v/O4tfZ34HdjzAqgAaCS5qycjF1f4HWbtcDpTmPMHqA2sDZ3IspfcF2dxV0vd2pLKc911bEzxlQCvgR667d3t3PV8bPWBltrq1hrqwBzgcEqaG4jJ/93fgXcaozxMcYUBm4B4nI5p1wsJ2MXT9YMKMaYckAtYHeuppTrdV2dxS1n0ly4pZS4WA7H7gUgAHg3ezYm3Vob5lRm+UMOx0/cVE7Gz1obZ4z5DogFMoHp1tpLLhsguSeH33tjgA+NMZvIunw2wlp73LHQco4x5jOynrgtbYzZD4wGfOGvdRZtCyUiIiLihtz1cqeIiIhIvqaSJiIiIuKGVNJERERE3JBKmoiIiIgbUkkTERERcUMqaSKSLxhjMowxG877qGKMaW2MOWWMWW+MiTPGjM4+9/zXfzHGjHc6v4jkP265TpqIiAukWGsbnv+CMaYKsNJae7cxpgiwwRizMPvw/14vBKw3xsy31q7O3cgikp9pJk1EBMjeJmkdWXsinv96Cln7JV51M2QRkRtJJU1E8otC513qnP/ng8aYAKApsOVPr5cEagArciemiEgWXe4Ukfziosud2W41xqwna4uk17O34mmd/XosWfsjvm6tPZyLWUVEVNJEJN9baa29+3KvG2NqAquy70nbkNvhRCT/0uVOEZErsNZuB14DRjidRUTyF5U0EZGrmwrcZowJdjqIiOQfxlrrdAYRERER+RPNpImIiIi4IZU0ERERETekkiYiIiLihlTSRERERNyQSpqIiIiIG1JJExEREXFDKmkiIiIibuj/AZffXULkiiU9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.model_selection import RandomizedSearchCV\n", + "from scipy.stats import loguniform, uniform\n", + "\n", + "params = {'C': loguniform(1e-3, 1e1),\n", + " 'l1_ratio': uniform(),\n", + " }\n", + "\n", + "lr = LogisticRegression(random_state=13, solver='saga', penalty='elasticnet')\n", + "\n", + "cv = RandomizedSearchCV(lr, params, random_state=3, n_iter=100, n_jobs=-1, verbose=1, scoring='roc_auc')\n", + "cv.fit(dataset.data.view(-1, 120), dataset.targets)\n", + "\n", + "preds = cv.best_estimator_.predict_proba(val_dataset.data.view(-1, 120))\n", + "\n", + "fpr, tpr, _ = roc_curve(val_dataset.targets, preds[:, 1])\n", + "\n", + "print(roc_auc_score(val_dataset.targets, preds[:, 1]))\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "plt.figure(figsize=(10, 7))\n", + "plt.plot(fpr, tpr)\n", + "plt.plot([0, 1], [0, 1], 'k--')\n", + "plt.xlabel('FPR')\n", + "plt.ylabel('TPR')\n", + "plt.xlim([0, 1])\n", + "plt.ylim([0, 1])\n", + "plt.title('ROC curve of logistic regression baseline model');" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "LogisticRegression(C=0.02305440604242659, class_weight=None, dual=False,\n", + " fit_intercept=True, intercept_scaling=1,\n", + " l1_ratio=0.06467319799028326, max_iter=100,\n", + " multi_class='auto', n_jobs=None, penalty='elasticnet',\n", + " random_state=13, solver='saga', tol=0.0001, verbose=0,\n", + " warm_start=False)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cv.best_estimator_" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 5 folds for each of 100 candidates, totalling 500 fits\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 12 concurrent workers.\n", + "[Parallel(n_jobs=-1)]: Done 38 tasks | elapsed: 1.7min\n", + "[Parallel(n_jobs=-1)]: Done 188 tasks | elapsed: 9.2min\n", + "[Parallel(n_jobs=-1)]: Done 438 tasks | elapsed: 22.1min\n", + "[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 25.1min finished\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.5018716279161413\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAG5CAYAAADVp6NgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3QUVR/G8e9No4Qmvfdeg4SqKEhTkCpNSgiggKKIIoqKiEpRQCkqHWmCYEERLNhQEEQMJXQEQgu9BUIgpN33j118Q4BQzGZTns85OWdnZ3b2N7O72WfvvTNjrLWIiIiISMri4e4CREREROR6CmkiIiIiKZBCmoiIiEgKpJAmIiIikgIppImIiIikQAppIiIiIimQQppIOmWMecoYc8IYc9EYkyvBvOLGGGuM8UqC59lujGlwF4/raoz58b8+f2rgfA1KumC9B4wxjZN6vbd4TmuMKe28PdUY83pyPv9/dSfvfWNMoDHmj+SoS9InhTRJU5xfSpedX3rHjTFzjDFZEixTzxjzqzEm3Bhz3hizzBhTMcEy2YwxE4wxh5zr2uuczp28W+Qaxhhv4H2gqbU2i7X2jKuey1pbyVr72y3que6L0Vq7wFrb1FV1pSTO1yDE3XUkNWttP2vt2+6uQyS1UkiTtKiltTYL4AdUB165OsMYUxf4EVgKFARKAMHAmqstGcYYH+AXoBLwMJANqAecAWq5quikaLW6A/mAjMD2ZHxOtzDGeCbhupLzNRKRdE4hTdIsa+1xYAWOsHbVGGCetXaitTbcWnvWWjsUWAcMdy4TABQF2lprd1hr46y1J621b1trv7vRcxljKhljfjLGnHV2Ib7qvH+OMWZEvOUaGGNC400fMMa8bIzZAkQYY4YaY75IsO6JxphJztvZjTGzjDHHjDFHjDEjbhZCjDEZnK1/R51/E5z3lQV2OxcLM8b8eqt9aYwpaIz5xrl9e40xT8abl8kYM9cYc84Ys9MY89INtrGx83YtY0yQMeaCcz+971xsVbx6Lhpj6ibsSrrZPr5BrXOMMVOMMd8ZYyKAhs76vzTGnDLG7DfGDLjD+uO/Rl7GmDrGmLXGmDBjTHD87lxn3SHOltr9xpiuzvtLG2N+d7benjbGLI73mPhdhNmNMfOctR50vic84q37D2PMOGe9+40xj9zi5atpjNnhXH62MSajc133GGOWO5/nnPN24Vtth3NeL+e+OmeMWWGMKZbIazHCebuBMSbUGDPIGHPS+R7uGW/ZDM7tOuR8facaYzLdZL2Bxpg1xpjxztcgxDhayAONMYed6+8Rb/nE9qmn83lPG2NCgBYJnuu2P3MiSU0hTdIs5xfOI8Be53RmHC1in99g8c+AJs7bjYEfrLUXb/N5sgI/Az/gaJ0rjaMl7nY9juOLIQcwH2hujMnmXLcn0BFY6Fx2LhDjfI7qQFPgiZus9zWgDo6QWg1HK+BQa+0/OFoJAXJYax+6jRo/BUKd29ceGGWMaeSc9wZQHCiJYx92S2Q9E4GJ1tpsQCkc+x3ggXj1ZLHW/hn/QXexj7sAI4GswFpgGY4W00JAI2CgMabZHdQf/zXKB3wLjAByAi8CXxpj8hhjfIFJwCPW2qw43m+bnet4G0cr7j1AYeCDm9T+AZDdWc+DOH409Iw3vzaOkJ0bx4+OWcYYk8i+6Ao0w7G/ywJDnfd7ALOBYjh+lFwGPgRIbDuMMW2AV4F2QB5gNY73x+3I79y2QkBv4CNjzD3Oee866/PD8foWAoYlsq7awBYgF47PxyKgpvOx3YAPzf+HOiS2T58EHsXxefLH8f6O704+cyJJy1qrP/2lmT/gAHARCAcsji/yHM55hZ33lb/B4x4Gop23fwLeuYPnfBzYdJN5c4AR8aYbAKEJ6u2V4DF/AAHO202Afc7b+YArQKYEz73yJs+9D2geb7oZcMB5u7hzX3jd5LH/zgeKALFA1njzRwNznLdDgGbx5j1xg21s7Ly9CngTyH2z54t3XyDwx6328U32+bx407WBQwmWeQWYfQf194o3/TIwP8H6VgA9AF8gDHgs/uvkXGYeMB0ofIOaLY4Q4Ol8jSvGm9cX+C3ePtkbb15m52PzJ/J56BdvuvnV99MNlvUDzjlvJ7Yd3wO94017AJeAYvG3JeH7H8d7/3KC1/gkjh8SBogASsWbVxfYf5NaA4E98aarOJ83X7z7zji36Vb79NcE+6gp/3/vJ/qZI957VH/6c8WfWtIkLWpjHb/+GwDlcbQ4AJwD4oACN3hMAeC08/aZmyxzM0VwBKK7dTjB9EIcXwTgaBG62opWDPAGjjm7eMKAaUDem6y3IHAw3vRB5313qiBw1lobnmBdheLNj78NCbcnvt44Wkt2GWP+NsY8eps13Ok+jl9DMaDg1X3m3G+v4vgChturP+H6OiRY3/1AAWttBNAJ6IfjdfrWGFPe+biXcISR9cZxxGuvGzxPbsCH61+3QvGmj1+9Ya295Lx5zcExidT+73vAGJPZGDPN2f13AUeAzmGM8bzFdhQDJsbb9rPO7Ypf482csdbGxJu+5Kw9D47AuSHeen9w3n8zJ+LdvgxgrU14XxZuvU8Tvv7xl7vTz5xIklJIkzTLWvs7jl/y45zTEcCfQIcbLN6R/3ef/Qw0c3b53I7DOLqSbiQCx5fPVflvVGqC6c+BBs7u2rb8P6QdxvGrPre1NofzL5u1thI3dhTHl8xVRZ333amjQE5nl2P8dR1x3j6Go5XyqiI3W5G1do+19nEcX3LvAl8493PCfZBQYvv4hk+V4LH74+2zHNbarNba5ndQf8L1zU+wPl9r7TsA1toV1tomOIL+LmCG8/7j1tonrbUFcbTkTL46Di2e00A0179uR7h78bcn/ntgEFAOqG0d3c9Xu5xNYtvh3P6+CbY/k7V27X+o8TSOUFUp3jqzW8cBQP/VrfbpMa7fR1fd6WdOJEkppElaNwFoYoy5evDAEKCHMWaAMSarc/D0CBxdK286l5mP45/zl8aY8sYYD2NMLmPMq8aY5tc/BcuB/MaYgc7Bz1mNMbWd8zbjGGOW0xiTHxh4q4KttaeA33CMF9pvrd3pvP8YjjFN7xnHKUI8jDGljDEP3mRVnwJDnWOlcuMY3/PJrZ7/BvUcxjGua7QxJqMxpiqOFrEFzkU+A15x7stCwDM3W5cxppsxJo+1Ng5Hdxo4ulJP4WjlvNm5whLbx7eyHrhgHIP/MzkHilc2xtS80/qdPgFaGmOaOdeV0TgGxRc2xuQzxrRyBs8rOLreY53b3sH8f2D+ORzBLzb+iq21sc56Rjq3sRjwAnfxusXT31lbThwtiFcPWMiKIxiFOee9cfUBiW0HMBXH/qrkXDa7MeZGP3xum/P9MAMYb4zJ61xvoXjjBv/Lum+1Tz8DBjj30T04/kdcfeydfuZEkpRCmqRpzsAzD3jdOf0HjrFZ7XD8gj6IYzDw/dbaPc5lruA4eGAXjvFpF3B80ecG/rrBc4TjGDvWEkdX1B6goXP2fBwD1g/g+Ge/OOHjb2Khs4aFCe4PwNF1swPHF/0X3LxrdgQQhGNw9VZgo/O+u/E4jnFjR4GvgDestT85572F46CC/ThaIb/A8cV+Iw8D240xF3EcRNDZWhvp7LYbieNUKGHGmDrxH3SLfZwo55d0Sxzjk/bjaFmZiWMg+Z3WfzW0tsYReE7hCPSDcfw/9cDRQnUURzfgg8DTzofWBP5ybvs3wHPW2v03eIpncbTAhuAYn7gQ+Ph2tvUmFuJ474U4/66+ByYAmXDsj3U4uhevuul2WGu/wtEKusjZTboNxwE6/9XLOA7yWedc7884WvqSQmL7dAaOMYXBOD4jSxI89k4+cyJJylh7q14GEZHbZ4x5Ckf4SpWtDam9fhFJO9SSJiL/iTGmgDHmPmdXUDkcLTBfubuu25Xa6xeRtMtlIc0Y87FxnFBw203mG2PMJOM4MeYWY8y9rqpFRFzKB8cRb+E4TmewFJjs1oruTGqvX0TSKJd1dxpjHsAx2HSetbbyDeY3xzFOoDmO8xhNtNbe7kBgERERkTTNZS1p1tpVOAac3kxrHAHOWmvX4Tg/jwZjioiIiOA4o7K7FOLaEwiGOu87lnBBY0wfoA+Ar69vjfLlyydcRERERCRFuBgZzanwK1yMiiXq+N7T1trETsx8U+4MaTe61twN+16ttdNxXE4Ff39/GxQU5Mq6RERERO6ItZa/D5zj3cW/svyDoWQoWJ733h3Ls43KHrz1o2/MnSEtlGvP8lyYuzsbuoiIiIhbnIuI4vMNh5m3dj87fvmCsN/mkDFjRiaMHkqvh8rw7H9YtztD2jfAM8aYRTgOHDjvPLuziIiISIq29+RFPvh1D0s3HyXmwkku//wh5/ZspGmzh5n98SwKFrybSyVfy2UhzRjzKY4LXOc2xoTiuOSIN4C1dirwHY4jO/fiuMhuT1fVIiIiIpIUDp25xJgVu1i+5Rg+Xh50rV2Umjny0OeLw8yYMYPevXtjzI1GdN05l4U050WUE5tvgf6uen4RERGRpBAXZ/l26zEW/X2Iv0LOEhNn6VolG1771/BmW8dV0ZodPEimTJmS9Hnd2d0pIiIikqL9tOMEk37Zw9Yj5ymeKzNP1C9JjuNBvDYggEuXLtGt02OUKVMmyQMaKKSJiIiIXOdkeCSDP9/C7/+cIneWDAx7tCKPlsvKcwOeZdGiRdSqVYu5c+dSpkwZl9WgkCYiIiISz/HzkTQYt5IrMXH0b1iKZx8qg4+nwc/Pj127djFixAhefvllvLxcG6MU0kRERETi2XrkPJHRcUx6vDoNS2bF2wM8PDwYO3Ys+fLlw8/PL1nqcNlloURERERSo8joWADO791ElSpVmDhxIgDNmjVLtoAGCmkiIiIi19gUcoKzP08noP2jeHt7U6dOHbfUoe5OERERERwnqB085SuWT3qVmLOhPPV0f8aOeRdfX1+31KOQJiIiIunamYtXGPHtTr7efAR77ATZvC3zv/+B5g83c2tdCmkiIiKSbv2x5zSB731O2L5gBgwYQP+GjcnqMwAfHx93l6aQJiIiIulPZHQss1bt5Y0Rozm7egG5c+XmuQfeJXuWDO4u7V86cEBERETSlS2hYTQZvpgXAlpz5re5tHi0JTu2byV79uzuLu0aakkTERGRdOHilRg++GUPM37dwaHJ/cjk7cmchQvp3Llzkl0UPSkppImIiEiat+3IeZ6auZLDl715xK8498/+mIb161GwYEF3l3ZTCmkiIiKSZsXFWeas3c8r737A6Z+m89KI9xjdrQVQw92l3ZJCmoiIiKRJJy5E8tzslXzz4Ztc3vsX9e6vT5/H3HtajTuhkCYiIiJpirWW5VuO8cLYmYQseQ/P2Cu8//77PPfcc3h4pJ5jJhXSREREJM2IuBLDq19tZenmo2QilrKlS/HVZwspX768u0u7YwppIiIikias3H2SXm9N58LZk7zx4rP0b9gc7DA8PT3dXdpdST1tfiIiIiI3cCUmlreWbKBVx+4cWPg6uUNX079BSTw9TKoNaKCQJiIiIqnYruMXqDfgA97u1YKIrT8z6MXBbAlal6rD2VXq7hQREZFUaeWuk3SfuJwj0wdRoFBRvvhuNfXq1XN3WUlGIU1ERERSlZjYOF775HcW77xE2dIlGTZnAV3btcTX19fdpSUphTQRERFJNc5fvMxDXZ9l4/K5dHpjOrOe6Y5vhrQZZ9LmVomIiEiaE7RxM03adCTs8B5qNWvHtOfapdmABjpwQERERFKBN0eNoXatmlw4c4on3prCXz98Sfbs2d1dlkul3fgpIiIiqV50bBwL1h1k+qoQMpauzYixE3i+pb+7y0oWCmkiIiKS4sTFxTFy3ES+23uJYzn9uL9tACPaVKZMvmzuLi3ZKKSJiIhIinLo0CEe7dCVrev/wLdiA2bO7k6nmkUwxri7tGSlMWkiIiKSIlhrmTZzFmXKV2LbpiAqdXyRdT9+RedaRdNdQAOFNBEREUkhpi9eTr8nn8DkLs5zk79m88J3qVwoh7vLcht1d4qIiIhb7du3j9DYbLy3zYsSXd5k9rC+PFgun7vLcju1pImIiIhbnD17li5dulChYiUC3v+awjkysfqjwQpoTmpJExERkWT3/fff06t3b06ePEXWep3xr1KOT568j0w+qf/C6ElFLWkiIiKSbKy19OvXj+bNmxNBJvJ1f4++AwazqN/9CmgJqCVNREREko0xhnPRnuS5vyO56nflnY41aO1XyN1lpUgKaSIiIuJSly9f5rXXXqNNmzYc9CnGutyPUK1SViZ3vZcy+bK6u7wUSyFNREREXGb9+vUEBASwe/dutp2J5Z8CTWlSMR8fPH6vujdvQWPSREREJMlFRUXx+uuvU69ePSIiImjzymT+KdCUzjWLMLVbDQW026CWNBEREUlyCxYsYMSIETzetTsR93Zl08kYnm5QipceLu/u0lINhTQRERFJErGxsfzzzz9UqFCBHj16QJY8fLQ7I2GnoxjbvirtaxR2d4mpikKaiIiI/Gd79uyhR48e7N69mz179nDgomH8dm98vCxf97+PyoWyu7vEVEdj0kREROSuxcXF8dFHH+Hn58fOnTsZP3EiCzad5vHp68ia0ZvP+tZVQLtLCmkiIiJyVy5fvkyzZs145plneOCBB9i4eQvfXSrFez/toV6pXHzzzH2UzJPF3WWmWuruFBERkbuSKVMmihUrxrRp02j3eAB9P9nIxkPnGNqiAr3vL4Exxt0lpmpqSRMREZHbdvz4cTp27MjOnTsBmDlzJi06dqfdlD/ZEhrG+I5+PFG/pAJaElBIExERkdvyxRdfULlyZb755huCg4MB2HfqIm0/WsOhs5eY27MWbarrEk9JRSFNREREEnXu3Dm6du1Khw4dKFGiBJs2baJz587MXB3Co5P+IDo2jkV96lCvdG53l5qmaEyaiIiIJGrChAl89tlnvPXWWwwZMgQPTy+GfLmFRX8fpnz+rHzU9V5K6QCBJGeste6u4Y74+/vboKAgd5chIiKSpoWHhxMaGkqFChW4fPkyu3fvxs/PjwOnIxj0eTAbDp6j130leKV5ebw91TF3M8aYDdZa/7t5rFrSRERE5Bq///47gYGBeHl5sXPnTjJlykTVqtWYuTqE93/6By8Pw5j2VelQo7AOEHAhRV8REREBHOc9e+GFF2jYsCGenp7MmTMHLy8vzly8Qo/Z6xnx7U4qF8zO9wMfoKN/EQU0F1NLmoiIiHD06FEaNWrErl27ePrppxkzZgy+vr6s3XeaAZ9uIjwyhjdaViSwXnGFs2SikCYiIiLky5eP6tWrM2nSJJo0aUJcnOW9H3cz+bd9FM2ZmTk9a+nyTslM3Z0iIiLp1LZt22jSpAnHjx/H09OThQsX0qRJE/adukibyWv44Ne9tKxagKXP6ALp7qCQJiIiks7ExsYyZswYatSoQXBwMPv27QMgLs7yedBh2k1eS+i5y4xuV4XxnfzIltHbzRWnT+ruFBERSUf27t1Ljx49WLt2Le3atWPq1KnkyZOH3cfDee2rrQQdPEe1IjmY0MmPErl93V1uuqaQJiIiko68/fbb7Nixg08++YQuXbpgjOGb4KMM/WorFhjZtjJdahXVwQEpgE5mKyIiksYdPnyYqKgoSpUqxZkzZ4iMjKRQoULExMYxdsVupq0K0ZUDXOS/nMxWY9JERETSKGstc+fOpXLlyvTp0weAXLlyUahQIfaeDKf7rPVMWxVChxqFWfbs/QpoKYy6O0VERNKgEydO0LdvX5YuXUr9+vWZMWMGAOcvR/Pmsu0s2XiELBm8GN2uCo/XKurmauVGFNJERETSmE2bNtG0aVPCw8MZN24cAwcOxMPDg6Wbj/DO97s4fiGSJ+uX4Mn6JcmbLaO7y5WbUEgTERFJY8qXL0+TJk0YOnQoFStWZPfxcF7+cgubD4dRKEcmvuhXlxrFcrq7TLkFjUkTERFJA3744QcefPBBLl68SKZMmVi4cCE+uYvSd34QzSasYu/Ji4xsW5nfBjdQQEsl1JImIiKSioWHhzN48GCmTZtGpUqVOHHiBD4ZMzP06618viEUbw8POvkX4eVHypPT18fd5codUEgTERFJpVatWkVgYCAHDhxg8ODBvPXWWxwIi6LT9D/ZdCiMVtUK8mrzCuTPrnFnqZFCmoiISCpkrWXYsGF4eHiwevVq6tWrx9ebj/Dqkm1k8PZgYmc/WvsVcneZ8h8opImIiKQif//9N0WKFCF//vwsXLiQbNmyceIytJm8luDDYfgVycHUbjXUepYGuPTAAWPMw8aY3caYvcaYITeYn90Ys8wYE2yM2W6M6enKekRERFKrqKgohg0bRt26dRk6dCgAefPl57PNp2g2fhXBh8MY2bYyS56qp4CWRrisJc0Y4wl8BDQBQoG/jTHfWGt3xFusP7DDWtvSGJMH2G2MWWCtjXJVXSIiIqnNtm3bCAgIYNOmTXTv3p1x48ax4+gFXvlqK8GHw6hTMidvtqpMufxZ3V2qJCFXdnfWAvZaa0MAjDGLgNZA/JBmgazGcRXXLMBZIMaFNYmIiKQqy5Yto3379mTPnp0lS5bQunUbFqw/xFvLtuPpYXi/YzXa3VvY3WWKC7gypBUCDsebDgVqJ1jmQ+Ab4CiQFehkrY1LuCJjTB+gD0DRorp0hYiIpH3WWowx1K1bl+7duzNq1CgiPHzpOvMv/gw5Q92SuZjQ2Y98umJAmuXKMWnmBvfZBNPNgM1AQcAP+NAYk+26B1k73Vrrb631z5MnT9JXKiIikkJYa5k8eTKNGjUiJiaG3Llz8/6HU1i89TzNxq9iw8FzvNGyIp88UVsBLY1zZUtaKFAk3nRhHC1m8fUE3rHWWmCvMWY/UB5Y78K6REREUqTDhw/Tu3dvfvrpJ5o1a0Z4eDihER48tWADoecu06xSPt5qXVnhLJ1wZUva30AZY0wJY4wP0BlH12Z8h4BGAMaYfEA5IMSFNYmIiKQ41lrmzp1L5cqVWbt2LVOnTuWb5d+ycPMZ2k9dS2R0LJ/0rs207v4KaOmIy1rSrLUxxphngBWAJ/CxtXa7Maafc/5U4G1gjjFmK47u0ZettaddVZOIiEhKFBUVxejRo6latSpz5swhV4EidJu5nvUHztKgXB7GPFaVvApn6Y5x9DSmHv7+/jYoKMjdZYiIiPxny5Yto2HDhmTJkoUjR46QP39+Nh4+z6DPgjl2/jJvta7M47V0wFxqZozZYK31v5vHuvRktiIiInK9c+fO0a1bN1q1asWkSZMAyJOvABN/2UunaX8SZy0Ln6yjgJbO6bJQIiIiyeiHH36gd+/enDx5kuHDhzN48GBOXIjkiblBbD1ynrbVC/Fm60pky+jt7lLFzRTSREREksnEiRMZOHAgFStW5JtvvqFGjRp8uSGU15duIybWMunx6rSqVtDdZUoKoZAmIiLiYrGxsXh6evLoo49y/Phx3njjDWKMF0/OC+KnHScokzcL4zv5UblQdneXKimIDhwQERFxkcjISF577TVCQkJYsmQJjqsgwsZD53jtq238cyKcvg+U5PkmZfH21DDxtOi/HDigljQREREXCAoKIiAggJ07d/L0008TExPDxSjLO9/v4rMNh8mZ2YeZAf40LJ/X3aVKCqWQJiIikoSio6MZMWIEI0eOJH/+/KxYsYLGjZuwYP0hRn67g8joOLrXKcagpmXJkdnH3eVKCqaQJiIikoQuXLjAtGnT6NKlC5MmTeJ4pAedp69j/YGzlMmbhYmdq1Ox4HWXqRa5jkKaiIjIfxQbG8v8+fPp1q0buXLlYsuWLfhmz8nk3/Yy5bd9ZPbx4t3HqtC+RhE8PYy7y5VUQiFNRETkP9i7dy+BgYGsWbOGzJkz06FDB7afg7fm/cH+0xG09ivI8JaVuMdXXZtyZxTSRERE7oK1lqlTp/Liiy/i7e3NvHnzaNqiDY/PWMe6kLMUzZmZOT1r0qCcDgyQu6OQJiIichf69+/PlClTaNq0KbNmzeJErC+PfvgHoecu83zjsjzVoBQ+Xjqthtw9hTQREZHbZK0lJiYGb29vAgMDqVKlCi06BvD+z3tYsimYezJ7M7nrvTSvUsDdpUoaoJAmIiJyG06ePEm/fv0oUKAAH330EVX8arD4QAYajPuNOAt9HijJsw+VJquuuSlJRCFNRETkFpYsWULfvn0JDw9n5MiR/H3gLC9+HszBM5d44v4S9Ly/BIVyZHJ3mZLGqLNcRETkJs6dO0f37t157LHHKFq0KEFBQeSt9xgdpv7JpahYFjxRm6GPVlRAE5dQSBMREbmJs2fPsmzZMoYPH86yn35nwobLvL50O3VK5mRp//u4r3Rud5coaZhCmoiISDwXL15kypQpWGspVaoU+/fvp2TTHjzywVp+3nmSF5qUZeETdSio1jNxMY1JExERcVq9ejWBgYHs37+fmjVrUsWvOsNXHGDp5qP4F7uHkW2rUC5/VneXKemEWtJERCTdi4yMZPDgwTz44IMA/P7775z3LUL9d1eydPNR+j5QksV96yqgSbJSSBMRkXSvRYsWjBs3jr59+7J582a2xhag99wgMnh7MLtnTV5pXkHX3JRkZ6y17q7hjvj7+9ugoCB3lyEiIqlcdHQ0xhi8vLz44YcfMMZQvd6DvLF0O99vO86jVQvwXsdqZPDydHepkooZYzZYa/3v5rFqSRMRkXRn+/bt1KlTh7FjxwLw8MMPk7V0DZqOX8WK7cd5sWlZJnauroAmbqUDB0REJN2IjY1l/PjxDB06lGzZslGhQgWOnb/MpF/28On6w+TLloEVAx+gTD6NPRP3U0gTEZF0Yd++fQQGBvLHH3/Qpk0bJk+ZyurQKBq/9zsRUbH0vK84AxuVJXtmXdZJUgaFNBERSRdOnz7Nzp07mTdvHkVqNaPnol3sOh6OX5EcjG5XhQoFsrm7RJFraEyaiIikWaGhoUyZMgWA2rVr8+vf21hrKhI4+2/OXYrirdaVWPJUPQU0SZHUkiYiImmOtZZPPvmEZ599lpiYGFq3bs3CreFMW7UPTw/Dsw+Vpu+DpciSQV+DknLp3SkiImnKyZMn6devH1999RX33XcfY8CV5G8AACAASURBVD+YxsBvDrL+wFkeKJuHce2rkjdbRneXKXJLCmkiIpJmREdHU6dOHY4cOcLYsWOp9kgX+ny2lVhrGdm2Ml1qFcUYnZRWUgeFNBERSfXCw8PJkiUL3t7ejB07Fs97CvFtqBcfzt9EoRyZmNOzpk6rIamODhwQEZFUbcWKFVSoUIH58+cTF2fZ4lWO5386w6p/TjHgodL8MuhBBTRJldSSJiIiqdLFixcZPHgwU6dOpUKFCpQqW47+Czfy/bbjNKuUj3faVeUeXx93lyly1xTSREQk1Vm7di3du3dn//79DBo0iKqt+jDo18McvxBJr/tKMKxlRXeXKPKfKaSJiEiqc+rUKcdpNr76jmUncvDFd3sokzcL73WszX2lc7u7PJEkoZAmIiKpwoYNG9iyZQs9e/akZctWHPEty7trDhMVE8aAh0rzbKMyeHtqqLWkHQppIiKSokVHRzNq1ChGjBhBkSJFKH/fIwxdtot9pyKoXyY3o9pWoUjOzO4uUyTJKaSJiEiKtWPHDgICAtiwYQOPd+lKkRZP02X2BvJkycD7HavRtnohnfdM0iyFNBERSZFOnTpFzZo18fX1ZeSHs/npcnHWbjlHa7+CvNWqMtkze7u7RBGXUkgTEZEU5ezZs+TMmZM8efIwavyHbI4twvSDVyia0zK/dy3ql8nj7hJFkoVCmoiIpAjWWqZOncpLL73EZ198SYhPSaaFFgBieLpBKZ59qAyZfDzdXaZIslFIExERtwsNDaV37978+OOP1KnfgDd+P8vJuGjql8nNmPZVKZA9k7tLFEl2CmkiIuJWixYtol+/fkRHRzPm/Yl8eLwk2by9mdqhKg9XLuDu8kTcRieUERERtzp79iyVK1dmzfogdt5TF2MMEzr7KaBJuqeWNBERSXZff/010dHRdOjQgaeeeoqmj3Wj7ycb2Xcqgucbl+Wh8nndXaKI26klTUREkk1YWBgBAQG0bduWKVOmEBcXx+cbQmk/bR1nIqKY3bMmzzUuo3OfiaCWNBERSSY//vgjvXr14vjx47zxxhv07P8CXWb+xbqQs1QokI0pXe+leG5fd5cpkmIopImIiMtt2bKFZs2aUaFCBb7++mtCbD4eGv8HGbw8GN6yIgF1i+PhodYzkfgU0kRExGWOHz9O/vz5qVq1KgsXLqRB0+YM/24PK7ZvoXrRHLzTrirl8md1d5kiKZLGpImISJKLjIzkpZdeokSJEmzduhWAojWb0HZaECu2n+C5RmX4vG9dBTSRRKglTUREktTGjRsJCAhg+/bt9O3bl3wFizB2xS6m/LaPAtkzsfDJ2tQrldvdZYqkeAppIiKSZEaOHMnw4cPJmzcv33//PTnK1qTF1CBOhV+hVbWCjGpXhSwZ9NUjcjvU3SkiIknm0qVLdOrUiVXrNvDj+fx0nr4Oay1ze9Vi0uPVFdBE7oA+LSIictdiY2OZMGECfn5+NGrUiLfffptNh8Po9skmToVfoc8DJenfoDTZM3u7u1SRVEctaSIicldCQkJo2LAhL774Il9++SXWWhb9HUqnaesIuxTNJ0/U5tXmFRTQRO6SWtJEROSOWGuZPn06gwYNwtPTk7lz51K3WVuemBvEL7tOUrtETqZ0q0FOXx93lyqSqqklTURE7sjSpUvp168fdevWZVPwFkJy1KDJ+FWs3nuawc3K8emTdRTQRJKAWtJEROSWrLUcPHiQ4sWL06pVK7788kvK1HqIl5fv4O8D5+hWpyjPNSpLnqwZ3F2qSJqhljQREUnUqVOnaN++PX5+fhw9epToOMt2n/K0+mgN249eYEInP0a0qaKAJpLE1JImIiI39fXXX9OnTx/Onz/P22+/zd5wT55a8ifBoefp6F+YIY9UUNemiIuoJU1ERK4TExNDjx49aNu2LYULF2b1n39xvFhTAmYHcfDsJSZ29mNM+2oKaCIupJY0ERG5jpeXF15eXrz++ut0fPI5nvo0mKNhkTzdoBQDG5fFx0u/8UVcTSFNREQAiIiIYMiQIfTp04cqVaowc+ZMth45zxPzNnD8QiQLnqjNfaV1zU2R5KKQJiIirFmzhh49ehASEkKZMmUoU74iby3fwaL1h8jp68PMAH8FNJFkppAmIpKORUZGMmzYMMaNG0fx4sVZuXIlparWpNM0x8EBnfyL6KoBIm6iQQUiIunY5MmTGTt2LE8++SR/BW1kU3QBHpmwmj0nL/Jeh2q8276qApqIm6glTUQknYmOjubgwYOULl2a/v37U716dc5kK0PjD9Zz/nI0Dcvl4bUWFSmdN4u7SxVJ11zakmaMedgYs9sYs9cYM+QmyzQwxmw2xmw3xvzuynpERNK7HTt2UK9ePR566CEuXbpElPVg5YU8vPh5MFkzejGrhz+ze9ZSQBNJAVzWkmaM8QQ+ApoAocDfxphvrLU74i2TA5gMPGytPWSMyeuqekRE0rO4uDgmTJjAq6++SpYsWZgyZQqbj15iyJKtHDt/mS61i/JGy4pk8PJ0d6ki4uTKlrRawF5rbYi1NgpYBLROsEwXYIm19hCAtfakC+sREUmXwsLCaNiwIYMGDaJZs2asWP03y8KL0WXmX1yJiWVur1qMaltFAU0khXHlmLRCwOF406FA7QTLlAW8jTG/AVmBidbaeQlXZIzpA/QBKFq0qEuKFRFJq7Jly0aePHmYMfNjokrW54nP93AlJo4hj5QnsF5xMnornImkRK5sSTM3uM8mmPYCagAtgGbA68aYstc9yNrp1lp/a61/njx5kr5SEZE05siRI3Tq1InQ0FCMMXQaMp7Zp4oxZsVuyufPxldP30e/B0spoImkYK5sSQsFisSbLgwcvcEyp621EUCEMWYVUA34x4V1iYikWdZaFi5cyDPPPMOVK1do3rYDP10swh97T1M+f1bm9arFA2X1Y1ckNXBlSPsbKGOMKQEcATrjGIMW31LgQ2OMF+CDozt0vAtrEhFJs06dOkW/fv1YsmQJderUpUGfNxizwxIZc4a321Sma62ieHjcqJNDRFIil4U0a22MMeYZYAXgCXxsrd1ujOnnnD/VWrvTGPMDsAWIA2Zaa7e5qiYRkbTszTffZPny5Qx8ZTg78zzIp7sjaF4lPy81K0/x3L7uLk9E7pCxNuEwsZTN39/fBgUFubsMEZEUISwsjLNnz1KyZEnOnj3HtO/WM/8fi4+XB688Up5ONXWwlYg7GWM2WGv97+axuuKAiEgq9dNPP9GrVy/y58/PF9//xuAvdrH+QAy1S+TkvY7VKHxPZneXKCL/ga7dKSKSykRERNC/f3+aNm2Kr28WHu03lMem/sn2o+cZ074qi/rUUUATSQPUkiYikors27ePhx9+mH379tG625OEVXqM2XtiqFggA+93qkX5/NncXaKIJBGFNBGRVKRw4cLkL1aaPM0HsDlTSQobb2b3rE6DsnkwRkduiqQl6u4UEUnhNm7cSIsWLfjn0AkGfr6Nw/7PEJWnPKPaVuH3wQ1pWC6vAppIGqSWNBGRFCo6OprRo0fz9ttv45s9J03e+hzvvCV54v4SvNisnK4WIJLGKaSJiKRAO3fuJCAggKCgIAr7N4F6vShTrADvdahGtSI53F2eiCQDhTQRkRTo+UEvsuOfveRv+yr57m3AoKbl6FyziLo1RdIRhTQRkRRi//79eHp5s2J/FLtLdyJnycfpUL8yrzSvQJ6sGdxdnogkM4U0ERE3s9YyY8YMnn/hBXKUrYl30xepV6Usg5qWpUaxnO4uT0TcRCFNRMSNjhw5Qs9evfnpxxVkLu6H7wO9GPFYVTr4F1bXpkg6p5AmIuImv/z2O61atSIyMoqcTfrR5vFA3mpblUI5Mrm7NBFJARTSRETcYGvoeYavDocClanfoT9vdG9Mw3J53V2WiKQgCmkiIsloweIveHPMRKIaDSJfjix8v+xr6pfJra5NEbmOQpqISDIICwvj8V79+OGrxXjnLUHPUpl5p9sD3OPr4+7SRCSFUkgTEXGxeV8s56m+T3Dp3CnyP9iFJdPfo27Z/O4uS0RSOIU0EREXuRwVy/Tf9jD46WfBePPa1C8Z2rOlLuckIrdFIU1ExAU++/Znpm+NZm9YHK0Gj2d4x/uoXCyPu8sSkVREIU1EJAn9c/Qs7Z8YyNYfFpCzTjsWz/yQxhXzubssEUmFPNxdgIhIWhAZHctLU5dS1a8GW7+fj1/jtmz4cooCmojcNYU0EZH/IC7O8sm6g1TtPoyx/R/DI+oiHy/8kk0/fkHxArndXZ6IpGLq7hQRuUu7j4cz5MtgNh0+T7lK91I6piOfTP+QnDl1vU0R+e8U0kRE7sKnfx3guaGjuBK6nQkz5hN4XwmMeczdZYlIGqLuThGRO7Dv1EWe/Og7enZoyamfZ1C7eA46+OXVFQNEJMmpJU1E5DZYa1n41yEGDB/HuZWz8PHyZOasWfTq2VMBTURc4o5DmjHGE+hsrV3ggnpERFKcsEtRvPrVVpYHhXD5r8XUrV2LTz+ZR9GiRd1dmoikYTft7jTGZDPGvGKM+dAY09Q4PAuEAB2Tr0QREfeIi7PMWbOf8j1G8O3mw/RqWJHtG9ez+rdfFdBExOUSa0mbD5wD/gSeAAYDPkBra+3mZKhNRMRtgg+H8dqna1g5axSX/lnLqyPfY3irNu4uS0TSkcRCWklrbRUAY8xM4DRQ1FobniyViYi4gbWWmav38/oHczjz/QfYKxGMGjWKl156zt2liUg6k1hIi756w1oba4zZr4AmImnZiQuRvPDZZr6d+yHn/1hA5SpVWfDJfKpWreru0kQkHUospFUzxlwArh62lCnetLXWZnN5dSIiycBay5KNRxj17XYuXIll0BNduPJgcYYNG4aPj4+7yxORdOqmIc1a65mchYiIuMOJC5H0/XgNv86fQA4fy4olC6lQIBvQ3N2liUg6d9OQZozJCPQDSgNbgI+ttTHJVZiIiKut3H2SvuMWcuDLsUSfO0rPAc9RLl8Wd5clIgIk3t05F8e4tNU4flJWAjRyVkRSvQOnI5jw4w5mTxrDhfVLKFioMAuWrKRBgwbuLk1E5F+JhbSK8Y7unAWsT56SRERcw1rL4r8PM2zpdi6dO86VrT8Q2DOQiePHky2bhtmKSMpyu0d3xuiyJyKSWllr+WnHCcb/uJO/f/2Whs3b8e7A+mR6/WEKFCjg7vJERG4osZDm5zyaExxHdOroThFJdfadusirS7byR1Aw4SsmEn54F08805SSebIAGn8mIilXYiEt2FpbPdkqERFJQmGXopi+KoSPVu4hZsu3nPp1DtmyZmHx4sU0a9bU3eWJiNxSYiHNJlsVIiJJxFrLJ+sOMvGXPZyJiMJn1UccWreCRx99lBkzZpA/f353lygiclsSC2l5jTEv3GymtfZ9F9QjInLXDpyO4O3lO/h55wkqF8zCrB41OfmQD6GhnQgMDERja0UkNUkspHniGLCh/2oikqKFXYpi0i97mffnAbh0jizrZlCj6QNUK9IAijRxc3UiIncnsZB2zFr7VrJVIiJyBw6cjuDlL7ew/3QEJ8OvYK2l4uWtrJs/litXIinQo5O7SxQR+U8SC2lqQRORFCcmNo5Ffx/mzWXb8fH0oFGFfPjGXSLo07H88O1S6tSpw9y5cylbtqy7SxUR+U8SC2mNkq0KEZHbsOdEOM8t2syOYxconz8rMwL8KZIzM5s2beKD335m9OjRDB48GE9PXXpYRFK/xC6wfjY5CxERuZmomDim/b6P9376Bx9PDyZ29uPB4r4sXfo5PXr0oHr16hw8eJBcuXK5u1QRkSSTWEuaiIjbrdl7mkGfBXP8QiQPV8rP8FaV2B60hqqtenL06FHq1atHmTJlFNBEJM3xcHcBIiI3cjkqlr7zg+g68y8slgmd/HivXXlGDh1M48aNyZQpE2vWrKFMmTLuLlVExCXUkiYiKUpcnGXWH/uZsTqEk+FXePah0vRvWBofT0OtWrXYsGEDAwYMYPTo0WTOnNnd5YqIuIxCmoikGAdORzBg0Sa2hJ6nZvF7eL+jH7WKZcPbywNjDC+//DK5c+emYcOG7i5VRMTl1N0pIm5nreXbLcd4bMpadh67wGvNK/BZ37pkiQilRo0azJw5E4AOHToooIlIuqGWNBFxq70nL/Lsp5vYeewCpfNmYXHfOhTPmYmRI0fy5ptvkjt3bgoXLuzuMkVEkp1Cmoi4RVRMHJN/28vklfvI5OPJK4+Up/f9Jdi3dw/3tQxg/fr1dO7cmQ8//FBHbopIuqSQJiLJ7rfdJxn57U72nLxI04r5GNG2MnmzZgRg//797Nu3j8WLF9OxY0c3Vyoi4j4KaSKSbI6fj2TSr3tY+NchSub2ZUaAP00q5uPAgQPM/3o13bt35+GHH2b//v1kzZrV3eWKiLiVQpqIuNyJC5HMWXuAWav3ExMXR2C94gx5pDwZvDyYOXMmzz//PD4+PrRq1Yrs2bMroImIoJAmIi4UHRvHzNX7mbxyL+FXYmjjV5CBjctSPLcvx44d48knn+Tbb7+lYcOGzJ49m+zZs7u7ZBGRFEMhTURcYvWeU7zxzXZCTkVQt2Qu3m5TmdJ5swAQERFB9erVuXDhApMmTaJ///54eOiMQCIi8SmkiUiSCrsUxVvLd7Bk4xEKZs/Ih12q06JKAYwxRERE4Ovri6+vL++++y5169albNmy7i5ZRCRF0k9XEUkSUTFxzPvzAA3G/cZXm47Q877i/PjCgzxatSDGGJYtW0bp0qX57rvvAOjRo4cCmohIItSSJiL/2bYj53llyVa2HjlPjWL38FbrSlQq6Bhfdv78eZ5//nlmz55NtWrVdGJaEZHbpJAmInctPDKaCT/vYdYf+8nk7cm4DtV47N5CGGMAWLlyJYGBgYSGhvLaa68xbNgwfHx83Fy1iEjqoJAmInflq02hjFi+kzMRUXSuWYQXm5Ujd5YM1ywTEhJCxowZWbt2LbVr13ZTpSIiqZOx1rq7hjvi7+9vg4KC3F2GSLp1KSqGib/sYcaqECoVzM7rj1akVomc/87/888/CQ0NpUOHDlhruXLlChkzZnRjxSIi7mOM2WCt9b+bx6olTURu28ZD5xi4aDOHzl7ivtK5+DiwJhm8PAG4cuUKw4cPZ8yYMVSsWJF27drh6empgCYicpcU0kTklq7ExDL+pz1M/X0fWTJ4MaXrvTxSpcC/84ODgwkICGDLli307t2b999/H09PTzdWLCKS+imkiUiigg+H8dIXW9h9Ipx21QsxvHUlsmX0/nf+gQMHqFWrFjlz5mTZsmU8+uijbqxWRCTtUEgTkRuKjbO8vXwHc9YewNvTMOaxqnSsWeTf+WFhYeTIkYPixYszefJk2rRpQ65cudxYsYhI2qKT2YrIdb7YEEqT8b8zZ+0BOvkXYe2QRv8GtLi4OCZOnEjRokXZsGEDAL1791ZAExFJYi4NacaYh40xu40xe40xQxJZrqYxJtYY096V9YhI4nYcvUDf+UG8+Hkwmbw9ea9DNd5tX5U8WR2n1jhw4ACNGjVi4MCBPPDAAxQsWNDNFYuIpF0u6+40xngCHwFNgFDgb2PMN9baHTdY7l1ghatqEZHERcfGMXftAUZ/v4uMXh483aAUzzcpi7fn/3/HzZ49mwEDBmCMYdasWfTs2fPfk9aKiEjSc+WYtFrAXmttCIAxZhHQGtiRYLlngS+Bmi6sRURuYt+pi/Sbv4E9Jy9So9g9zAzw5x7f668KcPjwYfz9/Zk9ezbFixdP/kJFRNIZV3Z3FgIOx5sOdd73L2NMIaAtMDWxFRlj+hhjgowxQadOnUryQkXSI2stn6w7SItJqzl+IZIJnfz4ol/dawLa4sWLWbHC0cj96quv8ssvvyigiYgkE1eGtBv1gyS8vMEE4GVrbWxiK7LWTrfW+ltr/fPkyZNkBYqkVycuRPLcos0M/XobJXNn4bsB9WlT/f/X3Dxz5gydOnWic+fOTJ3q+A3l5eWFh4eONRIRSS6u7O4MBYrEmy4MHE2wjD+wyPnFkBtoboyJsdZ+7cK6RNItay3Lthzj9a+3ER4ZzTMNSzOwcRm84o09W758OU8++SRnzpxh5MiRvPTSS26sWEQk/XJlSPsbKGOMKQEcAToDXeIvYK0tcfW2MWYOsFwBTcQ1wi5FMeHnPcxZe4DKhbIxoVM9SufNcs0yq1atomXLllStWpUffviBatWqualaERFxWUiz1sYYY57BcdSmJ/CxtXa7Maafc36i49BEJGlYa/l8QyjjVuzmZPgVutYuyputKl3Tenby5Eny5s1L/fr1mT17Nl26dMHH5/qDB0REJPkYaxMOE0vZ/P39bVBQkLvLEEkVLl6J4dUlW/km+CgVCmRjZNvK3Fv0nn/nX7p0iSFDhjB37lyCg4N1UICISBIzxmyw1vrfzWN1WSiRNMhay487TjD8m+0cOx/Ji03L8nSD0nh4/P94nnXr1hEQEMCePXsYMGAAefPmdWPFIiKSkEKaSBqz/3QEL3y2mU2HwiifPysTO1enVomc/8631jJ06FDeeecdChcuzC+//MJDDz3kxopFRORGFNJE0oiY2Dg+WrmPj37bSwYvD4a2qEBA3eL4eF172gxjDKdOnSIwMJD333+f7Nmzu6liERFJjEKaSBqw7ch5XvtqK8Gh53m4Un6GtaxIwRyZ/p0fExPD2LFjadq0KTVq1GDKlCl4enq6sWIREbkVhTSRVOxKTCwf/rqX6atCyJLBi/GdqtHGr9A119TcvXs3PXr04K+//uLChQvUqFFDAU1EJBVQSBNJpVbuPsmwpds4fPYyDcrlYUz7quTNmvHf+XFxcXzwwQcMGTKEzJkzs2jRIjp16uTGikVE5E4opImkMlExcUxftY/xP++hWK7MzA6sScPy1x+ZOXfuXAYOHEiLFi2YMWMGBQoUcEO1IiJytxTSRFKRPSfCCZz9N0fCLtO8Sn7GdahGZp//f4yttRw5coTChQvTrVs3smTJQvv27a/p/hQRkdRBV0sWSQViYuOY8ts+2k1ey/nL0YxqW4WPutx7TUA7duwYrVq1olatWoSFheHt7U2HDh0U0EREUim1pImkcFtDzzP4i2B2HQ+nfpncjG5XhcL3ZL5mmcWLF/P0009z6dIl3nnnHbJly+amakVEJKkopImkUBFXYpj0yx6mrw4hl68PEzr50dqv4DUtY5cvXyYwMJDPPvuMWrVqMW/ePMqVK+fGqkVEJKkopImkQOv3n+XpBRs5ffEKrf0K8nabymTL6H3dchkzZiQqKoqRI0fy0ksv4eWlj7SISFqh/+giKUhMbBxz1h7gne93UfieTEzoVJv7y+S+ZpkLFy7wyiuvMHjwYIoXL86SJUs07kxEJA1SSBNJIbYdOc+LnzvGnj1QNg8fPF6d7JmubT1buXIlgYGBhIaG4u/vT8+ePRXQRETSKIU0ETez1vLhr3uZ8Mse7snsc8OrBly6dIlXXnmFSZMmUaZMGdasWUOdOnXcWLWIiLiaQpqIG+07dZHR3+3k550nqVHsHiZ08qNIzszXLTdq1CgmTZrEgAEDGD16NJkzX7+MiIikLQppIm4QGR3L9FUhfLRyLx7GMOSR8vSpXxIPj/+3nkVFRXH8+HGKFi3Kyy+/TOPGjWnQoIH7ihYRkWSlkCaSzDYcPMfgL4IJORVB4wp5GdWuyjXX3AQIDg4mICCA2NhYNm/eTNasWRXQRETSGYU0kWQSF2eZvjqE937cTd6sGZnbqxYPls1zzTIxMTGMGTOG4cOHkzNnTmbMmKHTaoiIpFP67y+SDM5GRNF/wUb+DDlDk4r5GNm28nWtZydOnKBNmzasW7eODh06MHnyZHLnzn2TNYqISFqnkCbiYl9uCGXY0m1ExsQxsm1lutQqesPTZuTMmZOsWbPy6aef0qlTJ51aQ0QkndMF1kVcJDbOMn3VPgZ9Hkz2TN4seKI2XWsXuyZ8HTx4kMcff5yzZ8/i7e3NihUr6Ny5swKaiIgopIm4QvDhMNp8tIZR3+2iTsmcrHj+AeqUzPXvfGsts2bNokqVKixfvpzg4GAAhTMREfmXujtFkthXm0J5fnEwuXxvfGLaY8eO0adPH5YvX06DBg2YPXs2xYsXd1/BIiKSIimkiSSRmNg4Rn+/i1l/7KdWiZxM61aDe3x9rltu0KBB/Pzzz0yYMIFnn30WDw81aIuIyPWMtdbdNdwRf39/GxQU5O4y/tfefUdXVSVsHP7thJAgJZQAhtCL0mtQQETATw1FenAAE6qIGBwVpIiKbUaq6CCCCA4WHBWkigpWBAOYADGR3qv0DAlCSNvfH8kgSAuBm3Nv8j5rsVy55+Su17UJvOx97t4iF9l+JJFR8+OI3htPrzvLM+bBWuTP92f5OnHiBElJSQQFBXHo0CESEhKoXr26g4lFRCQnGGPWWWuDs/O9+ie8yA36fssRQt9ZzdYjiYzrWod/dK5zUUFbunQptWvXpl+/fgCUKVNGBU1ERK5JJU0kmxKSUhg291f6zY7m1iJ+LIlozkONy/95PSGBAQMG0L59e0qWLMm4ceMcTCsiIp5Gz6SJZMPGQ6foPzuawwlJ9GlWkZFtquPn4/3n9Y0badeuHfv372fkyJG8+OKL+Pr6OphYREQ8jUqayHX67eAper/3C15ehn/3aUyr6qUuuadcuXLcdtttfPzxxzRr1syBlCIi4um03CmSRftPnmHU/Fg6Tf0ZYwz/eaTJRQVt7dq1dO3alXPnzlGkSBGWL1+ugiYiItmmkiZyDdZaPli9h/sn/8Tn6w7S447yfPNUC6qWKgRAcnIyo0ePplmzZkRFRbFnzx5H84qISO6g5U6Rq0hKSWPk57EsjDlEk8rFGde1LhVKFDx/PTY2lrCwMGJjY+nbty+TJ0/G39/fwcQiIpJbqKSJXMGmQwk8/VkMWw4n8uT/VeOJ1tXw8vrz5ABrbGIxxAAAG2dJREFULYMGDeLIkSMsWrSIDh06OJhWRERyG5U0kcv4Mu53nvo0hgL5vZn+cENCageev7Zt2zYCAgIoXrw4H330EUWKFCEgIMDBtCIikhvpmTSRC1hrmb5iJ4PnrKdSQEGWPnH3+YKWnp7OlClTqF+/PqNGjQKgcuXKKmgiIuISmkkTyZSals4rX2zi/dV7ebBeGcZ2qUNB34wfkb1799KvXz++//572rRpw5gxYxxOKyIiuZ1Kmghw6L9nefLTGH7ZfZKBLSozMqT6+efPvvnmG7p27Yq1lnfffZf+/ftjjLnGO4qIiNwYlTTJ06y1LIn9nWGf/UpyWjpv/q0+HesHXXRPrVq1aN26NZMnT6ZSpUoOJRURkbxGz6RJnpWals7webE88Z8NVC5ZkG+fvud8Qfvss88IDQ0lPT2dMmXKsHDhQhU0ERHJUSppkidtOZxA93dWM3fdAQa3rMIXQ5pTtVQhTpw4QY8ePXjooYfYt28fJ0+edDqqiIjkUVrulDzFWsu8dQcYs3gjqWmWlzvWIrxpRQC+/PJL+vfvz/Hjx3n11VcZMWIE+fLpR0RERJyhv4Ekz0hNS+e5hb/xSdR+6pUryhsP1adSQMbpAefOnWPw4MEEBATw1VdfUb9+fYfTiohIXqeSJnlC5I7jPLfoN3Yd+4PHWlZh6H23kc/bi8jISBo1aoSvry/Lly+nQoUK+Pr6Oh1XREREz6RJ7nYg/gyj5sfRc+ZaTpxO5s2/1WdESHVSks/x1FNPcddddzF58mQAbrvtNhU0ERFxG5pJk1zJWsvc6AMM/zwWLwM97yzPqDbVKeznwy+//EJ4eDhbt24lIiKCIUOGOB1XRETkEippkutsO5LI6AVxRO2Jp0ZgESaF1qNmmSIAzJgxg8cee4ygoCC+/fZb7r33XofTioiIXJ5KmuQaiUkpTFi2lQ9W76WAjzcjQqozsEVlvL0M1lqMMTRr1ox+/foxceJE/P39nY4sIiJyRcZa63SG6xIcHGyjo6OdjiFuZvnGwzy7II7jp5NpVyeQ59vX5FZ/P1JTU5k4cSLbt29n1qxZTscUEZE8xhizzlobnJ3v1UyaeLR9J87w9GcxRO+Np0rJgszq3Zh65YoCsG3bNnr37s2aNWvo2rUrycnJ5M+f3+HEIiIiWaOSJh4pKSWN9yP3MPnbbXgZwzMP3M4jd1cmfz4v0tPTmTp1KiNGjMDX15c5c+bQo0cPHYouIiIeRSVNPM4PW47y4pKN7D1xhnurl+LFDrUoV/yW89ePHTvGCy+8wD333MOsWbMoU6aMg2lFRESyRyVNPMaJ0+eYsGwrn0Tt59YifswMD+b/apYGMrbcWLp0KW3btqV06dJER0dTuXJlzZ6JiIjH0ma24hHW7DpB+ymrmLfuAGFNKvD9sHvOF7TDhw/TsWNHHnzwQebNmwdAlSpVVNBERMSjaSZN3Fpyajrjvt7Cez/vplyxW5g/uBl1yxY9f33u3Lk89thjnD59mtdff51u3bo5mFZEROTmUUkTt7XlcALPzI0l7uAp/ta4HM+1r0kh3z9/yw4bNoxJkybRuHFj3n//fWrUqOFgWhERkZtLJU3cTlJKGmO/2sKctXsp4ufD1J4NaVc38Pz1/21M27ZtW/z9/Rk1ahT58um3soiI5C76m03cyrq98fz9kw0ciD9L+7qBvNC+JqWK+AGQmJjI0KFDKVGiBK+99hqtW7emdevWDicWERFxDX1wQNzCH+dSmbhsK92mR5KWbvmg3x281bPh+YK2YsUK6taty6xZs/Dy8sLTTsoQERG5XppJE8dF7znJk5/GcCD+LJ3ql+GljrXxL+ADwNmzZ3n22Wd54403qFq1KitXrqRZs2YOJxYREXE9lTRxzB/nUhk5P44lvx6iXPEC/OeRJjStUuKie3bv3s20adOIiIhg7NixFCxY0KG0IiIiOUslTRyxfl88EXPWc+hUEhGtqjKoZZXzn9xMTk5m8eLFdOvWjZo1a7Jjxw7Kli3rcGIREZGcpZImOSopJY0Jy7by3s+7KVXY95LZs7i4OMLDw4mJiSEqKorg4GAVNBERyZNU0iTH/LL7JE9/lvHs2f01S/NalzqUKOQLQFpaGhMmTOCFF16gWLFiLFq0iODgYIcTi4iIOEclTVwuNS2dyd9uY/qKXQT6+zEjrBH31Sx90bFNHTt2ZOnSpXTr1o1p06YREBDgYGIRERHnqaSJS+06dpqhc39lw77/0qFeGV7tXJsifhmf3ExPTwfAy8uL3r1707NnT3r06KEzN0VERFBJExdJS7fMjtzDP7/cjF8+LyaF1qNroz+fLdu3bx/9+vWjU6dOREREEBoa6mBaERER9+PSzWyNMSHGmK3GmB3GmJGXud7LGBOb+SvSGFPPlXkkZ2w9nEiHt1bxyhebqF+uKF8/2eJ8QbPWMnv2bOrUqcOaNWu0pYaIiMgVuGwmzRjjDUwF7gMOAFHGmMXW2k0X3LYbuMdaG2+MaQPMAO50VSZxrfg/knnzu+18tGYvhf3y8a8eDWhfJxAvr4zly8OHD/Poo4+yePFiWrRowb///W8qV67scGoRERH35MrlzjuAHdbaXQDGmE+AjsD5kmatjbzg/jWA9lrwUMs3Hmbk/DjizyTTvVE5hofcfv6Tm/+zefNmvvnmGyZNmsSTTz6Jl5dOJRMREbkSV5a0IGD/BV8f4OqzZP2Bry53wRgzEBgIUL58+ZuVT26CXcdOM2n5NpbG/c7tpQszu29j6pYtev76yZMn+fbbb+nevTutWrViz549lCpVysHEIiIinsGVJe1yH9G77KnYxphWZJS05pe7bq2dQcZSKMHBwTpZ2w2cOpPCm99t5/3Ve8jnZXiidVUiWlcjf74/Z8e+/PJLBgwYwMmTJ7n77rsJDAxUQRMREckiV5a0A0C5C74uCxz6603GmLrATKCNtfaEC/PITbIo5iBDP/uV1HRLaKOyPBNyO6UK+52/npiYyNChQ3n33XepVasWX3zxBYGBgQ4mFhER8TyuLGlRQDVjTCXgIPA3oOeFNxhjygPzgTBr7TYXZpGb4MTpcwyfF8t3W45SrVQhxnerS4PyxS66JyUlhcaNG7Nt2zaGDx/Oyy+/jK+v7xXeUURERK7EZSXNWptqjIkAlgHewHvW2o3GmEGZ16cDLwAlgLczNzBNtdbqLCA3Y63l+y1HGTU/jhN/JDP0vtsY1LIKPt5/Lm2mpKTg4+ODj48PzzzzDNWrV+euu+5yMLWIiIhnM9Z61iNewcHBNjo62ukYecaRhCRGfh7LD1uPEVS0ANMfbkSdsv4X3RMVFUV4eDj/+Mc/6NKli0NJRURE3I8xZl12J6C0B4Jc0bq98bT710p+3HaMUW2q883TLS4qaMnJyTz//PM0bdqU06dPU7Ro0au8m4iIiFwPHQsll0hKSeNf323n7R93ElDIl0WP33XRthoAv/32G+Hh4WzYsIHevXvzxhtvqKSJiIjcRCppcpFV24/z/KLf2H38DzrVL8OYB2tRrGD+S+6LiYnh4MGDLFiwgE6dOjmQVEREJHfTM2kCwNnkNKZ8nzF7FlS0AK90qkXr6qUvumf79u3ExcXRpUsXrLUkJCTg7+9/hXcUERGRG3kmTTNpwqrtxxk+71cOnUoipNatTOpej4K+f/7WSE9PZ9q0aQwfPpxixYrRrl07fH19VdBERERcSB8cyMOstcxcuYvw99bi6+PNh/3vYHpYo4sK2r59+3jggQeIiIigRYsWrF27VvueiYiI5ADNpOVRKWnpvLxkEx+u2Uur20vyZo8GFPHzueieY8eOUbduXVJTU3nnnXd45JFHyNzPTkRERFxMJS0POnH6HI9+uI7ovfH0aVaR59vXxNvrz/J19uxZChQoQMmSJfnnP/9JSEgIlStXdjCxiIhI3qPlzjzm1/3/pePUn4k7eIpJofV4sUOtiwravHnzqFSpEqtXrwZg8ODBKmgiIiIOUEnLQyJ3Hqfnu2s4l5rORwPupGujsuevnTx5kl69ehEaGkrZsmW155mIiIjDVNLyiE+j9hE26xdKFfFjSURzGlcsfv7a119/TZ06dfjss8946aWXWL16NTVq1HAwrYiIiOiZtFwuPd3y1g87eP2bbdxdLYDXu9enZOGLP53566+/UqxYMZYsWULDhg0dSioiIiIX0ma2uVhqWjojPo/j8/UHuLtaAP/u05h83hmTpz/99BNnzpwhJCSEtLQ0UlJS8PPzczixiIhI7qID1uUSO46epv2UVXy+/gBDWlfl/b53kM/bi7Nnz/L000/TsmVLXn75Zay1eHt7q6CJiIi4GS135kI/bDnK4x+vB2B817p0b1wOgKioKMLDw9myZQuDBw9m3Lhx2vdMRETETamk5TITlm1h6g87qRlYhLd7NaRiQEEAYmNjadq0KbfeeivLli3j/vvvdzipiIiIXI1KWi5hreUfSzczc9VuujQI4p9d6uDn401iYiKFCxemTp06TJ48mbCwMG2vISIi4gH0TFouYK1l4vKt5wvahNB6+HjB+PHjqVChAtu3b8cYw5AhQ1TQREREPIRm0jxcerrl5S82MTtyD/fXLM2E0Hrs3rWT3r17ExkZSZcuXVTMREREPJBm0jxYerrlpSUbmR25h4eCy/FOWCNmvDOdevXqsWnTJj766CPmzZtHyZIlnY4qIiIi10kzaR7qj3OpPP7xen7ceow+zSoy5sGaGGPYtGkTLVq0YObMmQQFBTkdU0RERLJJJc0DHUlIovs7q9l74gyj21bHZ9dK1q5NpEmTJkyaNAkfHx9trSEiIuLhtNzpYfYc/4MeM9ZwPPEckztU5ItJT9O3b1+mT58OQP78+VXQREREcgHNpHmQpbG/M3RuDL75vOkecIiBHcNITExk4sSJPPnkk07HExERkZtIJc0DWGt556ddjP1qC+WKF6DXrUd5rHd/GjVqxAcffEDNmjWdjigiIiI3mUqam0tKSWPk57EsjDlE7RJefPJEC/y8wSspgb59++Lj4+N0RBEREXEBlTQ3tu1IIoM+XMeOg8cou/1zoqJ+4Gyf3yhUsiQDBw50Op6IiIi4kEqam1q76wQ93l0DhzeT8s0U1hzaz7BhwyhcuLDT0URERCQHqKS5GWst7/28h7FLN5Ia+QEHVs6jUqVK/PTTTzRv3tzpeCIiIpJDVNLcSEpaOs/Oj2PuugPcW70URzYm037QIMaPH0+hQoWcjiciIiI5SCXNTSQkpfDo7LV8NWc6fcJ68Xp4Y9Ifnke+fBoiERGRvEgNwA3sP3mGHuPnEjX7FZKP7OTWdrXx8mqDl5eGR0REJK9SC3BY9O7jdBo0ikPfzcbf359P5s+nc+fOTscSERERh+lYKActjf2dkEdGcXD5TO69P4StmzepoImIiAigmTRHpKenM+WLaCZHHqNJ24cI7Xsv4T0f0pmbIiIicp5KWg6L+m077UN7cfLoIdo+/wFzHmtBIV8Ng4iIiFxMy505xFrL2H+9Q9PGDTi2M44OvR5h/pCWKmgiIiJyWWoIOSAhIYH7OnXnlx+WUbB8beZ8OJuOLRo5HUtERETcmGbSXMxay/zYY8TuPETdrhFsWLtKBU1ERESuSTNpLhIfH8/IUaNJqd+V7/ck0WHUNGaE34H/LT5ORxMREREPoJLmAsuWLaNfv378fuQIJdr788pTA3i0RWV9elNERESyTMudN9Hp06cZNGgQISEhJBk/Sj88iVefGsCge6qooImIiMh10UzaTTRixAhmzJhBnTYPc6pmF0a0r8Oj91RxOpaIiIh4IJW0G5SUlER8fDyBgYEMHfEsm/xqs9unPMMfuJ3BLas6HU9EREQ8lJY7b0B0dDQNGzYkNDSUg/FneHjOFnb7lGd8t7o83koFTURERLJPJS0bUlJSGDNmDE2aNCEhIYHwwUPp/s4aTp1N4fPHmtI9uJzTEUVERMTDabnzOu3bt4/OnTuzfv16wsLCaNXnGSb+eBBLMnMG3EmD8sWcjigiIiK5gEradSpRogR+fn58+J9P2eRbg5eW76N+uaJM6dGAcsVvcTqeiIiI5BJa7syCnTt30rt3b86cOUPBggV5bvpc3tpVgo/X7mNA80rMG9RUBU1ERERuKs2kXYW1lunTpzNs2DB8fHwYPHgwK/9blLd+2EGNwCJM7dWARhWKOx1TREREciHNpF3BgQMHeOCBBxg8eDDNmzfnl3UxvL3R8NYPO+jSMIhFj9+lgiYiIiIuo5m0K3jkkUf4+eefmTZtGv/XpRd//ySGzb8nMKpNdQbqiCcRERFxMZW0Cxw9ehRvb29KlCjBW2+9BcBZvwBCp68m/kwKU3s2pF3dQIdTioiISF6g5c5M8+fPp1atWgwZMgSAKlWqcMKrGP3fj6KAjzffPt1CBU1ERERyTJ4vafHx8YSFhdG1a1fKly/P6NGjSU1L59kFcfR8dw3exjC73x1ULVXY6agiIiKSh+Tp5c6oqCg6d+7M4cOHGTNmDKNHj+bUuXT6zo5i5fbjPFCrNK91qUvxgvmdjioiIiJ5TJ4uaRUqVKBKlSosXLiQ4OBgYg/8l0c/XMexxHO82qk2Dzep4HREERERyaPy3HLnypUrCQsLIy0tjVKlSrFixQpKVqrBS0s20nHqzwDMH9xMBU1EREQclWdm0pKSknjuued4/fXXqVSpEgcPHiQwqCzvR+5h4vKtJKWk07VhWZ5rV4NiWt4UERERh+WJkhYdHU14eDibN29m0KBBTJgwgVOp3oTNWsuaXSe5u1oAL3aoRZWShZyOKiIiIgLkgZKWlpZGWFgYiYmJfP311zS9pzVvfred9yP3goHxXevSvXE5p2OKiIiIXCTXlrTNmzdToUIFbrnlFubNm0eZMmWI3J/EXWO/5/S5VDrXD+Lp+2+jbDEdjC4iIiLuJ9d9cCAtLY2JEyfSoEEDXnnlFQBKlq/CE/O38fjH6wkqWoC5jzbl9Yfqq6CJiIiI28pVM2k7d+6kT58+rFq1ik6dOhHxxN95+8cdTPluB8lp6fz93mpEtK6Kj3eu66YiIiKSy+SakrZw4UIefvhh8uXLx+zZ7xPQ4P/o/+k2thxOpOXtJRndtgbVSuvUABEREfEMuaak1ahRg7tbtuKusOHM2J3Cwc0bCCpagLd6NqBdnUCMMU5HFBEREckyjy1p1lrmzJnDihUrmPL2NBbttuyo9xibNyRwR6XiPNu2BiG1b8XbS+VMREREPI9LS5oxJgR4E/AGZlprx/7lusm83hY4A/Sx1q6/1vsePXqUQYMGsWDBAqrWaUSzV77iZLIXHeqVYWCLytQO8nfB/42IiIhIznFZSTPGeANTgfuAA0CUMWaxtXbTBbe1Aapl/roTmJb53ys6fuIk1arX5HRiAsVb9SM5uCOlivsz7v7bua9madf8z4iIiIjkMFfOpN0B7LDW7gIwxnwCdAQuLGkdgQ+stRZYY4wpaowJtNb+fqU33bt3L/lLVaJuxHi639eU0OByVC2lkwJEREQkd3FlSQsC9l/w9QEunSW73D1BwEUlzRgzEBiY+eW55CM7f4t5oz8xb8CzNzezuF4AcNzpEJItGjvPpvHzbBo/z3V7dr/RlSXtck/s22zcg7V2BjADwBgTba0NvvF44gSNn+fS2Hk2jZ9n0/h5LmNMdHa/15W7uh4ALjwUsyxwKBv3iIiIiOQ5rixpUUA1Y0wlY0x+4G/A4r/csxgINxmaAKeu9jyaiIiISF7hsuVOa22qMSYCWEbGFhzvWWs3GmMGZV6fDnxJxvYbO8jYgqNvFt56hosiS87Q+HkujZ1n0/h5No2f58r22JmMD1aKiIiIiDvRSeMiIiIibkglTURERMQNuW1JM8aEGGO2GmN2GGNGXua6Mcb8K/N6rDGmoRM55VJZGLtemWMWa4yJNMbUcyKnXN61xu+C+xobY9KMMd1yMp9cXVbGzxjT0hgTY4zZaIxZkdMZ5fKy8GenvzFmiTHm18yxy8pz3JIDjDHvGWOOGmN+u8L1bHUWtyxpFxwp1QaoCfQwxtT8y20XHik1kIwjpcRhWRy73cA91tq6wCvogVi3kcXx+99948j4YJC4iayMnzGmKPA20MFaWwsIzfGgcoks/uw9Dmyy1tYDWgKTMndPEOfNBkKucj1bncUtSxoXHCllrU0G/nek1IXOHyllrV0DFDXGBOZ0ULnENcfOWhtprY3P/HINGfvjiXvIys8ewBDgc+BoToaTa8rK+PUE5ltr9wFYazWG7iErY2eBwsYYAxQCTgKpORtTLsda+xMZ43El2eos7lrSrnRc1PXeIznveselP/CVSxPJ9bjm+BljgoDOwPQczCVZk5Wfv9uAYsaYH40x64wx4TmWTq4mK2P3FlCDjE3f44C/W2vTcyae3KBsdRZXHgt1I27akVKS47I8LsaYVmSUtOYuTSTXIyvj9wYwwlqblvEPenEjWRm/fEAj4F6gALDaGLPGWrvN1eHkqrIydg8AMUBroArwjTFmpbU2wdXh5IZlq7O4a0nTkVKeK0vjYoypC8wE2lhrT+RQNrm2rIxfMPBJZkELANoaY1KttQtzJqJcRVb/7Dxurf0D+MMY8xNQD1BJc1ZWxq4vMNZmbHC6wxizG6gO/JIzEeUGZKuzuOtyp46U8lzXHDtjTHlgPhCmf727nWuOn7W2krW2orW2IjAPGKyC5jay8mfnIuBuY0w+Y8wtwJ3A5hzOKZfKytjtI2MGFGNMaeB2YFeOppTsylZnccuZNBceKSUulsWxewEoAbydORuTaq0Ndiqz/CmL4yduKivjZ63dbIz5GogF0oGZ1trLbhsgOSeLP3uvALONMXFkLJ+NsNYedyy0nGeM+Q8Zn7gNMMYcAMYAPnBjnUXHQomIiIi4IXdd7hQRERHJ01TSRERERNyQSpqIiIiIG1JJExEREXFDKmkiIiIibkglTUTyBGNMmjEm5oJfFY0xLY0xp4wxG4wxm40xYzLvvfD1LcaYiU7nF5G8xy33SRMRcYGz1tr6F75gjKkIrLTWtjfGFARijDFfZF7+3+sFgA3GmAXW2p9zNrKI5GWaSRMRATKPSVpHxpmIF75+lozzEq95GLKIyM2kkiYieUWBC5Y6F/z1ojGmBNAE2PiX14sB1YCfciamiEgGLXeKSF5xyXJnpruNMRvIOCJpbOZRPC0zX48l43zEsdbawzmYVUREJU1E8ryV1tr2V3rdGHMbsCrzmbSYnA4nInmXljtFRK7CWrsNeA0Y4XQWEclbVNJERK5tOtDCGFPJ6SAikncYa63TGURERETkLzSTJiIiIuKGVNJERERE3JBKmoiIiIgbUkkTERERcUMqaSIiIiJuSCVNRERExA2ppImIiIi4of8HYqtrWFxbZdQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.model_selection import RandomizedSearchCV\n", + "from scipy.stats import loguniform, uniform\n", + "from sklearn.feature_selection import VarianceThreshold\n", + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "params = {'C': loguniform(1e-3, 1e1),\n", + " 'l1_ratio': uniform(),\n", + " }\n", + "\n", + "scaler = StandardScaler()\n", + "thresh = VarianceThreshold() # remove constant features\n", + "\n", + "thresh.fit(dataset.data.view(-1, 120))\n", + "scaler.fit(thresh.transform(dataset.data.view(-1, 120)))\n", + "\n", + "lr = LogisticRegression(random_state=13, solver='saga', penalty='elasticnet')\n", + "\n", + "cv = RandomizedSearchCV(lr, params, random_state=3, n_iter=100, n_jobs=-1, verbose=1, scoring='roc_auc', pre_dispatch='n_jobs')\n", + "cv.fit(scaler.transform(thresh.transform(dataset.data.view(-1, 120))),\n", + " dataset.targets)\n", + "\n", + "preds = cv.best_estimator_.predict_proba(scaler.transform(thresh.transform(val_dataset.data.view(-1, 120))))\n", + "\n", + "fpr, tpr, _ = roc_curve(val_dataset.targets, preds[:, 1])\n", + "\n", + "print(roc_auc_score(val_dataset.targets, preds[:, 1]))\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "plt.figure(figsize=(10, 7))\n", + "plt.plot(fpr, tpr)\n", + "plt.plot([0, 1], [0, 1], 'k--')\n", + "plt.xlabel('FPR')\n", + "plt.ylabel('TPR')\n", + "plt.xlim([0, 1])\n", + "plt.ylim([0, 1])\n", + "plt.title('ROC curve of logistic regression baseline model');" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.5511878437375971" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cv.best_estimator_.score(scaler.transform(thresh.transform(val_dataset.data.view(-1, 120))), val_dataset.targets)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAELCAYAAAD3HtBMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de5RcZZnv8e9T1Rc6oZE2NOikgwkcDCcHI5IGxJzljQMHOAKGoILkgIwTiAx4maXGWc6gZ7E8AzJzuKgQLoPIHSGCiBdkseR4JshIN6ByMXIT0zgmTeiQpLvT1d31nD+qqlNdqV21a3dV1+33WSsrXfv67Le799P7fd/9vubuiIiIlCpW7QBERKQ+KYGIiEgkSiAiIhKJEoiIiESiBCIiIpEogYiISCQt1Q5gNuy3336+cOHCaochIlJX+vv7X3f37qD1TZFAFi5cSF9fX7XDEBGpK2b2aqH1qsISEZFIlEBERCQSJRAREYlECURERCJRAhERkUiaoheWSLUkk87W4QSJiUnaWuLMm9tGLGaB224bTTCamGTSnb1a4+w3t31q+9xjdXW0MjQ6HvrYmX072uJMJJ3xiWTR/bL3TSaTTDq4O60tMdpbjJ27JplIOq3xGPvv3U5LS2zaftOupyVOe6uxK5EkFjMSE8mpfdtbjJ1jk1PHicWMHWOJqeO3xIzuuW3sHJ8MLJ+g621tidESM0YTxcsp28REki07xxifTNIWj9GWjt3M2KvVGE0kp117LGbTyinpTtyM1rixayJJMl0GLfFULMW+D9nnz1e+Qd/XxEQSA1rjxvikk3SnvUBZzYQSiEhasZt9Kckgs/3GzTtYfUsfA0Oj9HR1cMPZvSw+oHOP/ZJJ549bh9m8fRdfuve3e2wP7HGsdauWcfUjf+Dnz20peuzMvt17t/PlExbnPUfQjXjj5h1c8fBGznnfItauT+13/JL9uejYd/KZ2/qnxdO9dxuxWIyujlb+NDQy7XqOX7I/XzrhUJLJJGMTzgW3Pzm177VnHcGtv3qVx17eyrpVy9h/nzY2b09MO/53zz2S7aPjfO6upwvGnq/cLz99Kd/82UYGd44VvN6MiYkkv9+8gzVZ588+xrWrlvGtrLJft2oZc9riXPrT5/copws/fMi0a73i4+/mnr4BVhwxP/D7kO/861Yt49ADOqeSSKHva77zhrnuUqkKS+pKMukM7hjjtaERBneMkUwWns8m7PaZX8YV12xg+WW/YMU1G9i4ecfU9sXW57N1ODF1EwMYGBpl9S19vD48lnfbV7eOTN0AsrffOpzIe6w1t/WzctmCPbYtFMeaDx4ceI5C17By2YKpmyLAymULpm7u2fE8PfBmqmy27GDrzsS0c61ctoCBN0aJx+JTN7bMvp+5/UlWv/+gqeMkJnyP4w+8MTqVPArFnq+svnTvb1nzwYOLXm/Glp1jUzfvfMf4TE7Zr7mtn1e3juQtp9xr/cL3f8Pq9x9U8PuQ7/xrbutny87dPzuFvq/5zhvmukulBCJ1o9SbeCnbB93sM79wxdbnk5iYnNo+Y2BolNHEJBMTyT22ndMWz7t9YmIy8Fj7drTusW2hOPbtaA08R6FryN0v6DiZ5eff2s9+e7ftsc+ctjgxI+++8fRfxgNDo0wmfY9tCpVP0PXmxlbsejPGJ5NFj5Fb9nPa4qHLKR6zgtcSdP6Jyd0/N4W+r6V+n6NSApG6UepNvJTtg246mV+4YuvzaWuJ09PVMW1ZT1cHLw8Os3HL9ETW1hJnJDGZd/u2ljitLbG868azbig9XR2Y7Vk9kR3HttHxwHMUuobc/YKOs210HEiVTdLZY5+RxOQeyzP7TqbLo6erg3jM9timUPkEXW++2Apdb0ZrPH95Zx8j83Xm80hiMnQ5TSa94LUEnb8lvvuWXej7Wur3OSolEKkbpd7ES9k+6KaT+YUrtj6feXPbuG7Vsqn9ero6uGzlUq5+5AXOv7V/WiKbN7eNd8ybw+WnL522/Q1n9zJvbhstMdtj3eWnL6U9ff7MseN5qrfnzW3jhrN7U/Xoj74UeI6ga7jh7F7W92/ispW791vfv4lr81zbukdfyiqb2LRzre/fRM9bO5hMTnLNWUdM2/fas47ghl++PFXX39Ziexy/560dXHXG4UVjz77e7LJa9+hLRa83Y/+921mXc/7sY1y7ahnr+zdNrVu3ahnvmDcnbznlXusVH383N/zy5YLfh3znX7dqGfvv3R7q+5rvvGGuu1TWDHOi9/b2usbCqn+DO8ZYcc2GaUmhp6uD+y5Yzry5bXs0cG8dTgRu393ZPu3YxRq8S2kQz/bG8Bhvjo6zZfsY20bHWffoSzy1aRsAG9Z+iPldc6bFsLvXEuzVGpvqOfPa0AgX3vEUaz54MPt2tE4d6/KPLWXbyDhv6Wjl8od+zzdWLN3j2jLHrlQvrMmk48A3fvzctAb9Q7r3ZvvY+O7raYkV7IU1PDZJS+heWNPLp9D1zrQX1kS6F1S+XliTSZ8Wc245xcrQC2tiMjl1jjC9sMbT1aO7e2FBe4GyKsTM+t29N3C9EojUi6Cb+CHde/PC4M7Qy/P12sn9xS9HL6zMPgNDI3zyxn8PlciCBCXPS049jLaWGN977BW+cNzisveyCStK2UjtUwJBCaSR5LtRFXrSyPdkUqzLZ6ndHYvdPCcmkmzcsoPzb+2f0Tly47xu1TK6O9tTf+nGYrppS9kpgaAE0uheGxph+WW/2GN5bhVRPoWqxcI8HYRNQOX4C11/5ctsK5ZA1IguVVfqux25ojRwZ0TpXZUtbE+vWMzo7mxnftccujujvRFcjmOIlJMSiFRVlBf0cuXrdRO2x8lMkg/MPAGJ1DMlEKmqKC/o5YrFjMUHdHLfBcvZsPZD3HfB8tDtCzNJPjDzBCRSzzQWllRVuf6Cz1TvlCo7+URpW8gkoNw2kHL3txepRUogUlWZv+BzG7Fn8y/4qMkns+9MEpBIPVMVllTVTKuQgsy0Yb4UatyWZqUnEKmqQn/BR+22Wo53O0SkOD2BSNXl+wt+Jr2zytEwLyLFKYFIzciudvrL9l1c8fDGSElAXWtFZoeqsKTsoo4ZlVvtdNnKpQzuSEwNPjgwNMro+CSvDY0UPG5Qw3xrS4zBHWNq7BYpEz2ByDQzbXyOWvWUr9pp7frUDHAZPV0dvLRlZ9HjBjXM79w1MaMXFkVkOiUQmVKOt8Kjtj8EVTtlemNl5mO4+pEXih4334uFB+zTztk3/VrtIiJlpCqsOlbuwfWCbv6lDDsetf0hqNrpr/btYMPaDwFw4R1PTVVnFTtu7rsdrw2NqF1EpMz0BFKnyvG0kKscjc9Rh/YIqnZ62z57Mb9rDm0tcQZ3jpV83JnGJSLBlEDqVCW6qpbjJhv1xcBi41nN9IXDSr2wKNLMNB9InZrJHBjZcqfE3Lx9bMYv4FVq3oqZHlfzaYiUpth8IGoDqVPlGEMqX9fZW/76KH5wwftCz5edT3b7Qzlv2jMZs6oc+4vIdKrCqlPlqJLJVw129k2/xrCyjOuUt53mLzt4Y3h2xqgSkcrSE0gFzEZVSTlGga30G9uvD4/t2U5zax///LF3c8b1j2uMKpE6pwRSZrM5kN9Mq2TaWuIcv2R/Vi5bwL4drWwbHWd9/6ay9UzaNZ4/Qe23d9vU16V2ExaR2qEEUmbleJditnR1tPLZY9/Jmtv6p5LdulXL6OpoLflY+Z664mZ522nitjuRlvrEo4ZwkdqhNpAyq6eB/IZGx6eSB6TiXHNbP0Oj4yUdJ+idlL3aYlx++tJp7TSXn76Uv2zfNbVvKQ3/lXj3RUSiUwIps3p6Ya1cyS7oqcswDthnLy459TDuPu+9XHLqYXR3tvPdDa8ApTf8a5h2kdqiKqwIClWj1NMc2eWaTjYoEY0mJlk4by6de7VOlVVXRyvfWLGUr51cehVUPT3diTSDiiYQMzsBuAqIAze6+6UB2x0JPA58wt3vNbPFwN1ZmxwEXOzuV2bt80XgcqDb3V+v1DXkKtZIXk9zZJcr2RVKRPka+qO2BdXC/OkislvF3kQ3szjwB+A4YAB4AjjT3Z/Ls93DwC7gJne/N8/614Cj3f3V9LIFwI3AocCyYgmknG+iD+4YY8U1G/a4idViI3kY5WiUnq2eZ5qqVmR2VfNN9KOAF9395XQgdwGnAs/lbHcRsB44MuA4xwIvZZJH2hXAl4EfljXiEBqtGqUcb2fP1lNXPT3diTSDSiaQ+cCmrM8DwNHZG5jZfGAF8GGCE8gZwJ1Z+5wCvObuvzELvnGY2XnAeQAHHnhghPDzUzVKfrM1TIiGIxGpHZXshZXv7p5bX3YlsNbd8/75bmZtwCnAPenPc4CvAhcXO7m7X+/uve7e293dXVLghWhUVxGRlEo+gQwAC7I+9wB/ztmmF7gr/SSxH3CSmU24+/3p9ScCT7r75vTng4FFQObpowd40syOcve/VOYyplM1Sun08p9IY6pkAnkCOMTMFpFqBD8D+GT2Bu6+KPO1md0MPJiVPADOJKv6yt1/B+yftc8fgd7Z7IUFqkYJK5l0Xh8eY2RskldeH+bqR15gcOeYGr5FGkTFqrDcfQK4EHgIeB74vrs/a2ZrzGxNsf3T1VXHAT+oVIxSOZkeU6dd8xgf/OdH+ccfPsMX//tiuvdu18t/Ig2iou+BuPtPgJ/kLFsXsO2ncj6PAPOKHH/hzCKUSsn31vja9b/lHz+yhPNv7a/bXmsispveRG9AtdDmENTded+OVvVaE2kQSiANplZetgvq7jySmFSvNZEGocEUG0ytDDiYr7vzzeceyaFv62SfvVrYOpzQKLoidU5PIA2mVt6Uz+3u3NEWZ/P2MT523a80DIlIg9ATSIOppeHkM92d53fNYTJJTTwZiUj5KIE0mFp9U75WnoxEpHxUhdVgavVNeY0hJtJ49ATSgLKrjro726uePKB2n4xEJDo9gcisqNUnIxGJTgmkhtXCC4HlpDHERBqLEkiNqpUXAkVEgqgNpEbVyguBIiJBlEBqlLq9ikitUwKpUbX0QqCISD5KIDVK3V5FpNapEb1GqduriNQ6JZAapm6vIlLLVIUlIiKRKIGIiEgkRROIpawys4vTnw80s6MqH5qIiNSyME8g1wDHAGemP+8AvlOxiEREpC6EaUQ/2t2PMLOnANx9yMzUl1REpMmFeQIZN7M44ABm1g0kKxqViIjUvDAJ5GrgPmB/M/sG8G/A/65oVCIiUvMKVmGZWQx4BfgycCxgwEfd/flZiE1ERGpYwQTi7kkz+xd3Pwb4/SzFJCIidSBMFdbPzWylmWkMDRERmRKmF9bfAXOBSTPblV7m7r5P5cISEZFaVzSBuHvnbAQiIiL1JdRgimZ2CvD+9MdH3f3ByoUkIiL1IMxQJpcCnwOeS//7XHqZiIg0sTBPICcBh7t7EsDMvgc8BXylkoHVu2TS2Tqc0FweItKwws4Hsi/wRvrrt1QoloaRTDobN+9g9S19DAyNTs0muPiATiUREWkYYbrx/hPwlJndnH766Edvohe0dTgxlTwABoZGWX1LH1uHE1WOTESkfML0wrrTzB4FjiT1Jvpad/9LpQOrZ4mJyankkTEwNEpiYrJKEYmIlF+YRvQVwIi7P+DuPwR2mdlHKx9a/WpridPT1TFtWU9XB20t8SpFJCJSfmGqsL7m7m9mPrj7NuBrlQup/s2b28YNZ/dOJZFMG8i8ubU7Cn4y6QzuGOO1oREGd4yRTHq1QxKRGhemET1fkgn7/sgJwFVAHLjR3fN2/zWzI4HHgU+4+71mthi4O2uTg4CL3f1KM7sEOJXUkPJbgE+5+5/DxDNbYjFj8QGd3HfB8rrohaVGfxGJIswTSJ+Z/R8zO9jMDjKzK0g1pBeUnkPkO8CJwBLgTDNbErDdZcBDmWXuvtHdD3f3w4FlwAipIeUBLnf3pel1DwIXh7iGWReLGd2d7czvmkN3Z3tN34jV6C8iUYRJIBcBCVJPBPcAu4C/DbHfUcCL7v6yuyeAu0g9OeQ7/npSTxP5HAu85O6vArj79qx1c0lPdCXRqdFfRKII0wtrmPRLg+mnhbnpZcXMBzZlfR4Ajs7ewMzmAyuAD5Pq5ZXPGcCdOft9AzgbeBP4UIhYpIBMo392ElGjv4gUE6YX1h1mto+ZzQWeBTaa2ZdCHDtfnU3u08KVpLoF5/1TNz33+imknnx2H8T9q+6+ALgduDBg3/PMrM/M+gYHB0OE27yyG/3fs2BfvvupI7nt00fjuBrTRSRQmMbwJe6+3czOAn4CrCXVBnJ5kf0GgAVZn3uA3MbuXuCu9FQj+wEnmdmEu9+fXn8i8KS7bw44xx3Aj8nTK8zdrweuB+jt7dVdsIBMo/8DFy7nP7bt4vzb+tWYLiJFhWkDaTWzVuCjwA/dfZxw7Q5PAIeY2aL0k8QZwAPZG7j7Indf6O4LgXuBC7KSB8CZ7Fl9dUjWx1PQTIllEYsZk0mmkgeoMV1ECgvzBHId8EfgN8AvzewdwPaCewDuPmFmF5LqXRUHbnL3Z81sTXr9ukL7m9kc4Djg/JxVl6a7+SaBV4E1Ia5BQlBjuoiUIkwj+tXA1ZnPZvYnshquzewcd/9ewL4/IVXtlb0sb+Jw90/lfB4B5uXZbmWxmCUaNaaLSCnCVGFN4ykTWYs+V8Z4pIrq8Q16EamesMO5F6LW1QZRb2/Qi0h1lSOBqIdTHSk20VXmDXoRkWL0BNJENOaViJRTmBcJFxVZtqGsEUnFaMwrESmnMI3o6/MsuzfzhbvnfRNcao+66YpIOQVWYZnZocB/Ad5iZqdlrdoH2KvSgUn5qZuuiJRToSeQxcBHgH2Bk7P+HQGsrnxoUm7qpisi5WTuhTtRmdkx7v6rWYqnInp7e72vr6/i5ynWw6kW1EOMIlIbzKzf3XuD1ofphbXCzJ4FRoGfAe8GPu/ut5UpxoZQLz2c1E1XRMolTCP68elJnD5CaoTddwJhhnNvKurhJCLNJtRovOn/TwLudPc3KhhP3VIPJxFpNmESyI/M7Pek5u54xMy6SU1rK1kyPZyyqYeTiDSyognE3b8CHAP0pucCGSH/3OZNTT2cRKTZFG1ET8/L8bfAgcB5wF+R6uL7YGVDqy8aiFBEmk2YXljfJTWF7fvSnwdIzVGuBJJDPZxEpJmEaQM52N2/CYwDuPsoGkBRRKTphUkgCTPrID1su5kdDIxVNCoREal5Yaqwvk7qBcIFZnY7sBw4t5JBiYhI7QszJ/rPzawfeC+pqqvPufvrFY9MRERqWpj5QB5x963u/mN3f9DdXzezR2YjOBERqV2FhnPfC5gD7GdmXexuON+HVFdeERFpYoWqsM4HPk8qWfSzO4FsB75T4bhERKTGBSYQd78KuMrMLnL3bwVtZ2bHufvDFYlORERqVpihTAKTR9plZYpFRETqSJj3QIrRS4UiIk2oHAmk8JSGIiLSkMqRQEREpAmVI4H8sQzHEBGROhNmKBPM7H3Awuzt3f2W9P+nVSQyERGpaWHmA7kVOBh4GsjMz+rALRWMS0REalyYJ5BeYIm7q7FcRESmhEkgzwBvA/6jwrFIHsmks3U4oVkORaTmhEkg+wHPmdmvyZoHxN1PqVhUAqSSx8bNO1h9Sx8DQ6NT86wvPqBTSUREqi7sfCBSBVuHE1PJA2BgaJTVt/Rx3wXLNXWuiFRdmPlA/u9sBCJ7SkxMTiWPjIGhURITkwF7FKbqMBEppzDzgbzXzJ4ws51mljCzSTPbPhvBNbu2ljg9XR3TlvV0ddDWEi/5WJnqsBXXbGD5Zb9gxTUb2Lh5B8mk+kaISDRhXiT8NnAm8ALQAfxNeplU2Ly5bdxwdu9UEsm0gcyb21bysYKqw7YOJ8oas4g0j1AvErr7i2YWd/dJ4Ltm9liY/czsBOAqIA7c6O6XBmx3JPA48Al3v9fMFgN3Z21yEHCxu19pZpcDJwMJ4CXgXHffFiaeehOLGYsP6OS+C5bPuNqp3NVhIiJhnkBGzKwNeNrMvmlmXwDmFtvJzOKkJp46EVgCnGlmSwK2uwx4KLPM3Te6++HufjiwDBgB7kuvfhg4zN2XAn8A/j7ENdStWMzo7mxnftccujvbI7dZlLM6TEQEwiWQ/5ne7kJgGFgArAyx31HAi+7+srsngLuAU/NsdxGwHtgScJxjgZfc/VUAd/+5u0+k1z0O9ISIpemVszpMRATC9cJ61cw6gLe7+/8q4djzgU1ZnweAo7M3MLP5wArgw8CRAcc5A7gzYN1fM72qSwKUszpMRATC9cI6mdQ4WD9Lfz7czB4Icex8d6bcLj9XAmvTbSv5zt0GnALck2fdV4EJ4PaAfc8zsz4z6xscHAwRbuMrV3WYiAiEf5HwKOBRAHd/2swWhthvgFR1V0YP8OecbXqBu8wMUm+8n2RmE+5+f3r9icCT7r45eyczOwf4CHBs0Bhd7n49cD1Ab2+v+qqKiJRZmAQy4e5vpm/ypXgCOMTMFgGvkaqK+mT2Bu6+KPO1md0MPJiVPCDVfXha9VW6Z9da4APuPlJqUCIiUh6hBlM0s08CcTM7BPgsULQbr7tPmNmFpHpXxYGb3P1ZM1uTXr+u0P5mNgc4Djg/Z9W3gXbg4XRSe9zd14S4DhERKSMrNkp7+kb+VeD49KKHgEvcfSx4r9rS29vrfX191Q5DRKSumFm/u/cGrQ/TjXdJ+l8LsBeprrhPlCc8ERGpV2GqsG4HvkhqXpBkZcNpfBrQUEQaRZgEMujuP6p4JE1A83uISCMJU4X1NTO70czONLPTMv8qHlkD0oCGItJIwjyBnAscCrSyuwrLgR9UKqhGpQENRaSRhEkg73b3d1U8kiaQGdAwO4loQEMRqVdhqrAezzeKrpROAxqKSCMJ8wTyX4FzzOwVYIzUGFeeHk5dSqABDUWkkYRJICdUPIomkhnQUESk3oUazn02AhERkfoSpg1ERERkD0ogIiISSZg2EAmgYUlEpJkpgUSkYUlEpNmpCisiDUsiIs1OCSQiDUsiIs1OCSSizLAk2TQsiYg0EyWQiDQsiYg0OzWiR6RhSUSk2SmBzICGJRGRZqYqLBERiUQJREREIlECERGRSJRAREQkEiUQERGJRAlEREQiUQIREZFIlEBERCQSJRAREYlECURERCJRAhERkUg0FlYRmrZWRCQ/JZACNG2tiEgwVWEVoGlrRUSCKYEUoGlrRUSCKYEUoGlrRUSCKYEUoGlrRUSCqRG9AE1bKyISrKJPIGZ2gpltNLMXzewrBbY70swmzez09OfFZvZ01r/tZvb59LqPmdmzZpY0s95Kxg+7p62d3zWH7s52JQ8RkbSKPYGYWRz4DnAcMAA8YWYPuPtzeba7DHgos8zdNwKHZ61/DbgvvfoZ4DTgukrFLiIixVXyCeQo4EV3f9ndE8BdwKl5trsIWA9sCTjOscBL7v4qgLs/n04wIiJSRZVMIPOBTVmfB9LLppjZfGAFsK7Acc4A7iz15GZ2npn1mVnf4OBgqbuLiEgRlUwg+RoLPOfzlcBad8/7YoWZtQGnAPeUenJ3v97de929t7u7u9TdRUSkiEr2whoAFmR97gH+nLNNL3CXmQHsB5xkZhPufn96/YnAk+6+uYJxiohIBJVMIE8Ah5jZIlKN4GcAn8zewN0XZb42s5uBB7OSB8CZRKi+EhGRyqtYFZa7TwAXkupd9TzwfXd/1szWmNmaYvub2RxSPbh+kLN8hZkNAMcAPzazh/LtLyIilWXuuc0Sjae3t9f7+vqqHYaISF0xs353D3zfTkOZiIhIJEogIiISiRKIiIhEogQiIiKRKIGIiEgkSiAiIhKJEoiIiESiCaUKSCadrcMJTSYlIpKHEkiAZNLZuHkHq2/pY2BodGo628UHdCqJiIigKqxAW4cTU8kDYGBolNW39LF1OFHlyEREaoMSSIDExORU8sgYGBolMZF35HkRkaajBBKgrSVOT1fHtGU9XR20tcSrFJGISG1RAgkwb24bN5zdO5VEMm0g8+a2VTkyEZHaoEb0ALGYsfiATu67YPmMe2GpN5eINCIlkAJiMaO7sz3SvpmkkUwmeX04wfm39qs3l4g0FFVhVUCmC/CKazbw9MCbU8kD1JtLRBqHEkgFZHcB3rejVb25RKQhKYFUQHYX4G2j4+rNJSINSQmkArK7AK979CUuW7lUvblEpOGoEb0CMl2AV9/Sx1ObtvG9x17hjr85mnjM1AtLRBqGEkgFlLMLsIhIrVICqZCZdAEWEakHagMREZFIlEBERCQSJRAREYlECURERCJRAhERkUjM3asdQ8WZ2SDwataitwBvZn3eD3i9giHknq/c+xXbLmh9vuVhljVT+ZW6rtTyq9WyC7tv1J+9oHXFftZyl9Vq+VXjdzff8pn+7r7D3bsD17p70/0Drs/53Deb5yv3fsW2C1qfb3mYZc1UfqWuK7X8arXswu4b9WcvSlnVU/lV43c3TPmV+3e3WauwflQn5wu7X7HtgtbnWx5mWTOVX6nraq38ZnKuMPtG/dkLWhemrOqh/Krxu5tveUV/9pqiCqsYM+tz995qx1GvVH7RqexmRuU3MzMtv2Z9Asl1fbUDqHMqv+hUdjOj8puZGZWfnkBERCQSPYGIiEgkSiAiIhKJEoiIiESiBFKEmf1nM1tnZvea2WeqHU89MbOPmtkNZvZDMzu+2vHUGzM7yMz+1czurXYs9cLM5prZ99I/d2dVO556U+rPXEMnEDO7ycy2mNkzOctPMLONZvaimX2l0DHc/Xl3XwN8HGia7oJlKrv73X018CngExUMt+aUqfxedvdPVzbS2ldiWZ4G3Jv+uTtl1oOtQaWUX6k/cw2dQICbgROyF5hZHPgOcCKwBDjTzJaY2bvM7MGcf/un9zkF+DfgkdkNv6pupgxll/YP6f2ayc2Ur/ya3c2ELEugB9iU3mxyFmOsZTcTvvxK0tAzErr7L81sYc7io4AX3f1lADO7CzjV3f8J+EjAcR4AHjCzHwN3VC7i2lGOsjMzAy4FfuruT1Y24tpSrp89Ka0sgQFSSeRpGv8P5FBKLL/nSjl2MxbwfHb/hQKpH7j5QRub2QfN7Gozuw74SaWDq3EllR1wEcq74nAAAAMZSURBVPDfgNPNbE0lA6sTpf7szTOzdcB7zOzvKx1cnQkqyx8AK83sWmZ/yJ16krf8Sv2Za+gnkACWZ1ng25Tu/ijwaKWCqTOllt3VwNWVC6fulFp+WwEl3vzylqW7DwPnznYwdSio/Er6mWvGJ5ABYEHW5x7gz1WKpd6o7GZG5Vc+KsuZKUv5NWMCeQI4xMwWmVkbcAbwQJVjqhcqu5lR+ZWPynJmylJ+DZ1AzOxO4FfAYjMbMLNPu/sEcCHwEPA88H13f7aacdYild3MqPzKR2U5M5UsPw2mKCIikTT0E4iIiFSOEoiIiESiBCIiIpEogYiISCRKICIiEokSiIiIRKIEIiIikSiBiNQ5M2s1s0vN7AUze8bMfm1mJ1Y7Lml8zTiYokhVmFlL+g3gcrsEeDtwmLuPmdkBwAcqcB6RafQmukgJ0vMq/Az4d+A9wB+As4EvAicDHcBjwPnu7mb2aPrzclJjDf2B1ARbbcBW4Cx332xmXwcWkUoE7wT+DngvqQl/XgNOdvfxPPHMITUs9yJ3316JaxYJoioskdItBq5396XAduAC4NvufqS7H0YqiWRPELWvu3/A3f+F1MyW73X39wB3AV/O2u5g4H+QmtjnNuAX7v4uYDS9PJ//BPxJyUOqQVVYIqXb5O4b0l/fBnwWeMXMvgzMAd4KPMvuCY3uztq3B7jbzN5O6inklax1P3X3cTP7HRAn9aQD8DtgYSUuRGQm9AQiUrrcel8HrgFOTz8x3ADslbV+OOvrb5F6WnkXcH7OdmMA7p4Exn13/XKS4D/2XgQONLPOKBciMhNKICKlO9DMjkl/fSapaimA181sb+D0Avu+hVSbBsA5Mw3E3UeAfwWuTs/rgJm93cxWzfTYIsUogYiU7nngHDP7LanqqmtJPXX8Drif1GQ9Qb4O3GNm/w94vUzx/AMwCDxnZs+kYxgs07FFAqkXlkgJ0r2wHkw3los0NT2BiIhIJHoCEakTZnYfqXdFsq1194eqEY+IEoiIiESiKiwREYlECURERCJRAhERkUiUQEREJBIlEBERieT/A2yIYSUEyCKcAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEHCAYAAABvHnsJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de5wcZZ3v8c9vei7MDAMZkyFiJpDAgWhWIZoBwXhclYUFRDCCKyhEOWeBbERx96jR4xE567oaOB7RxWwQX4goBxQwiHhBl4V1Ny7KBAG5GA0gZkDCEAcSJpPpzPTv/FHVk55JX6o7XX39vl+vvDLdXZdfP1Vdv6rneeopc3dERERK0VLtAEREpH4piYiISMmUREREpGRKIiIiUjIlERERKVlrtQOohDlz5viCBQuqHYaISF3ZuHHj8+7el2+apkgiCxYsYHBwsNphiIjUFTN7qtA0qs4SEZGSKYmIiEjJlERERKRkSiIiIlIyJRERESlZU/TOiksq5WwbTZKcmKS9NcHs7nZaWizn+6UuE+D50XF27Z4kYUZne4JZndGXGXW9L4wlGUtOMunOfm0J5nR3lLyOQmWwL2VUzHpKlbnczvYEEyln90Rqn9dRTLyZ07a1ttDaYowly/s9yy2u7bGv65k5fW9nGyNju4uKM3MZZkbCoKWlpaTvWKlyqgQlkSKkUj51MG81Y+fuSd7/9fsYGhmjv7eTa1YMcPCBHTw9sosv3fVbzlw6n9nd7YwlJ3jFgZ20tua/8EulnE1bd3DB9YNTy7zu/GNITqS48l/2LO9l3e2Mjk8wb1ZXUT+cXDtqKuX8ftsoW7fv4qO3PDTt+yya27PXPLkS3bbRJKlUCjNjeMc4F31r47RlHdG3/9QPdzLl/MMPHuUnjz6Xd135vlcqleL5l5J7rSfqcvItP70d+vbv4GMnL4pcLi+MJZmYSJFMOZMppz3RQt/+HbS2tmTdvvmWNXPaK846ist/vInhl8a5ZsUAcw/oiJRUyn3AynfylOv7AWU7aRgZG+ePL4yzMuJ2nxnXSYsP4kMnHBl5/sxl3Hb/Fs4aOIREi9GWaOGuXw/x+sP7itrn0r+3p7btpKs9wc7kJIfO7mLB7O6ynwDta7KLwpphKPiBgQEv5T6RmWejW18c54Jv7v2j/tWWFwDCg/6xXP7jx3jfGxay+tY9B56rz1vKq15+QN6NOLxjnOVrNzA0Mjb13tfffww3/vKpvZa39r2vo7+3k5d1d+SMPeoBa3jHOA8//SKf+t7D09bd39vJ+lXL6OvpKLjcjtYWPv+j4HsnJ1J7LeukxQdxyV8cyUXf3PPDXXPmUfyfO4Pyy7auQt/rU6ct5jN3PFow5mJlboerz1saaR3pA8NYcoLtuyamJZ115y7llXN7GBnbvdf2zRVvtn2hv7eTT522mIu+uZH+3k4+c8arOf+6+4pORvuSaPMtb9toMmvMt1+8jK3bx/c5hvS6n31xV6R9NW1mWUbdpjOX8bWfbeZtR89j1Q33T32Pf37vUu54cIi/ftN/ibzP/Wl0nE3P7pi2j1xx1lEsenkPszrb9ynZZts+a848im/8/En+9sRFRZe5mW1094F806hNJIf0xli+dgPL1tzNg1tenEogAEMjY3z0lodY+ebDp+YZGhmjxeDMpfOnDvjp9y/65ka2jSbzrjM5MTltxwboak9kXd6qG+5nLDmZc1nbRpNTO1J6nguuH8waQ3Jikq72xF7rHhoZIzkxfR25lvvUtp1TcWZb1plL508lkPR8q2/dU37Z1lXoe83qbIsUc7Eyt0PUdWwbTfLUtp08tyM5dXBIT7vyWxt57qXxrNs3V7y5pp3V2Tb1d1d7YurvXNu2mP0ginzLyxXzWHIy5zyplDO8Y5ynR3YyvGOcVCr3SW163VH3VQh+x2O7J6ZNX8p+k5yY5KyBQ6YSSHqev7lhI2cNHFLUPjeWnNxrH/noLQ+xKzk57ZizfO0GNm3dkbdMZsq2fVbf+hBnLp2/T9s9HyWRHGZujFw7bvpHDcHZzGTKmd3dXtLBrb01QX9v57T3diYncy5vMs/OVcwBq701uKSeue7+3k7aWxORltvVnpj6cb4wtnuvZeX6Dunyy7auQt8r23qiLiefzO2Qax1mNu3Al07EufaTiclU1u2bK95c074wtnuvv9PrKCYZlZpo8y0vV8yT7jnnKeagmV531O2ePhF8/LnRadOXst+0tyZoTVjW75FosaL2uVzlMZHyfU74+U4+ynGClY2SSA4zN0auHW9neDWQviS95mdP8LLu9pIObrO727lmxcDUvP29nfR2tzF7/+zLa81zWVrMAWt2dzuHzu7iirOOmrbua1YMTLV3FFruzuTkVBmtu+dx1pw5fVkH9XTkPCjmWleh75VtPVeftzTScvLJ3A7r7nl8r3JZd+5SLrv94WkHvs6wbjtXMm5NtGTdvrm+d7ZprzjrKNbd8/hUdea6ex6fto5iklGpiTbf8nJ9v/3ass9jZkUdNNPrjrrd0yeCX77rd9Omv3XjFtaduzTSdkjr7WyjLdGS47u3FLXP5SqPREv2JFXMgT/fyUc5TrCyUZtIDjPrUV87fxZ/f8af8TcZ9aFfeNfRpNyZN6uT/doTvLRrghXX/pI3HDabc48/dFrd6dXnLuVVB+dvE4E9jfc7xyd58vlRvnzX7zh2wSzevqR/WkPgF//qaA4/aP+ytImkG4R3T6TYnXJSeXpnRWkTWX3rQ/Tt38GHTjiChXO66epI8LLOdn43/NK0+a4+bylzutuLavRLpZzH/rh9qjH9pMUH8fFTXsWOXRPM6mpjXoQODFHk6p1lZlx2+8P85NHnpqbt7+3ku6vewEu7JvK2iaQb14vpnZXeF57dvgt3py3RwkE9HZjBOdf8ItK2rVSbSK6eiUDWeV7W1cbrP/eve61jw+q3MK+3K++60/vXobO7aEu0cPAB++213Z8e2cmyNXcDwe935ZsPZ1ZnG/29nczt2a+o3lk520TOXcorD9qftrboB+dcZTj3gA5Ovypam1kxy467TURJJIdsG+Pmi47jN8++RFd7ghfGdrPunscZfml8aiOnUs6z23fxzAtj7J5MMZkKfvQ7k5McPf/AnAf8XOvP7N45vnuSzc+NFtWbI8oBq5SDTKHeWZMO7r7XOsvVS+hPo+M8uOVFZnW1sX9HK7t2T/L8S8miy7gUmQemTBtWv4WDD+yc1jsrFW7/dO+sUuUr72K7CsfZO6vYeXI1xOc7aO7pIZkiYeTt7p6rc0IpHS/S2/2vlvZzwZsOI9FiTKac3q425vTsV9Sy0t8jarItpQNCuXpnKYmEytE7K923fObZ9MyNXO4zv1yxlKu7Xjl/aJUSVxlHkau8vnPR8VkTp+QW93Ys5/Ir9TuptftHlERCpSaRbKKe3dfSjpBPvjPrbFUKtaJaZZztwLTu3KV8+a7flnTPS7OLezuW86bWYqvxGmH7K4mEyplEGk09XolU28zqgmxtJCq/xlPKTZb1nkh0n4gU1NvZxtXnFddTpdm1tBh9PR3M6+3C3aclECjPvSpSezK3e1/Pnk4n5b4Xp95o2JMmlko5vxt+iS/9y2/51GmLmd3dzkE9HbziwM66P4OqlHSXyplXcnF0pZTaVO57ceqNkkgTyzyDSp9NqyqmOOl7I2ZWZehKrnk0+4mEkkgTa/YzqHJoaTEWze1h/aplDdeoKtE0+4mEkkgTa/YzqHJJ15VLc2r2Ewk1rDexYobhECmkmMEUG02uRvdmoCuRJtbsZ1BRNeo9AOXUyN1cJT8lkSanqpj8SUIHx2hydXNVJ43Gp+osaWoznxszczjyeroHoJrVSeqk0byURBpArdZF12pcmQoliXo5OBZKhnEr95Dzsrda/T0pidS5ah886i2umQoliXo5OFb7ikmdNOJVy78nJZE6V+2DR73FNVOhJFEvB8dqXzFldtLYsPotrF+1TO1GZVTLvyc1rMeoEr16qn3wyKVW45qp0I1i9dKDrRbu+VEnjfjU8u9JSSQmlerVUwsHj2xqNa6ZoiSJejg4Nvtd042uln9PGgo+JpV8iE0tdkGt1bgame5naVzV+j3peSKhaiSRSj7sqdDBo5oPcKq3g1o9xizNoRr7ZpQkouqsmFTy8jNfdUs1rwjqoRooU6XLSglLilGrvyf1zopJrfTqqeVeHbUmSlmVq69+LXfZFCmGrkQiKOWMsVZ69dRyr45aU6isynmlomFCpFHoSqSAfTljrIWRPUu9Wa5W746NU6GyKudVnZK7NAolkQLqvTqolGq1ZqlqmZkoezvb8pZVOQ/89XInvNSuWjnRU3VWAfV+xlhKtVozVLXkqpo6om//nGVVzs4Suq9D9kUtdaFXEimgvTXBSYsP4syl85nV2cYLY7u5deOWujpjLLZXR70nzihKSZTlPPDXSpuZ1KdaOtFTEimgt7OND51wJCu/tXHqwLHu3KX0drZVO7TY1PLdseVSSqIs94G/VrtsSu2rpRO9WNtEzOxkM9tkZpvN7ON5pjvGzCbN7Kzw9SIzeyDj33Yz+/CMeT5iZm5mc+L8DiNju6cSCAQbauW3NjIytjvO1VZVrXRPjlOpbRK10FlCpJba1GK7EjGzBPAV4ERgCLjPzG5390ezTLcGuDP9nrtvApZkfP40sD5jnvnhcv8QV/xptZTxK6UZqlrUJiH1rJb23zirs44FNrv7EwBmdhNwBvDojOk+CNwKHJNjOScAj7v7UxnvfRH4GPC9skacRTNU7WTT6FUtzZAopXHV0v4bZ3XWPGBLxuuh8L0pZjYPWA6sy7Ocs4EbM+Y5HXja3R/Mt3Izu9DMBs1scHh4uNjYpzRD1U6zUtWU1LNa2X/jvBLJ9o1mdmS+Eljt7pNme09uZu3A6cAnwtddwCeBkwqt3N2/CnwVggEYi4o8Qy1lfJF6prHCGlOcSWQImJ/xuh94ZsY0A8BNYQKZA5xqZhPuflv4+SnA/e6+NXx9OLAQeDCcpx+438yOdfdn4/kajV+1I1KMUpJBLd3XIOUVZxK5DzjCzBYSNIyfDbwncwJ3X5j+28yuA+7ISCAA55BRleXuvwYOypjn98CAuz8fQ/wiMkOpyaCW7muQ8oqtTcTdJ4CLCXpdPQZ8x90fMbOVZray0Pxh1dWJwHfjilFEilPqMEDN2MuxWcR6s6G7/xD44Yz3sjaiu/v7Z7zeCcwusPwF+xahiBSj1GTQrL0cm4EGYJSi1Mqgb1Idpd7kpl6OjUuPx5XI1Dgq+7IPqHdW/dEz1kNKIuUxvGOc5Ws37FUlocbR5tJsyaDZvm8mPWNdykqNowLN1eVdV9+FqU1EIqulQd9EKqHeH0pXCUoiEpkaR6XZ6Oq7MFVnSWQaAkaajbomF6YrESlKrQz6JlIJuvouTFciIiI56Oq7MCWRJtLMXRVFStVMvdFKoSTSJNRVUUTioDaRJqGuiiISByWRJqGuiiISByWRJqEbBUUkDkoiTUJdFUUkDmpYbxLqqigicVASaSLqqigi5abqLBERKZmSiIiIlKxgErHAuWZ2afj6EDM7Nv7QRESk1kW5ElkLHA+cE77eAXwltohERKRuRGlYf727v87MfgXg7iNmpn6hIiIS6Upkt5klAAcwsz4gFWtUIiJSF6IkkS8D64GDzOyzwH8A/xhrVCIiUhfyVmeZWQvwJPAx4ATAgHe4+2MViE1ERGpc3iTi7ikz+4K7Hw/8pkIxiYhInYhSnfUTMzvTzDQ+hoiITBOld9bfAd3ApJntCt9zdz8gvrBERKQeFEwi7t5TiUBERKT+RBqA0cxOB94UvrzH3e+ILyQREakXUYY9+TxwCfBo+O+S8D0REWlyUa5ETgWWuHsKwMy+AfwK+HicgUl5pFLOttGkniEiIrGI+jyRWcCfwr8PjCkWKbNUytm0dQcXXD/I0MjY1NMMF83tUSIRkbKI0sX3c8CvzOy68CpkI7pjvS5sG01OJRCAoZExLrh+kG2jySpHJiKNIkrvrBvN7B7gGII71le7+7NxByb7LjkxOZVA0oZGxkhOTFYpIhFpNFEa1pcDO939dnf/HrDLzN4Rf2iyr9pbE/T3dk57r7+3k/bWRJUiEpFGE6U669Pu/mL6hbu/AHw6vpCkXGZ3t3PNioGpRJJuE5ndrZH8pfalUs7wjnGeHtnJ8I5xUimvdkiSRZSG9WyJJur9JScDXwISwNfcPWvXYDM7BrgXeLe732Jmi4BvZ0xyGHCpu19pZp8BziAYjv454P3u/kyUeJpNS4uxaG4P61ctU+8sqSvqFFI/olyJDJrZ/zWzw83sMDP7IkHjel7hM0i+ApwCLAbOMbPFOaZbA9yZfs/dN7n7EndfAiwFdhIMRw9whbsfFX52B3BphO/QtFpajL6eDub1dtHX06EfoNQFdQqpH1GSyAeBJMGVwc3ALuADEeY7Ftjs7k+4exK4ieAKItvybyW4qsjmBOBxd38KwN23Z3zWTfiwLBFpHOoUUj+i9M4aJbyxMLxq6A7fK2QesCXj9RDw+swJzGwesBx4K0Hvr2zOBm6cMd9ngRXAi8BbIsQiInUk3SkkM5FUq1OIbtjNL0rvrP9nZgeYWTfwCLDJzD4aYdnZSnnmVcOVBF2Gs55ehM9yP53gCmjPQtw/6e7zgRuAi3PMe6GZDZrZ4PDwcIRwRaRW1EqnkHTbzPK1G1i25m6Wr93Apq071MifwdzzF4aZPeDuS8zsvQTtE6uBje5+VIH5jgcuc/e/DF9/AsDdP5cxzZPsSTZzCNo+LnT328LPzwA+4O4n5VjHocAP3P3V+WIZGBjwwcHBvN9TRGpLLVwBDO8YZ/naDXtdEa1ftYy+no6KxlINZrbR3QfyTROll1WbmbUB7wCucvfdZhYlDd8HHGFmC4GnCaql3pM5gbsvzAj2OuCOdAIJncPeVVlHuPvvwpenoycuijSkdKeQalLbTGFRksjVwO+BB4GfhWf/2/POAbj7hJldTNDrKgFc6+6PmNnK8PN1+eY3sy7gROCiGR99PuwCnAKeAlZG+A4iIkWrpbaZWlWwOmuvGYLH5CbcfSJ8/T53/0YcwZWLqrNEpBTNfr9KuaqzpvEg60xkvHUJUNNJRESkFLpht7Cik0gWKk0RaVi10DZTy8qRRNTXTUTKqhZ6Zkk0uhIRkZrS7O0Q9SbKzYYLC7y3oawRiUhT07hZ9SXK2Fm3ZnnvlvQf7p71jnERkVLo3oz6krM6y8xeCfwZcKCZvTPjowOA/eIOTESak+7NqC/5rkQWAacBs4C3Z/x7HXBB/KFJNemBQFIttTJulkQTZeys4939PysUTyx0s2Fx1LAp1abeWbUhys2GUdpEloej+LaZ2V1m9ryZnVumGKUGqWFTqk0PU6sfUZLISeGDoE4jeCbIkUCUoeClTqlhU0SiipJE2sL/TwVudPc/xRiP1IB0w2YmNWyKSDZRksj3zew3wABwl5n1ETwiVxqUGjZFJKpIo/iaWS+w3d0nwycc9rj7s7FHVyZqWC+eGjZFpCyj+IbP9fgAcAhwIfAKgu6/d5QjSKlNGnRORKKIUp31dSAJvCF8PQT8Q2wRiYhI3YiSRA5398uB3QDuPoYGXRQREaIlkaSZdRIO+W5mhwPjsUYlIiJ1IcpQ8JcBPwbmm9kNwDLg/DiDEhGR+lAwibj7T8xsI3AcQTXWJe7+fOyRiYhIzYvyPJG73H2bu//A3e9w9+fN7K5KBCciIrUt31Dw+wFdwJzwPpF0Y/oBBN18RUSkyeWrzroI+DBBwtjIniSyHfhKzHGJiEgdyJlE3P1LwJfM7IPu/k+5pjOzE939p7FEJyIiNa1gm0i+BBJaU6ZYRESkzkS5T6QQ3XgoItKkypFE9NxUEZEmVY4kIiIiTaocSeT3ZViGiIjUoSjDnmBmbwAWZE7v7teH/78zlshERKTmRXmeyDeBw4EHgPRDth24Psa4RESkDkS5EhkAFnuURyCKiEhTiZJEHgZeDvwx5lhEJAI9ulhqSZQkMgd41Mx+ScZzRNz99NiiEpGsUiln09YdXHD9IEMjY/T3dnLNigEWze1RIpGqiPo8ERGpAdtGk1MJBGBoZIwLrh9k/apl9PV0VDk6aUZRnifyb5UIREQKS05MTiWQtKGRMZITkznmkEZWC1WbUZ4ncpyZ3WdmL5lZ0swmzWx7JYITkenaWxP093ZOe6+/t5P21kSVIpJqSVdtLl+7gWVr7mb52g1s2rqDVKqyfaCi3Gx4FXAO8DugE/jr8D0RqbDZ3e1cs2JgKpGk20Rmd7dXOTKptFxVm9tGkxWNI9LNhu6+2cwS7j4JfN3Mfh5lPjM7GfgSkAC+5u6fzzHdMcC9wLvd/RYzWwR8O2OSw4BL3f1KM7sCeDuQBB4Hznf3F6LEI1LvWlqMRXN7WL9qmXpnNblaqdqMciWy08zagQfM7HIz+1ugu9BMZpYgeHjVKcBi4BwzW5xjujXAnen33H2Tuy9x9yXAUmAnsD78+KfAq939KOC3wCcifAeRhtHSYvT1dDCvt4u+ng4lkCZVK1WbUZLIeeF0FwOjwHzgzAjzHQtsdvcn3D0J3ASckWW6DwK3As/lWM4JwOPu/hSAu//E3SfCz+4F+iPEIiLSUGqlajNK76ynzKwTONjd/3cRy54HbMl4PQS8PnMCM5sHLAfeChyTYzlnAzfm+Oy/Mb3aK3PZFwIXAhxyyCGRgxYRqQe1UrUZpXfW2wnGzfpx+HqJmd0eYdnZvsnMbgNXAqvDtpZs624HTgduzvLZJ4EJ4IZs87r7V919wN0H+vr6IoQrIlJfaqFqM+rNhscC9wC4+wNmtiDCfEMEVV9p/cAzM6YZAG4yMwjujD/VzCbc/bbw81OA+919a+ZMZvY+4DTgBI3pJSJSPVGSyIS7vxge6ItxH3CEmS0EniaolnpP5gTuvjD9t5ldB9yRkUAg6Fo8rSor7PG1Gvhzd99ZbFAiIlI+kQZgNLP3AAkzOwL4EFCwi6+7T5jZxQS9rhLAte7+iJmtDD9fl29+M+sCTgQumvHRVUAH8NMwsd3r7isjfA8RESkzK1QbFB7MPwmcFL51J/AZdx/PPVdtGRgY8MHBwWqHISJSV8xso7sP5JsmShffxeG/VmA/gm669+17eCIiUu+iVGfdAHyE4LkiqXjDEWkstTBAnkicoiSRYXf/fuyRiDQYPftDmkGU6qxPm9nXzOwcM3tn+l/skYnUuVoZIE8kTlGuRM4HXgm0sac6y4HvxhWUSCOolQHyROIUJYkc7e6viT0SkQaTHiAvM5Ho2R/SaKJUZ92bbfRdEcmvVgbIE4lTlCuRNwLvM7MngXGCMbE8HIpdRHKolQHyROIUJYmcHHsUIg0qPUCeSKOKNBR8JQIREZH6E6VNREREJCslERERKVmUNhGRpqVhS0TyUxIRyUHDlogUpuoskRw0bIlIYUoiIjlo2BKRwpRERHJID1uSScOWiEynJCKSg4YtESlMDesiOWjYEpHClERE8tCwJSL5qTpLRERKpiQiIiIlUxIREZGSKYmIiEjJlERERKRkSiIiIlIyJRERESmZkoiIiJRMSUREREqmJCIiIiVTEhERkZJp7CyRIumRuSJ7KImIFEGPzBWZTtVZIkXQI3NFplMSESmCHpkrMp2SiEgR9MhckemURESKoEfmikynhnWRIuiRuSLTxXolYmYnm9kmM9tsZh/PM90xZjZpZmeFrxeZ2QMZ/7ab2YfDz95lZo+YWcrMBuKMXySb9CNz5/V20dfToQQiTS22KxEzSwBfAU4EhoD7zOx2d380y3RrgDvT77n7JmBJxudPA+vDjx8G3glcHVfsIiISTZxXIscCm939CXdPAjcBZ2SZ7oPArcBzOZZzAvC4uz8F4O6PhUlGRESqLM4kMg/YkvF6KHxvipnNA5YD6/Is52zgxmJXbmYXmtmgmQ0ODw8XO7uIiEQQZxLJVlHsM15fCax296yd7M2sHTgduLnYlbv7V919wN0H+vr6ip1dREQiiLN31hAwP+N1P/DMjGkGgJvMDGAOcKqZTbj7beHnpwD3u/vWGOMUEZESxZlE7gOOMLOFBA3jZwPvyZzA3Rem/zaz64A7MhIIwDmUUJUlIiKVEVt1lrtPABcT9Lp6DPiOuz9iZivNbGWh+c2si6Bn13dnvL/czIaA44EfmNmd2eYXEZH4mfvMZorGMzAw4IODg9UOQ0SkrpjZRnfPez+ehj0REZGSKYmIiEjJlERERKRkSiIiIlIyJRERESmZkoiIiJRMSUREREqmh1KJ1KlUytk2mtTDsaSqlERE6lAq5WzauoMLrh9kaGRs6jG9i+b2KJFIRak6S6QObRtNTiUQgKGRMS64fpBto8kqRybNRklEpA4lJyanEkja0MgYyYmsT1UQiY2SiEgdam9N0N/bOe29/t5O2lsTVYpImpWSiEgdmt3dzjUrBqYSSbpNZHZ3e5Ujk2ajhnWROtTSYiya28P6VcvUO0uA6vXWUxIRqVMtLUZfT0e1w5AixXGwr2ZvPVVniYhUSPpgv3ztBpatuZvlazewaesOUql9e65TNXvrKYmIiFRIXAf7avbWUxIREamQuA721eytpyQiIlIhcR3sq9lbT89YFxGpkDgbwONosI/yjHX1zhIRqZA4u2ZXq7eekoiISAU1WtdstYmIiEjJlERERKRkSiIiIlIyJRERESmZkoiIiJSsKe4TMbNh4Klqx1Flc4Dnqx1EDVA5BFQOAZVDIFc5HOrufflmbIokImBmg4VuGmoGKoeAyiGgcgjsSzmoOktEREqmJCIiIiVTEmkeX612ADVC5RBQOQRUDoGSy0FtIiIiUjJdiYiISMmUREREpGRKIg3GzE42s01mttnMPp7l8/ea2UPhv5+b2dHViDNuhcohY7pjzGzSzM6qZHyVEqUczOzNZvaAmT1iZv9W6RgrIcLv4kAz+76ZPRiWw/nViDNOZnatmT1nZg/n+NzM7MthGT1kZq+LtGB3178G+QckgMeBw4B24EFg8Yxp3gD0hn+fAvyi2nFXoxwypvtX4IfAWdWOu0r7wyzgUeCQ8PVB1Y67SuXwP4E14d99wJ+A9mrHXuZyeBPwOuDhHJ+fCtLUXkQAAAUqSURBVPwIMOC4qMcGXYk0lmOBze7+hLsngZuAMzIncPefu/tI+PJeoL/CMVZCwXIIfRC4FXiuksFVUJRyeA/wXXf/A4C7N2JZRCkHB3rMzID9CZLIRGXDjJe7/4zge+VyBnC9B+4FZpnZwYWWqyTSWOYBWzJeD4Xv5fLfCc48Gk3BcjCzecByYF0F46q0KPvDkUCvmd1jZhvNbEXFoqucKOVwFfAq4Bng18Al7p6qTHg1o9jjB6AnGzaabM/YzNqH28zeQpBE3hhrRNURpRyuBFa7+2Rw8tmQopRDK7AUOAHoBP7TzO5199/GHVwFRSmHvwQeAN4KHA781Mz+3d23xx1cDYl8/MikJNJYhoD5Ga/7Cc6spjGzo4CvAae4+7YKxVZJUcphALgpTCBzgFPNbMLdb6tMiBURpRyGgOfdfRQYNbOfAUcDjZREopTD+cDnPWgc2GxmTwKvBH5ZmRBrQqTjx0yqzmos9wFHmNlCM2sHzgZuz5zAzA4Bvguc12Bnm5kKloO7L3T3Be6+ALgFWNVgCQQilAPwPeC/mlmrmXUBrwceq3CccYtSDn8guBrDzOYCi4AnKhpl9d0OrAh7aR0HvOjufyw0k65EGoi7T5jZxcCdBD1SrnX3R8xsZfj5OuBSYDawNjwLn/AGG8U0Yjk0vCjl4O6PmdmPgYeAFPA1d8/aBbReRdwfPgNcZ2a/JqjWWe3uDTVEvJndCLwZmGNmQ8CngTaYKoMfEvTQ2gzsJLg6K7zcsGuXiIhI0VSdJSIiJVMSERGRkimJiIhIyZRERESkZEoiIiJSMiUREREpmZKISJWF41YNhH9/1sy2mNlLZVz+EjM7NeP16fmGxxcphpKISERmVombc79PMOpsUQrEtoTgJjIA3P12d/98CbGJ7EV3rEtTMbMFwI+BXwCvJRgjagXwEeDtBIMQ/hy4yN3dzO4JXy8Dbjez3wL/i+C5FNuA97r7VjO7DFgIHEwwMu7fETyT4RTgaeDt7r67UHzhENxEGRTSzK4jGNr7tcD9ZvZtgoElO4ExgjuOnwT+Hug0szcCnws/H3D3i83sUOBagmdoDAPnp4eFF4lCVyLSjBYBX3X3o4DtwCrgKnc/xt1fTXCQPS1j+lnu/ufu/gXgP4Dj3P21BM+l+FjGdIcDbyN4LsO3gLvd/TUEB/S3xfRdjgT+wt3/B/Ab4E1hbJcC/xg+P+NS4NvuvsTdvz1j/qsIniFxFHAD8OWY4pQGpSsRaUZb3H1D+Pe3gA8BT5rZx4Au4GXAIwRVSwCZB95+4Nvhw3raCc70037k7rvD8ZcSBFc8EDyfYkEcXwS42d0nw78PBL5hZkcQDOHdFmH+44F3hn9/E7i8/CFKI9OViDSjmQPGObCW4BG5rwGuAfbL+Hw04+9/IrhqeQ1w0YzpxgHChxnt9j0D06WI74QtM7bPEFz9vJqgam6/7LPkpcH0pChKItKMDjGz48O/zyGoogJ43sz2B87KM++BBG0cAO+LKb5SZcb2/oz3dwA9Oeb5OcHQ6ADvZU9ZiESiJCLN6DHgfWb2EEHV1T8TXH38GriN4PkTuVwG3Gxm/w6UfahwM7s8HKa7y8yGwgb7qC4HPmdmGwiq09LuBhab2QNm9u4Z83wIOD8si/OAS/YhfGlCGgpemkrYO+uOsMpHRPaRrkRERKRkuhIRqRAzW09wL0mm1e5+Z4H5Pgm8a8bbN7v7Z8sZn0gplERERKRkqs4SEZGSKYmIiEjJlERERKRkSiIiIlKy/w/+15qV9k/f0AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAELCAYAAAD3HtBMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdeXicZdn4/e81+0z2rWmblDZt2kJ3u1N2sOyUgiBFERBFVpFXf6I+Pir+Xn0Q9fURFEEEKiBSpQgFKRQElUVKF1qgC6V7SZs2+zr73Of7x6TT7JmkSbP0/BxHDpjrXua87yZzzn2tRkRQSimlusvW3wEopZQanDSBKKWU6hFNIEoppXpEE4hSSqke0QSilFKqRzSBKKWU6hFHfwdwLOTm5sqYMWP6OwyllBpU1q9fXyEieR1tPy4SyJgxY1i3bl1/h6GUUoOKMWZvZ9u1CksppVSPaAJRSinVI5pAlFJK9YgmEKWUUj1yXDSiK6VasqJREME47BiT/PdIKxJBRLA5nRhjeiUWsSysaBSbw4GxHYnFikbjcQJ2txtjDLFwGCsaw9hsODzuTs4pxEIhAGxOBzaHA8uysNmSv1YRIRYOA4IxhkgohhWzwG7DYTNIzALAOBy4fG6iwRASi2HsNozNgAixmBAOx7BZFjaHHRx2/I0BMJCS6sPfEAAgLSMVh7Plx3FDbSOhYPwaMrLT22w/fI8i/vg+ljGEwxHEEjxuJ4hgWfHJcl0pHhwuZ9LXnixNIEo1Y8XiH1g2+9H/aYgIEo1gRSMYuwNjs2NztH9eEcGKRrDCESQWi39AOxzYnc4j2yMRInW1IIIzIwMRCFVVE6mrxzdiOHavJ7F/i3NbFlF/kPq9+7H7vKQMz8F/4FOscBBXVi6enDxs7Rx3WLjBT7CmHneKm/pdO7HCYVLHjScSFko/3EV6QS6ZJwwjEI3idrtITU8h5A/RWFlHJBjGALUHKhl24iiiRsASHHY7wWAIf0OA9Kw0oofKMLEYmRPGYne7kGiU+t07CRw8iN3tJmPiidi9PgJlVVRs+gS700n+3Km4MtKw2e0t4o1FIgQOlVOx7gNioRBpRaOxjSrgvl8+xoWLP8ukqRPIyEzv9N8uHA4jwSD+vTuxwiHsXh/OvELe/P3LjF0wiexhaex/YzXu7AwKzpiLxNLY/493SCkYRmphLoH9nyKxKN7R46ncdYidr63HsixOOHUqZVaUqAhlJeWseOJlbHYbV910GWdcuIC0jFQAqsqqeevv/+G1v7yBMTYu+fIFnHzeXNIyUxMxRvxBDrz/Cbv+sZaJV5zNm6vWsvrl93C6XXz7gW/w6Tub2fPuFmx2GxPPm82406fhTvV2et3dpQlEDWlWLNb0rdDe5oOmxX5WDCsYJHDoACKCd9gI7F5vi0RiRaNYkQixYBCH14txODpMCABWKEjd9q1IU1LyDBuOZ9jIdo+xwiFioTBVGzYQCwYB8BUWkjF+PDaXCysSpuajD7AiYSD+rTdj4mQq1r6PxGLUbPmYYfPn4B2e3+bJINIYYMczL2OFI4z73LnUbd+CNH2zDwQ+BcvCO3xki2//h4Ub/Gx+6mVOvPwsKt9fD5aFOyeHyt1lvP/U64n9ck8cBcX5rHj2H9z53zdi1QQp23WAUFUdO9/eTMaIbGw5KYSjMXKy0tmw7kMe+tkTxKIxPD4PP/ztt/CWHiBwqJyRZ8zHv7+EQGkpALFgkLodO/CNKmLPyn8n3rNuz34mfvFiXGmpLWK2QmEOvrn6yH47duMxhkAgwE3XfItv//B2rr72sna/0R8m0SiNuz5J/NvFAn5M5QFO+uwM3nlkFZ/95uU4U32EqmrZt+ptii46jWBFNSPPmE39J5sBsLnchP0Rtj7/duK8u15bx4Qrz6QyGOTPv3s2Uf7Iz5+keFIRJ04fT2O9nx2bdrHikZcS25fdt5wxE08gbUZxoixQVc8nL75DVnEBO7bu4+0X/gPA6JNGULljP7vf2RSP3bLY8vfVDJs4qtcTiLaBqEHDisWIhYKEqiuJBvxY0Uin+8fCYRp276Rm8wc07NqRqNJoj0Qi1O34mEh9LdGGOup3bcNqtr8VjRI4eJBDb75JxZo1HHzzTcLV1YhltR9rNEpjyd7EBxBAsOxg/CkjEm2xr1gWkfp6GvbsSSQPAH9JSSLmUGVlInlA/AMuWFmOd/iwRFn15q3EQkf2gfiTS9Xm7VjhCDaXE5BE8jgsVFXeIs7m6vYdxO6wE6mvg6ZrdeYM4+NX1rbYr+LjTxk1agTvvbmeO6//AYFwiMLJY9j5TvzDdNQpkygpOcSOj3YSjcb4wy+fIhaNxe+LP8j9P/wDnuKxBA6WgwihyooW53dlZVHxwcctry0Wo35vaZuYgxVVbS+kuoZ586YD8OjvnqKmprbd603ck0CwzT2JNjaQWZALQOnWfXhzs+Ll/gBiCc70FGL+xsT+jtRUyra2HUZRv/MAddX1bcrffT1+T0WETe9ubrN9/b82tHhd8ck+AFKG57B53bZE+ajiQmp2H2xz/KGt+9q/2KOgCUQNCiJCtKEungx276B260cESg8k6shbsyIR6ndsI1RRhhUKEaosp+6TrViR9pNOqKYKaLm4WrCyLJEgJBqlduvW5gFRvWlTh+dDLKxQsE1xpMFPoK6Rtgu5GaKNjW32j/r98dPF2nkfK4bdfaQdQGKxNtcAJBLW4Sex1mxOF3TQnhENhokGQtjczdsbDFYk1nZnEYyB0pJD4LTH711TOO50H2kZqfgbA0SjUcLBlonuYEkZxh2PQwBHSsunConFcHg9bd7S7m3bDuLKaKd6KsXHzp3xD1CH3d7ebWrBEjC2lvfK7vVRX1YDQPaoYYTrGuLlLifGZiPS4Mfu9R05RzBIRlPCac47LAu3r23cJ84YH/8fEQrGFbTZPnZKUYvXmaOHAxCqqmPMiaMS5Qf3HSR9VNvB47nj257zaGkCUYOCRCM0frqnRVmw/CBitfNBRtO3+rqW3zKjjQ0d7t9eG0DzD1axrDZPG1Y4DB2s6GnsDpyZWa1OaCMWg9W//RuhuiPJwths2H0+PHmt/uiNwZke/zB0Zee1+ZC3UrOIOY98EKUVj8PucrU6hSF7ygRoavQNlFXizMhutoONlFFjsDnabwPJKi4kGggRDUZxZcWvJ1JTydgzp7XYL6Mwl9KDFcRiFg6ng5R0Hw1V9WSfEH9Cqt5RSqAxQH1tA26vh7wRLT9YZ5w8lUhlNekTxhGzLNLGjmvxYWxzOsmbOanpKSrOnZVOyoi2H5QOn4fME49U9bgy0pH8fFY8uwqAW7/5ZTKzM9u93sRtsduRvJGYpipMm8uNI7eAD194j9FzJpKa5SNYVYvd5WTkWfOwezzYXU4aSg7hHVEIxhD1N5JRkMuwSWMS580sGoHJTSctI40pc05KlM85YyaTZkwEIDUjlVlnzuDEWRMS26cumMyJM4+8Bkgdns3IuSdRsW0fnzl1CuM/E7/mTzbsIHfiKEZOHxe/Fpth3OnTEk9PvckcD0vazp49W3Qqk8HNioSp3rSxzQd25qTp2D0eJBYjFo7EvwXbbWAM1R++36K6xtjsZM2Yid3V9tufFYlQt/NjrHC8ysg4HKQXT0p8IMdCISrWrSPa0JA4xp2TQ9b06e02XB8+Z+DQfsI1VdhcbpxZ+Wx5YTVlW/Zyyjc/T0bBkQ+/w+0rDXv3EjhwAJvLRcakSbjS07E5HNRW1hINBrA3VANCLCWLFX9+nYuvXggHPsWWnUPKsFy8GWntxBElXN9IxcatGKed/NlTAMGKhHF4fJhWvZ9aHBuLEaptoHTNZvKmjMWVGr/XOD1U7yujZO020gpycBfk8H9u/Qnlhyq547++yrmXnEHd/ip8GSnsfnczNfsrmXrlaQRDYcr3l5NfmM9D/7OU3dv2MW3uZG741tW4RXClpeBwu4gGw9idBisSxdhs8TYsp4NYKEzjgXLsbifevGycvvbr9GPhSPzp0LKIAevWb2LNfzaw8MIzOaGokIx27lNrtdW18Scfuw2X2004GEFiFqFgmJQ0L8YSaPpdc/rcWOF49WT8icTEe3FFLcKhCDbAAGKz0eAPYHc4sNtthEMRjDF4fB7SmzWQx6IxaqvqiIQj2Gw2XB43GdltY44EQsRCEQSIxCyikSjGgMNpx2Gzx3uNAU6fG1c7T2tdMcasF5HZHW7XBKIGAysWw79/H6GKskSZ3eMlffyJgA3/oTLK39uAFQ7jycshf8EcYkE/dZ8cqXZKHTceT05exx+WkQjRoB9EcHh9GEfLrqrRQIDabduI1NbiyskhY/z4FlVI7Qk3+vGX19BQVsPuf39A/cF4/fyZ/3UNvpyMNvvHIvFeWMaYFueuKq/mB1+5h3lnz8Rus/H2q2sIBkL81//eSXZuBi8/+gqLb7+U1KyOPxitWPzpq7POBB2JReLdfu2tuoKGGgLELItGf4CygxXkDMsmNS2F1LSUxHECWJEYTo+LcDhMQ10jdocDiVkIgsfrweVxYrPZWnSzFUvi3WFVv+kqgWgvLDUo2Ox2fCMKsbncRGqqsPtS8A4vwOZ0EfUHOPT2msTTSbC8ksoPNpM7axrZn5lDLBSMjyOwt/2mHYtEifiD+Cvr8GSk4kzx4vS42gsBh9dL1pQpR3p1ddID6zCnz4tQy6bl/058GyyYcyKODr4N2p1OaOeJxpfq4+JrzuORnz0Zvx82w20/+gp2u519W/ex6LZFnSYP6FniOBJX+9d6uFePLz2FvOFtq0gSxzX91+1x4+5k/EZzmjwGPn0CUYOKiIVEY2C3YWtq5AyUV3LgH2+22M/h81Jw7pntNrweOZdQvbuU1Q+uwGrqEXTixSczesFUnN72k0hrkXCEqooaXl/xJk63k7MuOpWs3Ezs9iOJKhaJEm4IULe/Am92Gp6MFFwp3e9O6W/wU1/bSOm+Q4wcnY/T5cSX4sXhdGB39Dw5KNURfQJRQ4oxNoyz5VOEw+dtqmA+UubOycZ08aEabgjwwbI3EskDYNvK1RTMmph0Aqk4VMXtV3yHUFOvomeXvsgDz95LzrAjDdV2pwNvVhreLp4QuuJL9eFL9ZFf0OHyDEodU9oLS/W7aCBIpKGRqD/QYbfczthdLobNm4VpqlJyZWWSO3Nqh43bh4kIgaq6lmWWtBmn0RErZrHiTysTyQOgoa6Rd/6xpptXoNTgpE8gql9FGho48K//EG1oxNjt5M39DCkjR2DrZJRwazang5QTCvAOz0MswWa3Y0+int3ucjJiRjH713+SKPNmpWF3JzdnkDTNddTa4bYOpYY6fQJR/SYWClO+ZgPRhviYCInFKFu9vuPBeZ2w2e04vF6cKb6kkgeA0+Ni0qWnMubUaXiz0hg2aQzzb1uMO83X9cGA3WFn8ZcuaDElhi/Vy6kL53U7fqUGI30CUf1GLItQdaspJZpmQHV00L+/t7nTfJy0aAHFC2dhdzpwdrOvfN7wHB587he8tOxVXB4XF1xxDlm5nQ9SU2qo0ASi+o3NYceTn4e/5ECizNjtXY6t6G12p6PDbqpdcbldjBiVz1e//aVejkqpgU8TiOo38ekpplHWNP22I8XHsHmzWkxX0VONNQ1Ul1YRCoQYNmY4qZkpHQ4gVEr1jCYQ1a8cPi/5C+bEF+cxBrvHnRj9HWoIEAuFMXYbDpcLZzsT0LWnsaaBp3/8J0q37wfAl+7jq7++hYxhWrWkVG/SBKL63eEqq1g4Qrjenyjf8MQr1O2LT11SMOckxl84L6kBeKU7DiSSB4C/zs87y9/i3Bsv6HQNCKVU9+hfkxoQwo1BSlZvYt9bHyCWxYhZJzL2rJlsfPwVAPav3UrB3BOJRS1i0Vh8cF56+72l6irr2paV1xAOhqmpqcPldJKeeXSD+pRSmkBUO2KhMIgFNlub6cG7IiLxgYH1jdhcThxeT6drVx/WWF7NnjfWJ14fWLOF1OHZZIzOp3bvIQBqS8r5+Nm32ff+TvLGjuCz31hMak7btR/GfaYYu8OeWLAIYNZF83j+mZf582N/o+CEEXznx7czumiUTgGi1FHQBKISRISo30/Vho2Ea2pxZWeRM2M6Dl9y4yIAIvWN7Prbq0QD8cWU0ooKKThjbqdzUgFUfdJ2tbTaPaWkjchJJJCU/GwOflwCQPmuUt569BXOvm0R7pSW507JTOGGX93EG398laA/xPzFC6iPBPj1/zwMQNnBCr76+W/y11V/IHdYTtLXppRqSRPIIGfFYmBZGLv9qHsZWeEwFWvWEm2Mt0OEq6qpWPc+efPmJNW1NhaJUrb2o0TyAKjfXUJ45uQuE0jm2JHs/ffGFmUZJwynbMse3OkpTLjoZPZs2EnYf2SZ2YPbSuLTjLficDkZPnYEl3/nKqyYRTgW5ZpLbmmxT0N9I2WHKjWBKHUUNIEMYrFQiMZP9xFtbMCdk4s3Pz++il4PSSyWSB6HRerqOlz3u73jQ7Vt13qO1DdCFx/UaSNyGTn3JA6s/RhEyJsyNv4zeSyY+BKjL9//Qotj8saOwNZJFZSn6ckkUlNHwajhlB1suc52ZmY7S58qpZKmCWSQioXD1Gz+kFggAEC0oZ5YKETqmKIer/tgbDZsTmeLqUTsHk+LRZU6Y3e7yDpxLIFDRz6ojc2GN7/rb/muFC/F581nzJkz4+dyOVuMCo+GIpxzx6X8+6GXCDUGyRyZw+k3XoAnteteWRmZ6dx199e5cck3aaiPT5vypRuvJC09JanrUkq1T9cDGaSigQBV769tWWizkTNrTrtLtnYmsQqe3U64ppbKdevjrx0O8ubOxpWVlXQSiQZD1Hy8i6otO3B43Qw/ZSae7MykFl/qOs4YwYYAVjSGw+XAm5F8AohFY1RX1VJ2sJzMrAzS0lNIS2JZU6WOZ7oeyBDV3mpt8eqr7q3iFvUHqPpwE6GqGjx5uWRNOYkRZ52BFY1iHA7sTmfSyQPA4XGTM20iGRPGNK1lbSPiDwEh7G4XjiRnum2P3WknJSu16x3bO9ZhJ3dYNrnN1ulQSh0dTSCDlLHb8Y4YSaD0yDxSaWPHYetiDYzmYsEQh/7zHpHa+LiJxn2fEgsEyJs3G2dqzz6oIV5t5fR542M73vmQPf/aACIULpjC6NOmY1mCzW5LLIeqlBqcNIH0IRHp1rf37rA5nKSMGo0nfzgxvx9nWjqmm08LViyWSB6HBcsrECvWwRHd03Cwkl2vHalm2/fmB6SNyOGTtzYR8YeY9YVzSB+Zo2MxlBqkdHa5PmBFIgTLD9H46R4iDfU9WmUvGTanE2dKKp68Ydg9nm43nsermFoeY3O7oReSnhWLUb5lT5vyyk8+xZeVRtWeQ7zxy78Sbggc9XsppfqHPoH0MisSoX7XNmLB+AdjuLqClFFFuLJy+uxppKdsTgd5C+ZimtpNrHAEm8vZ7dHnh0VDEWxOOzabjUggTNrI3Db7ZI0dSdm/NwEQC0dpKK/Fm9nz6jKlVP/RBNLLrGgkkTwOCxw6gDMtA9ON9oljQQQidY2Ur9mIxGI401IpOOeUbg9IDDcGqdr+KWUf7iCtII+RcychItg9LvKnF3Powx0gkHvSaLLGFVDx6KrEsZ5u9KQCqKmqZX/JQbZ/vIuZc6eSnZtFaqp2x1WqP2gC6W3tPWUMsCePw6xwmLLV78czCRCpb6BszUaGnzoXuzu5p5BYJErJ6o/Y+8/3Aaj8ZB8VW/cw7fqLqC+txJefxaybFgMQqK6nctfBxLETPjuzzTQknamrreehXz/OM386MqDw3gd+yFnnnoK9h2NflFI9pwmkh+KD7QSMweY48mRhcziwe1OIBRoTZd7hBZheGAfR22LBUCJ5HBaqqulWI3o0GGb/u5talDUcrMQKhznh5MlU7znI3rc/JKtoJMOnjcUS4dz//iJOrxun14XLl3wCCfiDLH/qxRZlv/y/D/CZ2VPIydPuuUodawPvU22AExFiwQANe3dihYLYvSmkjh6XmCvK5nCSVjSeSH0t0aAfd1YONpd7wLV/ADi8HozdFl/MqYl3RF63k53d7SIaDLcoMzYbrhQv+ZOLyDtxNDb7kWoxbw9HgEciEVoPfK2vbWDoD4VVamDq015YxpjzjTHbjDE7jDHf7WS/OcaYmDHmiqbXE40xG5v91Blj7mx1zP8xxogxpm1LbR+SaIT6XZ9gheITBsYCjfFkEj0y/YfN6cSdnUvKyBNweFOw2Qdmnra5XIw8+1QcKfHZdn0j8smbOQ17N9pqXCkexp0/v0XZsGnjsDdblrZ58jgavhQvEycVtyi77OoLSU1NfrZgpVTv6bOpTIwxduATYCFQAqwFrhaRLe3s9xoQBB4TkeXtbN8PzBORvU1lo4BHgBOBWSLScpa8VnpzKpNYKEjtxx+1Kc+cNP2oJjLsL/EnqnhVlrHbk277aC4SDBGu81O141NSR+SSkpeFq48GCVaUVfLUY8+y5cNtnHPB6Sy86AyysnWpWqX6Qn9OZTIX2CEiu5oCWQZcCmxptd/XgWeBOR2c5xxg5+Hk0eR/gbuAFb0acRIOj52Q2JF2ApvbQ3enEBkojDFdTrXeFafHjdPjJmVYVi9F1bHcYTnc+q0vEwyESEn1YTvKKeyVUj3Xl399BcCnzV6XNJUlGGMKgMuAhzo5zxLg6WbHLAL2i8gHnb25MeZrxph1xph15eXl3Y294/PaHaSOLk4MwDMOJ6mjuzeFiDo6TqeTtPRUTR5K9bO+fAJp7yt56/qyXwPfEZFYe43MxhgXsAj4XtNrH/B94Nyu3lxEHgYehngVVrci74Sx2XCkpJIxcQpiWfEnEocmj6746/3EIjFcXhdub/dmC1ZKDUx9mUBKgFHNXhcCB1rtMxtY1pQ8coELjTFREXm+afsFwPsicqjp9TigCPig6ZhC4H1jzFwROcgxYmw2jG3wtXcca/7aRqKRKFbM4q3lb/HRmx8xYc4EzrvhfNKydSp1pQa7vkwga4Hxxpgi4o3gS4AvNN9BRIoO/78x5o/A35slD4CraVZ9JSIfAcOaHbMHmN1VI7o69moOVvPcz//CwZ2lZAzL5NybL6KipIKN/9hANBRh8Z2XJ1YMVEoNTn1WiSwiUeB2YBWwFfiriGw2xtxsjLm5q+ObqqsWAn/rqxhV3/DX+XnhV8s5uLMUgNqyGv7+v3/jjM+fDsDWd7cSCUU6O4VSahDo0wEKIrISWNmqrN0GcxG5vtVrP9DpWqgiMuboIlR9wYrG2L+tpEVZoD6QmLY9e+TAm1hSKdV92o1lCIoGQwSramgsLSPqD7QZvd3XbHYb+UXDW5S5fW5EBJfHxee+9TlSe7iyoFJq4NA10YeYaCDIgTffw38g3u/A7nYx+pLP4ko7th/YFZ+W89f/+ydqy2rwpnlZ9K0rSM/PxJfqxeV143AOzNH5SqkjdE3040y4viGRPABioTAVGzYzfMEsbMdwQsecwlyu/fmNRMMRHE4HYjNUllez/j8fMnFaMbn5OaR2cyp3pdTAoglkiIk2tl3hL9LQiERjcAwTiDEmUU0VCoZ5+S//4E/3P5PY/oVbL+fCL5yLR8eEKDVoaRvIEOMdloNpNXlh5oSx2Howx1Vvaaz389eHW846s/zRF/E3+PspIqVUb9AEMsTYPW5GX3QOvhHDcGdlkL9gFqmFI/q115NYVptuu+FQBLGGfvubUkOZVmENMTa7HU9OFgVnLUAsC7vb1e0lanub2+tm7lkzee+N9YmyOWd8Rqc0UWqQ0wQyRPVkWva+kpqewte+dy0Tpo5l47ubmT5vMmctOpXUHi4spZQaGLQbrzpmYrEYoUAIt9eta5grNQhoN95BLBYKNa29Hl/l8PCyuYOV3W7Hp6sHKjVkaAIZoGLBEIf+8x6hqmoA3DnZDDt5Lg7P4E4iSqmhQ3thDVCNpaWJ5AEQqqwicOhQJ0copdSxpQlkgApV1SRVppRS/UUTyACVekJhUmVKKdVfNIEMUK70dHJmTsfu9eDwecmdNQPnMZ4QUSmlOqON6AOU3e0ibcwJ+EYMBwN2V/8PCFRKqeY0gQxgxmbD4dVlX5VSA5N+pVVKKdUjmkCUUkr1SJcJxMRdY4z5YdPrE4wxc/s+NKWUUgNZMk8gvwNOBq5uel0PPNBnESmllBoUkmlEnyciM40xGwBEpNoYM3CmelVKKdUvknkCiRhj7IAAGGPyAKtPo1JKKTXgJZNA7geeA4YZY34KvA38T59GpZRSasDrtArLGGMDdgN3AecABlgsIluPQWxKKaUGsE4TiIhYxpj/T0ROBj4+RjEppZQaBJKpwnrVGPM5Y4zp82iUUkoNGsn0wvomkALEjDHBpjIRkfS+C0sppdRA12UCEZG0YxGIUkqpwSWpyRSNMYuA05te/ktE/t53ISmllBoMkpnK5GfAN4AtTT/faCpTXbDCEWKhcH+HoZRSfSKZJ5ALgRkiYgEYYx4HNgDf7cvABjMrGiVS30D1pq1ILEbGxPF4crKxuZz9HZpSSvWaZGfjzWz2/xl9EchQEguGKP3nWwTLyglVVlH2n/cI19X1d1hKKdWrknkCuQfYYIz5J/GBhKcD3+vTqAY5//5SEGlRVr9zN66sTGx2ez9FpZRSvSuZXlhPG2P+BcwhnkC+IyIH+zqwwczu87ZT5kOH0iilhpJkGtEvA/wi8oKIrACCxpjFfR/a4OXNy8GZfqT3s93jJn1cka5prpQaUpKpwvqRiDx3+IWI1BhjfgQ833dhDW52j4f8004m2tCIFY3hykzH7nb3d1gdCgVC1Fc3sG3dNvIKcxlRNIK0LB3+o5TqXDIJpL2vzcmOHzkfuA+wA4+ISLvdf40xc4DVwFUistwYMxH4S7NdxgI/FJFfG2P+X+BS4lPKlwHXi8iBZOI5lhweDw6Pp7/DSMqnn5Twu289hGXFZ+mfMHM81/73NaRmpvZzZEqpgSyZOpV1xphfGWPGGWPGGmP+F1jf1UFNa4g8AFwATAKuNsZM6mC/e4FVh8tEZJuIzBCRGcAswE98SnmAX4jItKZtfwd+mMQ1qA401DSw4qEXE8kD4JP3t9NQ29iPUSmlBoNkEsjXgTDxJ4JngCBwWxLHzQV2iMguEQkDy4g/OSMHjHIAACAASURBVLR3/meJP0205xxgp4jsBRCR5v1hU2ha6Er1jFhCyB9sUx7RAZBKqS4k0wurkaZBg01PCylNZV0pAD5t9roEmNd8B2NMAXAZcDbxXl7tWQI83eq4nwLXArXAWUnEojrgy/Bx+udOZ/mvn8VmtzHz7M8w+ZTJ+DJS+js0pdQAl0wvrD8bY9KNMSnAZmCbMebbSZy7vT6rrZ8Wfk28W3Csg/d2AYuIP/kcOYnI90VkFPAUcHsHx37NGLPOGLOuvLw8iXCPT3a7nc+cOZ0v330dN//iazizffz+3ie495v38/EH2wkF9UlEKdW+ZKqwJjVVGy0GVgInAF9K4rgSYFSz14VA68bu2cAyY8we4Argd626CF8AvC8ihzp4jz8Dn2tvg4g8LCKzRWR2Xl5eEuEev1LSU5h66hR2bf+UZx5eQcXBKnZ9vJcffe1e6mvq+zs8pdQAlUwCcRpjnMQTyAoRiZBcu8NaYLwxpqjpSWIJ8ELzHUSkSETGiMgYYDlwq4g07x58NW2rr8Y3e7kIXSmxVzTW+Xlr5bstymLRGJ98tKufIlJKDXTJJJDfA3uIN1i/aYwZDXQ5sZOIRIlXL60CtgJ/FZHNxpibjTE3d3W8McYHLAT+1mrTz4wxm4wxHwLnEp8pWB0ll8fJyDHD25TnF+rTm1KqfUake52Ympa2tTclCIwx14nI430RXG+ZPXu2rFu3rr/DGPDKSyv5/g0/paqsGoBTzpvLV759Dek6qFCp45IxZr2IzO5we3cTSDtv8L6IzDyqk/QxTSDJERFqK+uorqzF6/OQku4jLUMHEyp1vOoqgSQ1oryr9+iFc6gBwBhDZm4Gmbk6Y79Sqmu9kUB0IN8gUl9dz4GdpdSU1zBh5nhSM1NxunWhK6VU9+kTyHGkobqBx/77j+z7eB8ADqeDbzzwdUaOG9nPkSmlBqNkBhIWdVH2Tq9GpPpMRWllInkARCNRVj7yMoHGtlOZKKVUV5LpxvtsO2XLD/+PiLQ7ElwNPMGGQJsyf0MAK9buRABKKdWpDquwjDEnApOBDGPM5c02pQODY55y1cLIcSNJSffRWOdPlJ1xxWmkpOu8V0qp7uusDWQicDGQCVzSrLweuLEvgxqsYuEIEotibHbsbld/h9NGalYqdz74DV5/+g1qymo4ZfEpjJk0ur/DUkoNUl2OAzHGnCwi73a60wB3LMaBRBsDlK3ZQOBQOe6cLPLnz8SZNjDHUETCEWLRGB6fPkgqpTrW1TiQZNpALmuajddpjHndGFNhjLmmF2Mc9GLBEAffXkNjSSlWJErgYDn7X3+HaGBgNk47XU5NHkqpo5ZMAjm3aTbei4nPsDsBSGY69+OGWBaBsooWZZH6BiSqjdNKqaErqdl4m/57IfC0iFT1YTyDkzE4fN6WRQ4Hxp7M7VVKqcEpmU+4F40xHxNfu+N1Y0we8WVtVRO7203+qXMwDnu8wGbIP3kWNtfAa0hXSqnektRkisaYLKBORGJNKxOmicjBPo+ulxyLRnQrFsMKhYmFwtjdLmxOJzZnbwz0V0qp/nHUjehN63LcBjzYVDSS+NOIasZmt+PweXFnZeDweTV5KKWGvGSqsJYCYWBB0+sS4Cd9FpFSSqlBIZkEMk5Efg5EAEQkgE6gqJRSx71kEkjYGOOladp2Y8w4INSnUSmllBrwkqmovxt4BRhljHkKOAX4cl8GpZRSauDrMoGIyKvGmPXAfOJVV98QkYouDlNKKTXEJdML63URqRSRl0Tk7yJSYYx5/VgEp5RSauDqbDp3D+ADcpvGgRxuOE8n3pVXKaXUcayzKqybgDuJJ4v1HEkgdcADfRyXUkqpAa7DBCIi9wH3GWO+LiK/6Wg/Y8xCEXmtT6JTSik1YHXZBtJZ8mhyby/FopRSahDpjelidVChUkodh3ojgXQ9G6NSSqkhRxesUEop1SO9kUD29MI5lFJKDTJJzTlujFkAjGm+v4g80fTfy/skMqWUUgNalwnEGPMkMA7YCBxe5FuAJ/owLqWUUgNcMk8gs4FJkszShUoppY4bySSQTcBwoLSPY1HtCDYECDcGiQYjeDJ8+DJT+zskpZQCkksgucAWY8wamq0DIiKL+iwqBUCw3s/qJ19nz5qPAfBlpXLhf3+R1Jz0fo5MKaWSXw9E9YOGitpE8gDwVzew8fl3mH/NZ3G4nf0YmVJKJbceyL+PRSCqrfqy2jZldaXVRCPRHiWQ2po6goEQxmZIS0vB6/P2RphKqeNUMuuBzDfGrDXGNBhjwsaYmDGm7lgEd7zLGzcSY2/5TzTulMm4fZ5un6uyopr/+sb/cMGCJVx6xpdY9vjz1NXU91aoSqnjUDJVWL8FlgDPEO+RdS0wvi+DUnGedC/nf/cq1jz1BsH6ABPOnMbo2RMwtu5NPxaNRHnmyRW8++ZaAEKhML/5+SOcdvZ80jPT+iJ0dYxEIhFKSkoIBoP9HYoaxDweD4WFhTid3avZSGogoYjsMMbYRSQGLDXG/CeZ44wx5wP3AXbgERH5WQf7zQFWA1eJyHJjzETgL812GQv8UER+bYz5BXAJEAZ2Al8WkZpk4hlsHC4n+eMLWfjNK7AsC3eqF7vD3u3zNDb6WfvuxjblWzdtp3hiUW+EqvpJSUkJaWlpjBkzBmN0XlPVfSJCZWUlJSUlFBV17/MgmalM/MYYF7DRGPNzY8z/A6R0dZAxxk584akLgEnA1caYSR3sdy+w6nCZiGwTkRkiMgOYBfiB55o2vwZMEZFpwCfA95K4hkHNkx7vvtuT5AGQkupj/mmz25RPnj7xaENT/SwYDJKTk6PJQ/WYMYacnJwePcUmk0C+1LTf7UAjMAr4XBLHzQV2iMguEQkDy4BL29nv68CzQFkH5zkH2CkiewFE5FURiTZtWw0UJhHLcc3hcPC5qy/irPNOwRiDL8XLXT+6ndy87P4OTfUCTR7qaPX0dyiZXlh7jTFeYISI/Lgb5y4APm32ugSY13wHY0wBcBlwNjCng/MsAZ7uYNsNtKzqUh3Izs3iR/fexXfuDmCMIT0jDbfH3d9hKaUGsWR6YV1CfB6sV5pezzDGvJDEudtLaa2nQ/k18J2mtpX23tsFLCLegN962/eBKPBUB8d+zRizzhizrry8PIlwh770jFSGDc8jLz9Xk4dS6qglU4V1N/HqqBoAEdlIfGberpQQr+46rBA40Gqf2cAyY8we4Argd8aYxc22XwC8LyKHmh9kjLkOuBj4YkdzdInIwyIyW0Rm5+XlJRGuUmooOPPMM1m3bh0A3//+9xk1ahSpqb03BdDGjRtZuXJl4vULL7zAz37Wbv+gIS+ZBBIVkbYj2rq2FhhvjClqepJYArR4chGRIhEZIyJjgOXArSLyfLNdrqZV9VVTz67vAItExN+DuJRSA0A0Gu16p6N0ySWXsGbNmm4f11lsrRPIokWL+O53v9uj+Aa7pCZTNMZ8AbAbY8YDdwBdduMVkagx5nbivavswGMistkYc3PT9oc6O94Y4wMWAje12vRbwA281tTws1pEbk7iOpRSvWzPnj2cf/75zJs3jw0bNjBhwgSeeOIJfvnLX/Liiy8SCARYsGABv//97zHGcOaZZ7JgwQLeeecdFi1axIQJE/jJT35COBwmJyeHp556ivz8fO6++252795NaWkpn3zyCb/61a9YvXo1L7/8MgUFBbz44otJjVmYP39+0tdy/fXXk52dzYYNG5g5cyZXXXUVd955J4FAAK/Xy9KlSykqKuKHP/whgUCAt99+m+9973sEAgHWrVvHb3/7W/bu3csNN9xAeXk5eXl5LF26lBNOOOFobvHAJiKd/gA+4KfEnyjWAj8B3F0dN5B+Zs2aJUoNRVu2bOnX99+9e7cA8vbbb4uIyJe//GX5xS9+IZWVlYl9rrnmGnnhhRdEROSMM86QW265JbGtqqpKLMsSEZE//OEP8s1vflNERH70ox/JKaecIuFwWDZu3Cher1dWrlwpIiKLFy+W5557rsOYzjjjDFm7dm2LspSUlC6v5brrrpOLLrpIotGoiIjU1tZKJBIREZHXXntNLr/8chERWbp0qdx2222J45q/vvjii+WPf/yjiIg8+uijcumll3b5vgNFe79LwDrp5LM1mSeQSU0/jqafS4k3bE/r/XSmlBpsRo0axSmnnALANddcw/33309RURE///nP8fv9VFVVMXnyZC655BIArrrqqsSxJSUlXHXVVZSWlhIOh1sMZLvgggtwOp1MnTqVWCzG+eefD8DUqVPZs2dPn1zLlVdeid0eH29VW1vLddddx/bt2zHGEIlEujz+3Xff5W9/+xsAX/rSl7jrrrv6JM6BIpk2kKeAx4DLiTdcX0x8JLjqpkggRGNFLfs3bKeutJJwo04/oQa/1mMIjDHceuutLF++nI8++ogbb7yxxSC1lJQj45C//vWvc/vtt/PRRx/x+9//vsV+bne8p6DNZsPpdCbex2az9Vn7SfPYfvCDH3DWWWexadMmXnzxxR4NtBvqY3SSSSDlIvKiiOwWkb2Hf/o8siHGisU4tGUvr/34cdY+9jJv/M9T7Pr3B0SC4f4OTamjsm/fPt59910Ann76aU499VQAcnNzaWhoYPny5R0eW1tbS0FBAQCPP/543wfbDc1j++Mf/5goT0tLo76+/YlIFyxYwLJlywB46qmnEvdiqEomgfzIGPOIMeZqY8zlh3/6PLIhJtwQ5MPlLWfG37ZqLVFNIGqQO+mkk3j88ceZNm0aVVVV3HLLLdx4441MnTqVxYsXM2dOR2OE4e677+bKK6/ktNNOIzc3t9dju+uuuygsLMTv91NYWMjdd9/drWO/973vccoppxCLHRmqdtZZZ7FlyxZmzJjBX/7Schzz/fffz9KlS5k2bRpPPvkk9913X29dyoBkpIulzo0xfwJOBDYDVlOxiMgNfRxbr5k9e7Yc7hfeX4K1jaz64WOI1fJ+n3v39fh0hUHVQ1u3buWkk07qt/ffs2cPF198MZs2beq3GFTvaO93yRizXkTaTqTXJJlG9OkiMvVogzve2d1OCmZOoGTdtkRZ5qhh2F1JTYislFIDTjKfXquNMZNEZEufRzOEOT0upl5+GqnDMjm4eQ/ZY4YzfuFs3Gm+/g5NqR4bM2ZMvz19XHbZZezevbtF2b333st5553X6XE//elPeeaZlrMjXXnllXz/+9/v9RiHumSqsLYC44DdQIj4HFci8enUB4WBUIV1mBWNEQmGcbid2J369KGOTn9XYamho6+qsM4/2sDUETaHHXeqrkWulBr8kprO/VgEopRSanBJphuvUkop1YYmEKXUUXnllVeYOHEixcXF7U5rLiLccccdFBcXM23aNN5///1+iFL1BW3FPQqRQIiIP0iozo83Ow1nirfH65YrdSyEqisJHNyPFQljc7rwDi/AnZXT4/PFYjFuu+02XnvtNQoLC5kzZw6LFi1i0qRJiX1efvlltm/fzvbt23nvvfe45ZZbeO+993rjclQ/0wTSQ5FAiL1vfsCu19cDYHM6mHPTIjJOyO/nyJRqX6i6ksaSvSDx8cBWJBx/DT1OImvWrKG4uJixY8cCsGTJElasWNEigaxYsYJrr70WYwzz58+npqaG0tJSRowYcZRXpPqbVmH1UCwUYdcb6xOvrUiULc/+m3BDoB+jUqpjgYP7E8kjQax4eQ/t37+fUaOOLDxaWFjI/v37u72PGpw0gfRQNBRps8J7oLoesaz2D1Cqn1mR9udd66g8Ge2NI2s9A20y+6jBSRNIDzl9LlytRpEPn16Mw+Pqp4iU6pzN2f7vZkflySgsLOTTTz9NvC4pKWHkyJHd3kcNTppAesiV4mPuLYvJPfEEvFlpjD5tGsXnzcXu6nqZTaX6g3d4AZhWf/LGFi/voTlz5rB9+3Z2795NOBxm2bJlLFq0qMU+ixYt4oknnkBEWL16NRkZGdr+MURoI3oPGZvBl5vB1Ks/ixWN4fC4sTu1B5YauA43lPdmLyyHw8Fvf/tbzjvvPGKxGDfccAOTJ0/moYceAuDmm2/mwgsvZOXKlRQXF+Pz+Vi6dGmvXI/qf13OhTUUDKS5sJTqTToXluotPZkLS6uwlFJK9YgmEKWUUj2iCUQppVSPaAJRSinVI5pAlFJK9YgmEKWUUj2iCUQpdVS6ms79sLVr12K321m+fPkxjE71JR1IqNRx5NAHO9jz+lpCtQ24M1IZc84c8qcX9/h8yUznfni/73znO5x33nlHewlqANEnEKWOE4c+2MH2F98iVNsAQKi2ge0vvsWhD3b0+JzNp3N3uVyJ6dxb+81vfsPnPvc5hg0b1uP3UgOPJhCljhN7Xl+LFYm2KLMiUfa8vrbH50x2OvfnnnuOm2++ucfvowYmTSBKHScOP3kkW56MZKZqv/POO7n33nux23WuuKFG20C6EG4M4K+so2bvIbLHjcSbmYrT5+nvsJTqNndGarvJwp2R2uNzJjNV+7p161iyZAkAFRUVrFy5EofDweLFi3v8vmpg0ATSiUgwzM43NrD7XxsSZSctPpUT5k/G7tRbpwaXMefMYfuLb7WoxrI5HYw5Z06Pz9l8OveCggKWLVvGn//85xb77N69O/H/119/PRdffLEmjyFCPwU7EQuG2fPmxhZl219+jxHTizWBqEHncG+r3uyFlcx07mro0k/BTogIYrWs441Fom2WslVqsMifXnxUCaM9F154IRdeeGGLso4Sxx//+MdefW/Vv7QRvRN2l5PcCaNalI2cNRG7W1cdVEopfQLphCvFw/QvfJaStR9TuWM/+ZPHMHx6MU5d91wppTSBdMWd5qPojBmMXjAFu8uJsZmuD1JKqeNAn1ZhGWPON8ZsM8bsMMZ8t5P95hhjYsaYK5peTzTGbGz2U2eMubNp25XGmM3GGMsY0+FSi73JZrfh8Lg0eSilVDN99gRijLEDDwALgRJgrTHmBRHZ0s5+9wKrDpeJyDZgRrPt+4HnmjZvAi4Hft9XsSullOpaXz6BzAV2iMguEQkDy4BL29nv68CzQFkH5zkH2CkiewFEZGtTglFKKdWP+jKBFACfNntd0lSWYIwpAC4DHurkPEuAp7v75saYrxlj1hlj1pWXl3f3cKVUkrqazr22tpZLLrmE6dOnM3nyZJYuXdoPUaq+0JeN6O01GLQeQfFr4DsiEms9fw6AMcYFLAK+1903F5GHgYcBZs+erSM3lALeeeU9nnnweSoPVZGTn82VtyzmlPPn9fh8yUzn/sADDzBp0iRefPFFysvLmThxIl/84hdxubQ342DXlwmkBGg+iKIQONBqn9nAsqbkkQtcaIyJisjzTdsvAN4XkUN9GKdSx4V3XnmPx+75E+FgGIDKg1U8ds+fAHqcRJpP5w4kpnNvnkCMMdTX1yMiNDQ0kJ2djcOhHUCHgr6swloLjDfGFDU9SSwBXmi+g4gUicgYERkDLAdubZY8AK6mB9VXSqm2nnnw+UTyOCwcDPPMg893cETXkpnO/fbbb2fr1q2MHDmSqVOnct9992Gz6RjmoaDP/hVFJArcTrx31VbgryKy2RhzszGmywlyjDE+4j24/taq/DJjTAlwMvCSMWZVe8crpVqqPFTVrfJkJDOd+6pVq5gxYwYHDhxg48aN3H777dTV1fX4PdXA0afPkSKyEljZqqzdBnMRub7Vaz+Q085+z3GkS69SKkk5+dlUHmybLHLys3t8zmSmc1+6dCnf/e53McZQXFxMUVERH3/8MXPnzu3x+6qBQZ8jlTpOXHnLYlytpuFxeVxceUvPp1ZvPp17OBxm2bJlLFq0qMU+J5xwAq+//joAhw4dYtu2bYk2EzW4aUuWUseJww3lvdkLK5np3H/wgx9w/fXXM3XqVESEe++9l9zc3F65JtW/THt1mEPN7NmzZd26df0dhlK9buvWrZx00kn9HYYaAtr7XTLGrBeRDqeM0iospZRSPaIJRCmlVI9oAlFKKdUjmkA6IZYQ9oewYlZ/h6KUUgOO9sLqQKDez+7VH7Pv/R3kTyjgxLNn4M1I6e+wlFJqwNAE0o5IMMyG5W+z7V8fAFC6ZS8HNu/lnG8sxpPm6+folFJqYNAqrHZEgmG2v/VRi7Ky7fuJhiL9FJFSA9cNN9zAsGHDmDJlSrvbn3rqKaZNm8a0adNYsGABH3zwQWJbR1PBV1VVsXDhQsaPH8/ChQuprq5ObLvnnnsoLi5m4sSJrFp1ZCaj9evXM3XqVIqLi7njjjsS06yEQiGuuuoqiouLmTdvHnv27Ekc8/jjjzN+/HjGjx/P448/nijfvXs38+bNY/z48Vx11VWEw/E5xESEO+64g+LiYqZNm8b7778/4K/li1/8IhMnTmTKlCnccMMNRCK9+DkmIkP+Z9asWdIdjdUN8tQt98tj1/488bP0ul9IQ2Vdt86jVF/bsmVLt/b/+3OvyrknXynTRp8h5558pfz9uVePOoZ///vfsn79epk8eXK729955x2pqqoSEZGVK1fK3LlzRUQkGo3K2LFjZefOnRIKhWTatGmyefNmERH59re/Lffcc4+IiNxzzz1y1113iYjI5s2bZdq0aRIMBmXXrl0yduxYiUajIiIyZ84c+c9//iOWZcn5558vK1euFBGRBx54QG666SYREXn66afl85//vIiIVFZWSlFRkVRWVkpVVZUUFRUl4rzyyivl6aefFhGRm266SX73u9+JiMhLL70k559/vliWJe++++6guJaXXnpJLMsSy7JkyZIliWtprb3fJWCddPLZqk8g7XCneph91Rktyk46dyZOj65foAavl55/jR9/9xeU7j+EiFC6/xA//u4veOn5147qvKeffjrZ2R3Pp7VgwQKysrIAmD9/PiUlJUDLqeBdLldiKniAFStWcN111wFw3XXX8fzzzyfKlyxZgtvtpqioiOLiYtasWUNpaSl1dXWcfPLJGGO49tprWxxz+FxXXHEFr7/+OiLCqlWrWLhwIdnZ2WRlZbFw4UJeeeUVRIQ33niDK664ot33v/baazHGMH/+fGpqaigtLR2w1wJw4YUXYozBGMPcuXMT9783aBtIO+wOO2PmTGBY8UgObisht2g4qbkZuHzuHp+zoaGRYCBEenoqLrcmInXs3f/zPxAMhFqUBQMh7v/5H7ho8cJjEsOjjz7KBRdcALQ/Ffx7770HxOfMGjFiBAAjRoygrKwsccz8+fNbHLN//36cTieFhYVtylu/j8PhICMjg8rKyg6noq+srCQzMzOxZklH52q+baBeS3ORSIQnn3yS++67r82/S09pAumAy+fB5fOQWXB0c/aICAdKDvGrn/6O7Z/s4ayFp3Dd1z5Pdk5WL0WqVHIOHijrVnlv++c//8mjjz7K22+/DSQ3FXxrHR3T2bm6e0xvnqszx/r9b731Vk4//XROO+20TuPqDq3C6iP1tQ18uns/+3bv5ytL7uT1VW+zb3cJjz/8F37zi0fx+wP9HaI6zgwfOaxb5b3pww8/5Ktf/SorVqwgJye+SkNnU8Hn5+dTWloKQGlpKcOGDev0mMLCwhZVM83P1fyYaDRKbW0t2dnZHZ4rNzeXmpoaotFop+dq/f4D8VoO+/GPf0x5eTm/+tWv2v336SlNIH3A3+Dn+ade5vqL7qC6sqbNN7xXXnwDf4MmEHVs3XHXjXi8LathPV43d9x1Y5++7759+7j88st58sknmTBhQqK8s6ngFy1alOhJ9Pjjj3PppZcmypctW0YoFGL37t1s376duXPnMmLECNLS0li9ejUiwhNPPNHimMPnWr58OWeffTbGGM477zxeffVVqqurqa6u5tVXX+W8887DGMNZZ53F8uXL233/J554AhFh9erVZGRkMGLEiAF7LQCPPPIIq1at4umnn+79lSA7a2EfKj/d7YV1tMpKK+SzU66Qs0+6XDZt/FhmFJ0t08eclfi57LPXS2V51TGNSQ1NA6EX1pIlS2T48OHicDikoKBAHnnkEXnwwQflwQcfFBGRr3zlK5KZmSnTp0+X6dOnS/O/x5deeknGjx8vY8eOlZ/85CeJ8oqKCjn77LOluLhYzj77bKmsrExs+8lPfiJjx46VCRMmJHoniYisXbtWJk+eLGPHjpXbbrtNLMsSEZFAICBXXHGFjBs3TubMmSM7d+5MHPPoo4/KuHHjZNy4cfLYY48lynfu3Clz5syRcePGyRVXXCHBYFBERCzLkltvvVXGjh0rU6ZMkbVr1w74a7Hb7TJ27NjE/f/xj3/c7r9jT3ph6XTufeDApwf50nm3AXDNLVdQXV/LE3/4KwBOl5OH//RLPjNn6jGLRw1dOp276i09mc5dG9H7gNfnoWj8Cezevo8///5vfPkbV/PnFx6ivr6BMWNHkZmZ0d8hKqXUUdME0geycjL52cM/4PEH/sK2TTsI+oOMGJnPpJwJXR+slFKDhCaQPpKbn81t37uBoD9ISpoPp8vZ3yGpIUpEuuwyqlRnetqUob2w+pDH6yYzJ0OTh+ozHo+HysrKHn8AKCUiVFZW4vF4un2sPoEoNYgdHjNQXl7e36GoQczj8bQY/Z4sTSBKDWJOp5OioqL+DkMdp7QKSymlVI9oAlFKKdUjmkCUUkr1yHExEt0YUw7sbVaUAdQ2e50LVPRhCK3fr7eP62q/jra3V55M2fF0/7q7rbv3b6Deu2SP7envXkfbuvpda102UO9ff/zttld+tH+7o0Ukr8Otnc1zMlR/gIdbve50vpfefr/ePq6r/Tra3l55MmXH0/3r7rbu3r+Beu+SPbanv3s9uVeD6f71x99uMvevt/92j9cqrBcHyfsle1xX+3W0vb3yZMqOp/vX3W0D7f4dzXslc2xPf/c62pbMvRoM968//nbbK+/T373jogqrK8aYddLJhGGqc3r/ek7v3dHR+3d0jvb+Ha9PIK093N8BDHJ6/3pO793R0ft3dI7qklupGAAABM1JREFU/ukTiFJKqR7RJxCllFI9oglEKaVUj2gCUUop1SOaQLpgjDnJGPOQMWa5MeaW/o5nMDHGLDbG/MEYs8IYc25/xzPYGGPGGmMeNcYs7+9YBgtjTIox5vGm37sv9nc8g013f+eGdAIxxjxmjCkzxmxqVX6+MWabMf9/e3cXYkUdh3H8+2BJSVEUFIubuPQiiBvsRWF0YRddJKVBLZUUWUgoUV1EWIEXQhd50832Yi8E50JKK0oWy7yIll6pIKJVF2xRyC0I9UawkC1/XczAnpYztjNn5rw+H1g4Z87M7O88DPzOf86Z+Wta0nPn20dETEXEFuA+oG9+LlhSdnsj4jHgEeD+CsvtOCXldzQiNlVbaefLmeU9wAfpcbe+5cV2oDz55T3merqBADXgjvoFkhYBrwJrgZXABkkrJQ1L2jfv76p0m/XAV8BnrS2/rWqUkF1qW7pdP6lRXn79rsYCswQGgePpav+0sMZOVmPh+eXS0/OBRMQXkpbPW3wzMB0RRwEk7QbujogXgbsy9jMOjEv6GHinuoo7RxnZKZlndQewPyJ+rLbizlLWsWf5sgRmSJrIT/T+B+QFyZnf4Tz77seAlzL3CQWSA25p1sqSbpM0JukN4JOqi+twubIDngRuB0YlbamysC6R99i7UtLrwIik56surstkZfkhcK+knbT+ljvdpGF+eY+5nh6BZFCDZZlXU0bEBDBRVTFdJm92Y8BYdeV0nbz5nQLceBtrmGVEnAEebXUxXSgrv1zHXD+OQGaAa+qeDwK/t6mWbuPsmuP8yuMsm1NKfv3YQH4Arpc0JGkx8AAw3uaauoWza47zK4+zbE4p+fV0A5H0LvAtsELSjKRNEfE38ARwAJgC3ouIQ+2ssxM5u+Y4v/I4y+ZUmZ9vpmhmZoX09AjEzMyq4wZiZmaFuIGYmVkhbiBmZlaIG4iZmRXiBmJmZoW4gZiZWSFuIGZdTtKFknZI+kXSQUnfS1rb7rqs9/XjzRTN2kLSBekVwGV7ARgAVkXEWUlXA2sq+D9m/+Er0c1ySOdV+BT4DhgBjgAPA88A64CLgW+AzRERkibS57eS3GvoCMkEW4uBU8CDEfGHpO3AEEkjuAF4GlhNMuHPb8C6iJhtUM8SkttyD0XE6Sres1kWn8Iyy28F8GZE3AicBh4HXomImyJiFUkTqZ8g6vKIWBMRL5HMbLk6IkaA3cDWuvWuBe4kmdhnF/B5RAwDf6XLG7kO+NXNw9rBp7DM8jseEV+nj3cBTwHHJG0FlgBXAIeYm9BoT922g8AeSQMko5Bjda/tj4hZSZPAIpKRDsAksLyKN2LWDI9AzPKbf943gNeA0XTE8BZwUd3rZ+oev0wyWhkGNs9b7yxARJwDZmPu/PI5sj/sTQPLJF1a5I2YNcMNxCy/ZZJuSR9vIDktBXBS0iXA6Hm2vYzkOw2Ajc0WEhF/Am8DY+m8DkgakPRQs/s2+z9uIGb5TQEbJf1McrpqJ8moYxLYSzJZT5btwPuSvgROllTPNuAEcFjSwbSGEyXt2yyTf4VllkP6K6x96ZflZn3NIxAzMyvEIxCzLiHpI5JrReo9GxEH2lGPmRuImZkV4lNYZmZWiBuImZkV4gZiZmaFuIGYmVkhbiBmZlbIv2c9Vl+NUH3CAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "results = pd.DataFrame.from_dict(cv.cv_results_)\n", + "sns.scatterplot(x='param_C', y='mean_test_score', data=results)\n", + "plt.xscale('log')\n", + "plt.show()\n", + "sns.scatterplot(x='param_l1_ratio', y='mean_test_score', data=results)\n", + "plt.show()\n", + "sns.scatterplot(x='param_C', y='mean_test_score', hue='param_l1_ratio', data=results)\n", + "plt.xscale('log')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notes/10_24_ new data, baseline.pdf b/notes/10_24_ new data, baseline.pdf new file mode 100644 index 0000000000000000000000000000000000000000..3317689a38dce220c37df8a167e6d7421430280c GIT binary patch literal 242659 zcmeFZWq4e@k|1nmh}n**&9P%<#+aFz8QaVlL(I%}%#N9vDP}unW@ctyC-LMZy3eU2l}b{nK&qn_ncNo<8U|WsII^jugAF(a06hR`U;)R?O($e;tnUc4 z2YiwSx|>^B>C>^$(gUm061tAYf~2Wvps! zAZhMM$HK%$%f$L#L{dyiT8bKAWo~H<5H&Wm1im9m0Bx1i36SpY(2_CRZ6 zI`(&pv`ifAY_trlEC69EV?#%KpbZ^6Eh8-pKvCaB-`@N$vXpRia`r$YCqv`+7Ajhr z>(jk=1Ypfh|DN%u<>o+}FZzzgfKOjI8R;468R!{V7&sVM8CgEl(^I^E-|?h@M*ltv zFE5<&dvD+Q!SqkQ80rHU;OGRU0dz7zdux5GeV%y4vy0su#QC*yxji~XOp-l@>ivopSz_*a#3{1Z{h&DIz|C#Ub|Xl!ru&Yyn( ze^MFWE7fMN#DAyK_dd!17Kf(_gek~ z1hwCXm`>Q$@m&@Gn!kta&$#_=ArNT)yGM-l07f=8!0#J711$^dd)8k(`#0tb0j+@c zinjWO?*sJ3*xB6BSV2^f_xf`|YR-^ai-x-2} zz;`wIJsymV%nSe~MmGBQnndk^PPV_1|IwE}kMBJJ&?(vL+c?$y1~(j|B;Q~ zWJJuZ-t`bbCt~&9yf4PTwc*_g7~7aSngKZ2S>NTI;Bg@YJ-NZn zfD%hi2P%ChUJ*dWDniEO5U*nWz;zZSBq0=16N7bb@j4OMAiKOK3Ykeo8X9SFp#=VQ zxN9ywI5x7_C0s6acq;);t*roVY7)-L~9+2n^vbd_Z= ztXQoeWRatEka6km9BiM3Is{`}LlKdaG^;7iklzir@Cb-Hev5fvGZhq83MH*v=7AB{ zYcoFOb=P-j0t>(S6WeDcK%UYlQmH;o(eAK1<>Ln-iwU*fk09R~v5(Y;8HA*;_|(gY z49L+?X6aQ6^@#gF+C57){Y;)o#N9TjCR#L{MZJ!{1lt#HCp5v7cUevuRWmrtUNBTg zJCjYC;kQ_M+6*Tt4Y|WgQjgnc((vyoramlT2`(MnO|q?-9o>IO4bfLdfHGAO%{5st z{$+`lL^dTow1D23ZVYF9Y9cX|ZW#*HFbj2bHyB#Dw}SH#=?7uVHIrk!U>zSF!DeUi zqv&ebn!8xLxZYXg^YLzNYnB~zaP{zcoLs&t@Yz0kxgFXs2;t4xH}v4oWZhRp)@;v` z<*_>V<-G;7!Me5!IQhyOxdHw-kCg!b*eF2Qu)hW6g}0xZ6NS9L1?jb%6{UG?=ijaY zoY3{wxMm^7^omFq_UWC^saUAoj}stF`-8alyVP=yEbg_rKkp#@B>3YrRu`n#VOr1o z#iSGbu~r}x;c;5#x`-$157H~=Tuue1#`O$Z*z4uOUj=O@`Vk+^#{1D;#y#E|#%vH) zy&3ly5XRfAlpfxOA3Aw*!~(vKm00?M>0+Ks`&AeiPoYlfL~V}kTdRBUgsd5ohwF?r z>9p~hRYYBC_!UeX$NqdCd&8>I0NIK?Qj*<5?~6s(mFW^rZFaRmi_AW8 zhkp%VF>%3VNwjE7|2*@_$&x0%IpI-c3)a&5=B4t{Tg!{E_N?ddN&U%N<9zGz$*pS* z{k4N}AoWKh-Q@P2B)@6R*FCc6IkFGesA5N`zD}@(*$VOQu!TYj?RbF(+NNa(WR+ik z_Kt-e-ZwcxDFOyrSaF?aCz~Od1;Es8xTi?vYyDits%wY6QAWN!>4zGQ>Im05Ywwu+ zVhiM;VS(i4Va&JjWRn~DgyU+$jA%lB3N?^I1YS-)DMyRdU9(Qe^}5b*o;jbg4K>g{ zShHQ_x)0<;9Y0ID0KZhqjH-BkAk4~jWBqO1|5Eb5<`E3c?`GvMGymIqGXEc~C(Az( z|6y_dpI`s)@as(U?7#gw6T`cM{7?DyzfB7NZ})->EP(g#f2|*6`=9(^(y+}o>j&Yx zN4RqEFXUkro9>u3@Z=Z7M_CLh)QeDk8E>M8n8MZ5Wvt86E96D)%R&o$4T2uj=p2pY zJwxr7NzXb8Mv;a}%l&sJXKTw(w+>+*S+R`DdpoAuFYVtHBoJBpr|xg-+dPf$wj4-O z2vR+c{MS!4%{+R-b{5ZAerVu7teEO5s?f}+fYnBa7$`>=42`ZBrG2+AWoXFyGcUp=qi^rKJwq6M{n)RW5L0uZn#knTv zxahmh67v(u4hrBIu(0)%0>eqSkg0$v9pv|PD32#!C1x5)oO4ypv0xt-M1Q?n!f@^n zQOYEGlr;zsgQ;?77n^gZ5ZE_Ru$h=!LSxSp6qC1aBOAI+Lt-Q;5$O45wFrl zwGIB+u6qpJ+b4*y z&oe-`mf~Lj4gUTC%)8w;lWxP5I<}PhIeb)-t7|Oj{0j1Ud1DWhkFRr#;txuI&llqj z!U@g$2h`vAnHy{@tgXLnuuDzn;@$Yx_n_||aDHc0tYbxScOf%L+%Ei}UW9zk;q5}6 z;_Ie+2haCNp1+wQ-@o{-Wo~5Fgv;;R^eODN_jxi28cwE!RMiYFVEd@NyZ92bjXlZV zwX&XHfp*Llyy@y{6M8;>_|*#r_ZS&b+}aTV-@0ZOGwa|Fb?yebmZt`*ArNn^R*EOD zvOSe)BW_hPz<7De1lud<_2RyGR7oNU?@Fy;GzHckS>UDJnFQ&n*|~?rZ4QTjuU!$v z1O>m?+PIY?bFI9_!)@YnL=cvrehSal-M}h%kNH|ojyAFAei@bCd!x_u;NisI?|ykl z6^e=VoV%K3*|o+6ep2P16M=b@GvUbtv3p!hW^1BYl|cB7U+Wu4nUEd?oMNPq9x24r zt&m}0Wm9})i?8PkYmR}KcS8F4%56|+J zabnSFVRU&7+d;$vft!g@g{=wqlSu*scTFl3lcEdw_Hi`iompNs9(4ETbL7yDXS9u- zKz1}4-&!`U+$dv;7m*kMkM3h;^tZ?67fQZ2@Y5G3+JE5)e=k4(a)kf2cJa^L9BAYC zdoC}+0{E{rc<(FkzZ*O+g(aCDdIYaA)qCi~g%AgUR97?6JA@%Z-{gQ===Hb!rpR1- zoLY&k#s2<&yH)LLbjAWXke!uR=M4K_ffAu>$9rK{@&xyfUYuRPz5az0S(IOyHWoG= zq*(|jGclNpD7NQ;7UCbk1zH-x4XCP7iEB#LtpxMNU$l(JR{G59k6W>w?{oD7MJMH1 zcNCEZH^lM6^dY0W`I-hd>kJoc*>4_&axZ5IG_6O)XC+x8T5lL!Z7wQW9hu8##(2u> za&8P=XL#HNwur;V(g@0Uu1B`0&$8Q^zTM8bZqx2NvPT`19=mJ>FmvS~;}xn5n$y`f z677A{vR3wFkGhOHh3ixEwf`5=@wf2D|C{~%_eC|B-lK58XFseQ|H;|U{}!G4zc&WJ zzz%r-{#VX^80hJl{%#Gd6M5p6SrLLfUf^a@V51;lqf50LhuNEmolN@eLT^Uzf4%u2 z_=3SwF482rClTJe!@SJH2$B!boKPlUyITfuAs24XUNRK7ot^16boeZ-)e~wW!4?9h zc`jXeUI3Dr6_B-gBQh-uo2HwE5Ks(h3N?zp z$C|-{+AAa43oH`0N`s8BP^g4hpLu??Y-0PQT&KarJW;7{U6_hsSGwE56h2c8V?+)V zVkqfLQ(Pk&^m9xnHt{W$vG~ZU+^ZL#vMD%~!X+D**`Jt;l)(+d4w28tL!x99~z;U)lMZqs#*1KAQVP;b6i&{ybZ>Ml%UEhT$cW?5H z4rl!7doX~-5{Egz6@+KF8j$r9qmp(-4b)Q_;l-(TVHya?_uO4 zvLbE?4QJ^P@pp51BWYH?-ZT~#Av9K|o?`4$CK{KVi*Ic)?ulF5Z&WwORC>Sc6Bu0_ zSe(+~bBW6ye*~6G6i}3Bd><>nG}dmu2s_f|p@^ z@Ot21UH$o1*Q3zHqxcBU-Jk8&qk{N!&im0`U9|uNKIy6v{e-~te%$AzOah;<;C`Pk zkuvv|;Z?fl4OXttgIl_YKCSCfhxZ}gN@p8i_=@jbvooikoO3d#J-8=i8?L7iU-Hs2 zyGK*y_YVqi9|xy&BVOIJGi~1N(BxW4tJ7qIgqSIfhK-_mo2qC@h<&v115_CtC$c*`0XH=s@##G3{4<#u2k z-AO+aF!{Bl-EK5KdewSoZUe#F5!d6a3_Df9+iBO$LD#U(*?pm%^g#$A9&DExsv|7c#jW-DHwV;$QwSItp7@|h;P2Zlvt7QQr&~K^tyR%bobF{^Z6pWuh!O~b~Xn8 z+PqE&|7z3r=7VE2s!$q6{ooEeZ>4f*2OIAM`^5ut;5{^O1E&`xA;0+9mxFYNO9wRZ zsMM(iLM6KKeyR~dg&q>s1G2KRCUK5T4;FO*s{V6G4q_|I@Fc?xaWeAQC`Ny3Td3Jd z^U&z`GdKs0LpWFWZHbkK)2w89`|}Yq&JnF;{Aea2BrVCjTrJuF)h<5D*AEukQNQB? zpR$K*wi%$ueb8aYpNw0-5F8%eQuz3Q)*-u5|L+d(-N^ng)1m*j-2ZP`?sKsIc6iM6 z^#3`B$N0CH`+x1U_Wys-`@Nrk#O}W@?42|$gU^5vba#bbQ$8Kd9`e0Zy|Tn?Ea&Jj zc(NBXWcUewDJ7g~3XfFG+y3IjVclB57KJFW5-NDRm`-hO8~=xz#IlIe(c^3F^J{%O zEl|=Cl-@XN<|=8ly~Q^e{ZoI>{bThqPyEe;A?O(N=Y{+Z(6g z5=|Pv$|b{ou7xMNDEL>c;3XO>k-}=OLi46VDk%R_bga;Ftq1l8JMEmgt_WzP=(`g9 z&tr`D*mmrGEQ0MUCoUnG4D5uSrTUejEFegB1f`}lfe=Il&qf$tSxP~{l_Id9`oVaX zfm@kZM17^RN<=e6xH;czFa;EcaQWjrHLWnldN24(zLS4!L3V0XWws++Y)cCq#B$=R z*bOn;eBG}x<3`9oSG?h>30q5Gs$YMG!;=|O=hxbQjFk>7057S@I|r- zQ}!*ZmZ+L4{n6)9_BbL~qHy)|(CvDGYAwewKn*=2pWrMaD1vi1e8L=O8M~eKEwN*G zWh--Rtl)0$=CvBRg3u+Zb>IF?$j4ht7w4^UD+>S3zB`lI{=k<{`kaDh)V-UqF8IQi zPv*Rz^7T_1DGm5*Vb%tyPx@vQ+H=)L6uuAlMilh3-Pev4md&-Yj~8dNQTJQuKI!Xg zBy5{N27-$M*jFCQP@jYQEm$9=e&p+|0PplkS+qy-wlU~Oa|u4_{Q}q*=KRcQJ@#=~ zl9&7`U772tfLHHDv5r+q+nh}D_b2bv$+cXj-=$bq!PI$g7%F1 z;^uaB_`}C)z0M>k&uBx=^JzZ{a00}8i_SeL?m~D(*W0K)&8Qeer_5y|L9WLfht~YQ zzA23e%H^Img$RX)+(3l}g*9f^ZjHKzj;9f2!s8R*1PbTziR{Zs6ciuM^Wb^~{_7j# zfQD?9&Eeo2d9*vCF|5E7Ej%h82N& zSyVeN1}0fa?u3Q_k8fLV#IOaFA;*E zi~5V1F=_7V-j{P&KVsd)|Al+|+e^cL@4XlkJqOF*XT+nL>QQ)2h~8(q@?)S1vtA$q zz9|>;V`ARTq5NB=_m5Oo36{uN3YG+_n?J zgM&B`kpO9jFdh?cl78(wpx9*aQuz_ia(;)6h`R8eGJ%F7(&63YdB4r?v4o|!RS6bM zz*^Bjw?^wDC&6`Jb#A!c-y<8486`oPo%eH-5*B-1bU0~wT#i=D6cX2l>C~#hh1NRIlBbyfs;~fQwJF~ z*kgM!_qy3Ts{hV8BJb8Iou~YXw7o+qWQ)OPN(uvHj>d4)KUG+x+;Wqh3|)SX#^>Vk z^OX#DVUquyV9C`()J=18zwmCwem{OIN+zumzR@h=kZ5bY2SOAHc;Z>aw-ynmp|}Z8 z<#JwfI=C_k7xhmFko5g~_C73_&2~+?u=%rYT5Yl))AsYOyIc1jnx6*BbOSb~vd=fO zGn4u3a~R2&?FxtHnBOEe{A>2_)G;fdq4PKxhZi~AXA(THnq521>V-83xH*G`OZfAi z$xH?YCcCjiDyEVd@1E{N#ls{vDUn3x!m&}kQ&GXA$PAmAu_tcjU2t*LA68)sULDu% zLX_yXeM%-&5cj+o5}l1RTi)1S>5jQ3>fGizBM3Qxy+CR=jeCgas;&Wc46n0`_dWg$kExTq>AhU$7_Y z7F(OPU$9re=Bi2xJdJNs?-DyE2wo5~kl83VJaQn_pFs>V2;UY538h=W-v`BelBFQV*{$qy+G-dn&)^+r+z#J-*(G#3Wmc2X}o2XfAG!OliQ+uf)iMqy> z!$PmvLx+~2XH%uxCFRO;s^-+6v{HM;#`nN%${k7kIv`EPcKBE ztx_dQ+p==7WeNy+vqjqj_E)sU0d63OwW&&|!vraSQ5pLZfvFwz{Y9#852y_>fl{p` zs!a}UJAU4wZxH731XQpYKg|UBN9HWpNeh0>EJQhqTF}J+*1tf3RQ@zWfm@CCk=4;D z`o#fA9P4Bjq|cas;Bs)o*+Ui^(Iz)`=c+u&W<8iy@WV|O^GMddU+tkoSc$Nj+WxTQ zXacJ6Q$w5?nnH}Gq`qGep;HtqfA2s9qP4Ft6ITc;zYu}Kd&>85@;r<2X!qJK_+u3A zc&`Fl#w=;$0wLVplou6=eu7`_>tcFdb^~Ig_O?}sliey!DVO@SAvD=J;PQvaikHum z-_6z_HUoHZKAS0^3?}1<^J9U>0*s}!I*ki{LYkZ5FA2aZh<*aCk&*jaiz5-uDF{0$ z@=0J3flLfPJ8v9YqV*C#K6rT4sh1g1q8So59%fc!1O`RJ(W$$h9o@qGf@*q>xJA*i z2SgvWh5ma4@I;qr4b4HHL``sq zQo!JZOK&Yjjf7)xwD;T?;|(_Ykx`peX>bDbnI8uY9k_z(e-ij7L=NBF7-cDDJd6xjifFvwMbc0mOz6vktJgpzQdl%jBL({G^r&1a2Psa zKN5BrI;mY``)OLS=v+g-NNWu87(~BI3GVU>RZ5-4R`I^1D35^#rd^TPcblZ;0V-cS zE$7du1KoNm+6$w-Eu(Q+MPME+1-1`v&Eu#&xdz|*gC5C11S~<9B+E&Eu}F(hcpPKd1b7mlGk>%k1^PlY}h|9t6D`G zvPr0@`2<#r+f8fR?>6TEStLZj9TCHn0d0s~l&ASaM+zxINu_=eES^RQ?7U`<8YD{E z3T4kS+y+at*dfsYw0VsUhB=nsa|kc51(G$%9Lh|M*=o^O#qJupKb;xt5I{}GOF<-=z zUS%LM6OImLs4d6j+pf=`PIO(>BoKY6$Gp9i_Xq7U5)g4Wf$vRvctkA__vTCp;ofrJ zUtv*GU_3Uvr2U*LEoh>qoN|d0j3kD(HWx3LqK|H=b)XT~2{9nN5s>>Ra&N|>UuA{h zf-TB^-^a}ttn5ln=$_diSomY8djBk6wLC}A^3?`BXbEYFvvgrf+ zJ{?4qouNp-m{E=M{Je+>SdIwFT|+7`L+;?g!@oEv4-u1f=|!xED?(x?F+wZmJm!); zx~cD}rbo;-;Q^Sz@8!UupN2s zoyd*(*)MG7S6n}s1+8avmMXV_i;fkC^_{X(CWW$FItZSA^(00oHx^grz*Y|!XY+{> zfk`D3Q#e<@IcUm~e?!By9@gH3gHvvqb?0K0BXOmH`7MZ_&VB)$N$sjrDkcw#TWQH& zjR3X9#80NX;IDaMGcqER^p+#-89^C~)9jwHFpwE--=!~|Q(*{jeboAVQV~#EW@|8H zB;kp0=U)`T+m9(kWF@L^E;Ohp()ZLW=}zr%P8x_-dn==g*%3Dk8_Ax`X>pW?2e%xY zfdg$f+#M+2CWaCJlLfvFh!8gO{f#w-1TbBja z!d+*w*Q{}u<=Pxo*I+Z%At@Qb?qH34;;c}2b!O^$ew)GxXo_Ay6@=y9!DzFw;DUl~ zwV!P!dyi0&xl_dj)l=pdMVC5yChMDD(l-#EQuCD9)7+y>$$JL;y)u%?@M+7Pgok3W zrXFT8PUcmbsu6$eiJM7t-ga4nDbU-*_##m z2si)CxV(i4V+N{#;u&?rr9IYx55F)^P>}QMld;<6N~5rw(;?hY#`R$g#szu4)uqdp zB`{=lwS6Wq>n4G@5DV(6yQQ#SiSX0D`vd#fQcqvtSqIJ*$IPM--y`R)DCTp)@EfS~ z=C1X>SYG^XSIxh-ykKRc|DTo@E80soq#X8MbE?xdeq}p6ah=`#l3a_XONjU2CT*73 zJW#E#KAk86P+QR{lnK)sJ?99`ni$GbP+NU*U5Z5>!OE{K9FK1J9h$B)T^_F_Dzu+CfN$@Zgt8r;1#VvXN8c)q zGi=wEMoP}@ZDdPy$z7OZ!dScZuy%#o`z2JzfV8$p@TJ%8!0K9`88H8_9HHkY8m0jI zHD{k{37rK=P5B?0Brk)0+f6T@Pe;6Z=}wreLZaI(ZWx|C%I&xcZ=Fh_G;?Yt?B1$p z_9`^Iif`IystJ`GDmZ%|I*+f!$33MhZL8047eh|sJdj9hgdVF&*M@m+sMAeeyQN%4 zCztdi2XOG+SbQpG9%z;+hrP54WNf4aa3xze*0_5G3KhqRhqxgzJY`W<%SVT!EwnTM zE%UnHZYf?SR~0#+*@j&gsL{~4mnYIfK#;=FJ3 zOM1liq8sH4E3f#7$;xV7FGE0gx|H^8#iKqqI_Gn6G&py3O<+~mWU|R_aqZ0+n{?8 z>+*5ub~BATKLSO)X^)2#XF!1vACxBcw8@IM(snCTa!1nYfu*wyMn1MRPDa1incgPIV49L&EM6*q-&8tJ2&)SD4(4a2G0~x!Y@>jg6vARs9swmdj=PSOem39i>`0ey zn*)14#0UOT4 zJ?jnX1OqRgrqVg$7P}Usa0*3>xlsiY=%FJi7rpPBRh|98n>8fpuoM}h?f_{6STe07 zUL(w00;hp|Id&XA7%I~>&5CS*LvLCE8E`b-A=c7ocVf<`Mkp%ZwkLeqYeL`OrGeqz zPYe=zd&%$1P5wA?$G7%M&q>_R#;L~bMxw1fq}__5Q%+mwH51V%V%)J-ypV$BW zb|;$5kk*8>{=EsyPY>BIh=AzJNB4ja)dC-^oZVog#vu&mQMgoajiY$_nmf2Jc&e&}j>U+c5w*5A1e*o!rn^;v=HwG)liKbn5 z1nD+@IcX=qk=ZK36>krjGn{ogB}pxDwpA5Km)K8_s!btb%Wdz4h8r2xXna_=Z+D?& zNfuLneluxE@WuS0pdZycI}O3|&^N!z|K>;+Q?LVvF!sIF`z98I*iEnu${TDsx5}hE z5|Rqo=(uRxfzTC>G}!SS*!`OEL+K6*fWFS>NL>LE1V}vnIFN0#$DdwZ6hF9paWqLg z377^TVn$p+3Py%NT1QCG#BhIsvzro#th0s62!$&ym1I8TGFB|&M*_pKBYWP@0tLjPH<*31ZFKz7^Y z;}1}A-YhkfWhmWN$8)*(s!t}Z$uvVx4Uh9V0O!l40NH1DP#H|;<-V+V-Pvf2u1Wqc zmCvXjs5`g;^U-mDACUYt$rCfvFGd@nT|w!PH3>Lf)%U)7>aP5i)Z7A<)Vu&S6avrG z;nvJx5EnFT6A)-}`cDu;04uOwM1w9=XiP;*Y8Xsv(+{%N+(c?O{o#6DPEZV8ZBQbj zFw78KV0jy=Fof6!eo$BqSzmaly#b;|%PN}4k5Dtu*e zw<95dUG`Z>Wukcd(G?0B{_75i9w7TgvMYreeIQ#8-Ex$NZe};bqb(+J9$OG>asLjs z(>{PnOCvRd+Qh6bw>_PRY(!cXQz8k-0A{QMZEiyMs}G~Ix)Qu^5H@}E^H+?GP(AhJ zxzIRO2zVjH#ZFSFulz(1QdzBjpVjia=qq6aSt~QTxaey@1#DprL~JuRByFpSw=(DC_^I$Q-E* z^8N!#u6W`_!jCIQ%*#HWttRYY6sc-@rdrGUXx$<4!0y4uD{(_-9Z)iO5V=c95i-Rj zmPuI(-`L)7iJ#z+eHp7MBWdI@2|>u^40O)e25$IDEM;L)|09k-I zc)|w}`VlZBa_p**Vl{OCSfZz_TTNz+HEF6wvoBR>=SCykf9_(7v(Pj*XqAoN}=eTA{9t~?n6OXCDZ2pYY7 z;4^{&zZ*DrrG&qT$%ilUdR#(U7TX8Z+W6J$ji)VM-Ja|ELf;g3%q#7Sc@WhErMl$8 zc$0q;J1Go&{TSbH{>@mUSc<%=6zoX-)$covDn+K6j{jRJm~X+{=7nM>qsU?=>|j5v z8n3Qjd&!TY7IzXYR@{o!#@6^KT}Wz@%%?JnL!#C(fN}clLp$Ndt%zYNqgevq5I{Mn z1w8WD24SLW<>YuOfe@E7mzgw8Q@xZBe1v{&)#r65;6dZ5*}>;!`Pzi4GKzwF9s+M8 z$$MpG6%DS@o09(x@#JciZ#{+v0Nzr;ctpkJpP5w#hLBwMoKDS3skD9;xE9Cq#3UNvLQ9`rzv<#4;e^ilhi(Zt^A-U*F zhF!9{=Qe%K^?*LoO?uDBrA!hC5|boXO*i{Uc7}bjdh7eod7ZxIJfLS}6Z{*;bV$z# zow=Nt2vLdP7ox$e=1_JV!r5}%YCBVT*w`y+KU*Xz!`Pu0p{}|>##5GY1k%K%So($V zyh+r|lVM%2oTcy1i02}o?14%{+gyo<519|@tn+YtJ=B%94;KMjYO9o#^w5%A6p+lJ z1Y(p~e8XIyA!mmas^vTE*`%&JB|%B5)1g9dTDmObs`rL$WhJDGr_s;J!noKVxoIbz zWe{Sz)@)J=1F4heN9ljP{{pMhi2f*VOe-EyB3LcpV+}4&yt2uxow=!FGyI%` z;DZr=Hq5G&t|*$)T>m8&NrP_Dzgl4)&yJB`&m!N_D(<^DXJhX^`Y#uofr7!nY;3x& zW&FfOv!1IeRlMB<9Kzq} z+D=Or$m}emi>+l04zenJCCP4ZLm;*2CgTnrvv}DizIX*yVW!ZJX7S2Wski#SCgM~o z<~aG!b%sFh>}>1pA2a9wLC)JjF+d#tnBid?R3gUwfSzWCyzBQTLdqG9iX8GqpL z--Jrn4}p5_#0y64vWNQA)d$5hL&#*NGDpd26M*4RA+Ux5hEFFH?%0VS4-t$*j09l% zNnv0DV*)bz;m$XeNRoURfdjG;=MveL$>=B`ji>>IO%oqvoqH~7jCk)DdAuoPS7N%T z)eTHh9cij&iDEtB#VndwVt6(9N6>*i*SKt|0OH$@_v0B>Z8EMhzy_^;tSBbfRL!lVee3E5Uk^|vK*uOZbZSxx+)JZ5_CZH?|nAB7Ab$e1=SS`=&OjMEQZu-tKCGNddyp^^y zPn6miYmij~Q=%R1#%|O3Hh=Tkc_(pG2Jc*6rd#+Gj?bj=H@mGAn#C%0e>wB^2Jf<6Vc!nNf^9$rOIFx+f6gCae7^>uIms_$9jP*6Alk2Aui(QBdwc z9@BP=%meVe^$l^;J+-6){C#L{{K+x8u?ZZ$J6CMZ$JhX|1U|r>+^cI~nzY{)=ogD;lJln@ zF%^~niY8=ldI|3;mr?1j$(NDg??156K_J|1<`J%CTc|~D-5bZ6vP@s-~{Y%EW*x@w~tMg_a5}AdE|R8p9Z|x-w2&n`_bl(CR^w(d_)HoZ1+tq&)%buB@C= z*OvcEvM^LwVKYTHU)eZiwDLo@S6`pvt+@=1TAj7A!A6yqJd8_r?qq0@G`sb9gvwjo z|FZn}Gv@OL0bu2TZ>!}S0&QwZtTY9ry~n&_s^h3~GrzHhvbk*ZP#C0y$9#Ndsq%J} zlD(>tGmT6~=Zx3*{9LcO5B#(8a)@b|=-ZWC6w2im>^J2HI844pO!C4@W13xCKSq`a z8EMs4XFJQIebfeWEBq{*NM}E*@Hw02#h+yjc_OQ+m37(UL@dZdH238uWP4wIELA?z zeF1eV?v3q(h4tpv$6KHeW>4$&y_Y^=TJON-0rN96Gu{}l~()CI<99p z9>ajq!}?WB)CE90Cx_y28@f|u>5|AMo{23U>tK7b-Tzgx1N}6b@ zz45Wc({x0XSu~*{X{R)yRWmY^jJS-1*>1FLIPWxAnti^0y*V`@1s=&J3PMd%)~3p@ zm!e_bH~KxG;K>RLK}9uf*eo^Fuupfz=<%bJ{6IW`;;8Q05=)LrC?`i0P&Dch{kpqX zXa9`%loYWLTnTkGsoXNCi{GcyVYiUg%-P=NY0)+3RBp!9F+~i?6fWG76!-MCSx^3F z(Gh;dsz+3dlKh;g_i@b1mk7#P+-C^U4DQx=2$ST(*`Ugcoxhxl3`z?-xveJnW zuh_d7pX}{@qHIsuV_ytYZRiuk^yM4R06%U^SLeAa-`RMrevk2}%R2e6Or5q>U0R;3 z9@Dtd{IdvOH~*&6=C`5&)J7g6I z9x+%0zrb9=-JuuTN;)+34w?6dk_yZ+l>>?###KLUsl49d9(!FMp07VboH2PflpCK= zQ;$5Y)(mp_?9nE0-gL(&XZYFv(xnJS_CzsoNHscjW9Y!lKK=m}$*Lr>UUt$^my#n5 zek4Aq%Ic8fu7C-xXlZSJ2DyJ|;-uNx>`Me%g;B=%7{2?(S$ZsfbMm8l z9j^Ps;lqPFr(*M6pTqUq9l%RTesI{(?whGlW3wW_dDijU!1=;<)OHf{F$NzqGhPZj z-CB!|{6=jNU3r@$8D@mh5Xn!CxR=_4W&*44g7whLXax`+LH1y2Co>~GN|qi?zi*sG@$@_l|8JP%!2?A)~nu)i%vCh9FW!egxeas&%) zS+$U9tKsC*)^I+-NXqyqg>j56Gsb`dK7=n~_SQ~lfZS-;55b+hOQ4W7CRNwZcW*rW zksB4_y3m5-FoU%u&Yqn$C5(WHoQ%?w^WEV|(CnS{1*sv#_MZ%y)=C@G-nYbj44!|S%pm43!I;+EczBw1mp zOA$;ncd-{rnR|Cm9Fmom-m@(kFu#u2&Ip?pxR=`iv!@#2%9g$zJrvo}WLIZCT$kcs zy$04ShonCDBS$1R`P!ltY#4lVJ6hV_duem%Xh%G=71*0g-?|0uFdoektGTFn+QJla zwe}IYZnNuPs1=U3ldlw+=D2#9CV~tuRNv{S%Y+t@3v+CA=6?gyGhR0I>5iLWb$x$fjNp%KYJvEH)y``1SF|a{mF>=EEVxm!j8AXQ^V31mhqD3( z!!W(pK?9tDNbErxAXqF@O9>&$>8Wc=K?$&u7Zz z(&2G?7S=2NBbr1Pv{S2okV1H<*}1xyR7gH1_w`(Q`JT$|W#j4AE^P@nRpY2{1bIkx zjz|~O_Q)zu7V6=UaP9fBVeMHdF(cH+ABH&|Mi{Gus-YAf$oJicm0Cala^|i>-32?u z^JXuucQEI1Zl)qMf`VeKIATm@=nS*w8y_#1#>)NJX2*_pbG(9bXO8nwgy@)e>EyJ* z#o5^E&0Xmmk0zG$s+UtO97c(mJja9L-FMSr_br2mQjTlY5^zst(n7PR{wN<#b;m^# zSyqL*xaEx7L-jkyujaF=6f09&H$Bam_3o+g4{*MkCWefU@xN40wzch^YS!Kih0wNy z3%DPO6@HX@w^OwrL*^;NJyuDmC@X#H5yFY+-qG}55*2;ZIbPGaqPSe{FA>uidHCZ0I3q^Fr4st;8SAdIbKK03=cN^Ix# zddMjX3BuMHq!k~@FZ|o%?ZtwB1MqG^0U%pjtNF25C8%SbePJkLIX&VfKKp1zAs2BMcMa zeY2o@DApk5Giz0wT3sVxX^-+`X-%yN7P7oj-gNI-g>=+zR(q<-?@C|nTaRgurKl1kwO;D_sN7V#8 z_dU!WHwAG=FQZ+S9(OMjn`3RS?e4GpOVGMn#|1YPy5wn(r(r-sFR!|!Z^<(|X`;x# zI@0bKOb<)0uArk8+v%6fonBDBpew$Kl7p~<4Bmvu(Un2~*@z0!hOO*LWURq9y z(SEd|t)_W8nUxTRz5?MM;PBa;#Y#22&wJDES913Yn~#RBJaVQ&Pfoxw4mO|N8jZQw zm~_h?^JI99F&DA(ro56d!v}MwVmk&gfh#xuK@}$FIe4q*0SfMS$I6?>4suO3V|bGf zhq4>G{;*dweSB>$JSE3UFEOdtB+lQeZ?j7}yry2&Q}p&?I7ZjagJ_~&^;0MOWv`Xz z#a3J|Y`YYXd^pl^@Z4(a&YX5UOfE(1?yC+vG9iR3&#?+m=a$yX0FO8IT)r_98s{Zi z_pF-#gSht&YwFqd#$!dP76Jl7M35?=^p1d3=@23{AkwQKJ%EaU6a}Rzy$DDGgx*O+ zq)QV+FVZ12DFFfmejELsbI*D2x%a*I`JLx^`G?s%d(WO(vu3T&XRVpN>)`}%mZLy= z<<`e+<3g`RId&oT?15wZCYI^!LB!SlN+0x5ti0n$5O@CW$-tefLPozuI z_}=nr5}R6m62T}pAUAnp$Ul!zMApK%l(v)v%R3ehd%bJ^YRX;`12gcyxY>lqXwsYw zcz?azS*n40_y=s1I(&-aNiS>3NX;0l?1zNsnE`P>pH5z!6bLP+{DK&Rp~uMszMiX)Lm7awnC%v!BO8w2BucA+H_mp zSLVBAJyd5=SvI)CMoeWOlvFa4=ELFmf+y<-4WouU-Dr~>ef3>9G$?-EYQ0A+?Db3H zFPxfGAA@r0;!Y?6%0hJeB3$Ca=eNB$qgX{EST@ld*kKqCH<>W~=hw~X;gxcPIdqY8 zi|UcW{@U`^ua`r@g5TUVDZ1`%PcFn_oAa3LDJR~3$Hu%7zEZzHtMX0~>E`c!xWV9t zlhc$aS)JP2y3_9DmlRI6zgOZrTCg@6#2Ts`{dg8vF!8Cb>~LRy!3X2O6rMI;jNZ3R z`B`Do?-S#5kecA9soxwS`B_*%J;pOO*vric;vJY&hq(ly5oKrWyGmJC)GZx8+|;P( z`T_lA{7ahAfdlnR-y1$gDx0{yy05_UrJa0xI1w52Y3=}ubK0L-lsh}n5p#+4)k)+*A$p=N<@#4njT*x zQ7wMmFWCW7yVu*_e`3e+%q;%03sym^do`YN6059BPxUrA;xLJrY&me1Ws9Y4fK0qT zcWe<>B4X9&3SFkLSp9NT@#KjWTN6Xfx-4~2U*tsHwD;!x`{eO=>sF-K;dv4}qjPqa zoR%oIrM$$oJEB^RQ7RcC>r=q~3zD?CZm++7Am&}psO+JA`9z__buc4+H*f|twf-1&)9*vc%PZujkWoLFkcZD} z1lXYc{75U6_cgVEX7Kg8c~pntvRJ6A$jnAAY-;j7+Amgie4Da{b#9dGM^2NRJCl0W2 zO2H0RkihFbux#6j?Se5EqC*(#-F++14AwqC;q7kL?Jly>$b5q}w0H5VR828Q^dg4@;)ABOo0#4^S%W5d1*J@M2=NBflo39p)G~r=42p zhn30EwjDPauAQtFla5>@xjml4x8P`L2FSuImgz!Qqf;~vusW_#?8wsNq&r^55PuO@ zKa#^Z>+7e@)I+e>sPv5 zq|9#C0w8I8GwP_368_4QrbG#%TvN1GwBeYfr}+uKIu0nX$Oi|by>A56G%J4Pa=}@Y zgJz@RZh{kTS7RPk-1v(%_`Ck_o&^C`G3%s=P#2Tkxra+sfj9V7M%jR?Aft_6Nv(|s z9(XcoqTyKKB_I0RUtcGxHjAV$+DbpP(YclI^f_q6bgI5jZ}Z<>SgUza+M+*AF^i`7j}$eG^2j@op^)YX`Wq*CK+Y0o$KiIPL@GYdl%}1)^~^j{ZrW&DpGTJZxKn z!Mst*Obl{mFB6#yUD?yh>?RYxCn|FE{K$@#pIV>@NPSpRwuVP`(GT2m64GbDB+a0| z*d1t+xfH+&{OVMr+Mt& zS)PXT?#uZNYx1x<0uLu!B2Qij%rUgz#2JznH0ag5XQFxh;e3q@DHv-7;h-Fl+n!+W z7Ybcs(K?R z+{cXE-WY~&NY7)O4!E;5zM~H(QEmiX%+0zf6*^ANz4swlIiEXX04W0PDy^*ukrBy3 z@Ad!tLf8o*BpvM5_%nj41y11A;o(*f>J{NU$bzn>jOIW1<9{mMYn=2x{|7Hxf{P}w zLC2SW-_vv5@UEb@*cs5S>VN<2|6BX|H7+lpgZ2`G0*sFiR>kDZ%3foSkE%S`u+ql| z{N7_R=%bw#yC<8-swG@|me)3}E_mno&4i2zzt&NCwA4|)e?-p_-I{OU(a*-tg~a|h z9wx9JNWj4yv0}}SINuk%wf=%?GGJphSjBZ;U=Y=lY)kb0MUFP#m@CsjFFV*NF`K{s zyo|l11d;X8IjpnMo?tMc3Qt|ld3zb>I4CtQBX-oRR6I8ho4dzEd4$_x+EFI+{%7vW zGrXd`kp6nEq%T)_6#%ZWn+s^=-JYc+BF{#YA(1Eb?sWftb0STx_mVdpJ2w3hTicm% z(U~0%=IoFZiaXXTTy+!V)8ZxNr7zv$H^(%F->%u1`4zJ0Zm=N`n0xgd-gBFJzHbn= zDrSgQ*qfVJ@l{>jVzR+BR}uK+jIwjAc0`=#>SL%{XjaxILYQmlYx>dF zPE)cT*kIA+uAj!OhH*%(={qH&@N=$vD35{c#Ay6hC!X2g^WYZ|8L%j_%C4OoUe?}f zfa%!ep$~hzxMiS(y3}yV8eY+7?e;xg1peBa(6|Y;c2#^t=5Nm)Hu3CYVc<>})|9Co;j3P zj7Kf6Mjo*nfX(n~>BU;#HKook3{NaokZ`5Qp{jn9t__3y4Cg%AmBp{)$L{Q^QS&I( zx9AD!<1FcXGYoNaIr6783+>%n5FH&umKy3;9nQB{{hW39O5;y@;%s}lDzh#d6TtO% zWG-PkEHC+isWWy=mRNPy)4%CjjarfVt;Zzt5#Vhosc_M}K_D2G7kL$G;DUvE`fT`7 zm6;liu3-0_rQ`|u-mSBj>1GN?^r)f&M<$zMxPl6b(r-mf3Z}uS&pQi@pA%@s|H4$; zN#*&U8*O?MVb!2+w)Ge$qIo9a5n*#v)f_Q|&PJD}&!tH*s}aTR7jT@xcXLex>A-IJlvd5|*2D8P+}= zf&Xf@D!u3F?;}W6MHvB}`A&4`wAiY$<6C z5qn-p>8?9-@E)>4%BACsabAWs2-CakS#pcetk?v2EHn*G~|!-Q)*s= zKA;Zovl_BA=ZKPNDy|I-yyKfoyjg z=Y3?7rNMVfo*2swHz(DPupfy+Q6@0TeGhcLxi(fa|%h9U!eutws;DvB? z7+v)XnAf%R(5=u0=;OZ29Wbd`l-C>gL58hb!}M!0Ch>aDoq?#BO&4tL@aL}MnvcgO z)K&J0emfTu?g`gI!JC(>4W+gxS$B1?>hxSKyi8UERB{5k5(y{d5?^F~57=zF$@pNY zeU3DM{ys^y1^wVKaug0*F}Uhx@^qdqk!PDXb_o%mRHY8dL{ykyYP(hPqev?#c%wOB zlz`_poHNUBHamD21UB$QLOV=mQ4UZj_U7B7z>kxd2%9DXtZQ{`>Wc_$YDrwYIqdBX zOc55Lr=rrQhQRNmDu_r}8{X>y$8&QQirq0;_&KHG#*PKgN_Y@7C-)bQ2CoHWMVT2U zF5*1TmB^s6>H%Wiu&Iue#?l>?=;_F-`rLL~4AQml?&^NJ9j4-^Le$U)utF^%fi&IU5Tp!kK?~Z!CdLUnUz> zOULCqd%mdC!Y~$uMd#tqzu@iu;x)p{AQuEKbVU;c&TGVJzL;USPHb!Cbtali-j*!~ z2U|=m9Qxj5q(akE8@rYH$J#0f@&hs4S7k42w69EMe81u=>a^ zc^6KVyYu1}bQLj{d}JTcRdK$L)|>~f6#agmy+~w`X2+I?Ohr5ay(7U+9gBXE{z_%a zx{{5EloQ)`mUE~~)aEF}u$A>#p70;U!nZmv!jGtL3o`GP?C&=YkUtz23K;+$%<0 zr!hAP612nS5X?5ALiW`z$E(LjKU3YSv2sJ{5U0|CdDarrBt-g|&1uI_rJovAy9iu? zhi`=Um;&PegJ#koEjN=#3+;>EF+Pis4z6loM}*%>|nm89Cen@L|>9jdo#Od<+q3 zdU28#6EX0jMNIe{$gMvI53}BsaKjjH&5h)OKrZ#;18~Cb(&&@GUwIKI~QPKov`Mn_^t$9 z+b4dq;-RD%pxsXU!?~|-H6X71sE&~F=bqbiGEym(OslA?Fwsg+5yc@(hXcRlzc9=n znE+QKx8q0hBtjPmn9c=sXToTh7R&MGb~vD0*T?1&6&guh6#-?-HnUoeJ1XxynD;V^da+Ty!Rk`73j&5*GZ1pQF@cJbBrd0xf`qjG10|}h;k35M;ets|oYM&x2Yw=w-EPaFy zIq;o;`g+-13SKCq3VPNs0(cAN7YYM;MdxwdtZ&d*{3bLeU$(gd-FFrjl2sH_p@=Cx z0@%ZF3j$p5-k3jF$*7Tht7V7~Y)RrtIps9iAjZ@w6E;XwY0`1#nrTxtE8Nqu%2e(G zXv}VY1O(d2&9_sc$oYo>{V$8pq}K67cU?&tbX9$zp7X;rvo{kA&JrrXsYdSEMr>;U%H`E_j zhS$K&mH35;MvGi5beL*ia=$j3guo@VX{EOTgJGsWm($Og2kqv@O3OHQsxRbOt|7nZ zJ;d_3z@!Rx3OE>0GM%sGeR+U6lV<%K)nNmus9W9-BL0wI|G^hozg;WmJQ!a*jet&~ z1|P+It?dQRqVA-9fSd)brE$RHi3{!a@rfft`aS3AEc0LKJ;A8+SCEUHC<3W}7Bvy_ zQgh`ZFpoE(#U*7>3{of_P^~c;XAH7br}$OFD;eiFa&n_!0!)|BQUCW)RFBpopy2E* z&n4U=I!!Sc@1_ya@Uf@Uy5*CJyw>cunW? z#4L+C=pLUpmxZf4%`H$yf)s7BSWVa!kWMEv`B3uj>*uJ?t!S=go(27I4?DfXv8!_$ zlCO$F=cU5R>t`Dn>2G_I99qy?vw{{+qq_{d1f*DZZteV#+ufv<3 ziN9OGd=tDasP`e`4ZL!as;qG|uk*3)a@qo_)Px0lVHwuAdNbFM#PFx?z}UvfRwZGc zSiRJ@Ux=95dP^p7=x)Qp3k@iHQEqm`=v2KW@9#d4k)I!(MafI>V%BBE^vd3$K|gb) zbnXn@gy$q!wZl#kctO=U)U=eMz^u@w&RzG%8U>vLRsDGWLLR^0=r`XAGC)kNb80@=I;9OJ*0tpA%ix=E$~#$2!~MB1;cCN{#R z2m2rhunyU-5X6(d(Se4u4Nc|^4?Ar?n7@N@21)yQ;U*0!)0THFiC-bK#~A6!<;)4m zL{}CGm7jw%=f8pG-*p+n)5-VD{{X?yl3U zaq4NCP_DOV^>)ZHbOoMrxXVg?=KbSjgx<#jM^2RbO0V_V)?q8y8!dYVcP|BG;dV|+WeNG#nG=FA!1#>ihfI}e1IQ^sf0@h5mpwXgCTA= zs+>35Z@{5_cHoytp8gxBshlq;Dd{&{G0fp|qf&pEpNl!}s%=tTK)Jkd>WhXnfBTV; zw~iYfziEJjA{X^~u7@-yxODTji8gp_qk5M8R0+z)+T>4L^_3zkQ}>G_n=X9OJMMfd zESQ8=rqqV6V*(}gVz|BEM1bXIKdn{c@)7t(G69`SFGmt>hF&+p%3_ij3M%uqptrxl znzrLRV9m0m{HDbera%VTSG8XFuixXk@#+tbRYzPL;2oB4`G$SgZ@Hv(;@@L^^yym7 zW#t6c!3o~)KCt>E&1^{Nyg9sx>x9D4Z!-BfMWcrvc#n6M_`QLrRn1}6eyXShqV?#b z4vQd$G~*ThgsDo;;-?s6LT7qdGxSE;>-I%`Nq9x9ck^mb;BhpS=2$rbnqrwOWMzVl z(5{QTKWzK)?ad1nwuh2670!kSFFn+nSLcQACZTI_aI;g$daJz*DBDzjI7i_XRA*9f z%6l|k#U#~nf3!bVQ1cU4kEThA+VX&kI&}10GFC>)exJ21MgEwUnTb012dZXsk~4oA zHxO3hkEz`&UH$H|U>=WNY_WW-{;~+)>5`65NxPj0KsdJ7>FHH`PtRmiK0vL`DH`;- zuwSCCqQt}O{o7#9>1Rn2X=s+0B+)}sR@E&;eDH$oJM;^f+kxchLkuG%>z*i+yDs+! z^oY0tVpoiwDd}M{I^t>Ep38^nP`-7mz~a|;L&TpunPBnp;a?=Ge-(^#y!?xU<9HFC ztc6mQ8C`1(O4_!!RhW6;uQi?HB&LX3Kw#MiGZGL{oR~FAy>7nT2P;due&~Tukxeio z%Mx;>wHoN50m8bCW)Vo;!DBOJJbG%$IE6oGSe?nH<{ z(WtsisWh}->cDX!D2`>_%?UqGMBe`BH2xf*g2AuewZR%!OvHt7DXFl$nfW-Gl#vIx$1Tx3ZIn%W!XrNA zkKmXQ2{=K@t#heQ&xi#=c~rvfbR!vm-OsvGnTv$Fw+ftw0_Q zJ?&|VV%`@rl)%HRh)8ql@}`@3H3Div7{1H1s{oTL$Xy88HNi4QY(ay_Ma)ae@C`WX zhVUWCUm%*c_xPA%C|1K&$+V3C7M3h?mfn>f!eI92_+ zA}l#l5@)=@w+XF4^4xZeir4wxcZ(}|J3*C@_lYhX0iJz%2lf?0ts|SCoxQl~y+eSp zK`MLGI$Dclv_~vSP*1*l)gC&bNI~c@4VyN?Ox~$y8T|-|niYLx_!y@W{enwyAl-yL z!7j&iuiBA`2KEA==geEs@|R9UgjJw>vXypSxE&&oF?V8ZX?7LKIGx#&1RlHjcY0ls z2-#txk)=f)(TiYC==IGO{9(0UKL()Jb(GH1wPy!uLRZUSf`Lao#*^mDaLS>GN&C(j zwZJ6#X&GO43_c)AFKAle&~O@X-bHT7;a`}Ge$(l5lE3Nnn&6H@f^#(DYwuTt$evS) z+iOE1$ZjrtQMGw+*4nWh0hW1$2&6Hu{y_*P!ODg=3BW3t#RYgs;(Vc3cOv@5hh7yp z+zAPP{pQfiaJO@7+w+ChXjPh+H|fUMO(yp~%!+J&RckKw_U@Cch}J;4UH7LqEnbV{ zAem*4@yZgP7vM_T^-C!P^!%IjAkTY3LD#qkJsOs~d72e&uA@TX4(X0IG?jb@)a?iyQefq86ijoOkv_J5^i5$m(ujPG#`8-0AT`=1c$w|mdrsX7~1w#n~U}=cz|9WK@fI8&rgN|jrwSjEFNlGFtJ?O|6TrvUrz2@v6 zV9I|07MJ?teZuj0S7N}ZH#B-XUr8Q0S)QX zBcR+nT+@jTPDX>OivZeuX5w5$fRO_Bl@)aVW&}>S{^;%7H_r`Tp<_jw*O><-DBOuW zVbu>pvX)<>-sToyPlH_Et|33)!IeYI2*c}vcpO?58i}i_4lEum91Q%G`H+C+Dm)=W z={u77wt<&GKVyMj7P|tmk^hh`Xv_kge%p^FExz*@-OW;2wR`w1Z`Df1cihQTW^8HM zb9V%~zlTl}ppTpzo|A=K1l`b^M{$g%&=1=Z5Akk9q)&C}ups`nRu5TgF$ADRF`9Ct zEUa{f(@b03hM#^WtV0W-dz#ia<*nRTw%IeeY< zHhBkpya`HGsUj{OYM~9VUhx9H1+uy;h5`*Ar*#7AoXU{!bGpbk_Zlk98}Giv6>oZF zy%h1O{>dG8svsTxh0_iY%zOEIOhb`~QX|0ia}zn_&pqLC$&0w#guscK_bgZJu5La= z$K$AREgRyTK%hdbqitk!R-u3&j%&_&WC;zDH=s2G*4OBdD&UN31LMWNI4+l8hwv`0oL!dF6QEW zXgP7MF7QqPJVfZ(YVEF#Rm}oG>%1QLf`T2diOr&1Ruh)VPCaAlGGzjNo)88X+GW!I z!+`#m#m|1Qp2W!K{adKAu*l}7GSpkCLJ~g+#EaIZA64N1WM`4h1t(nnLA2K&Hcm6! z!5r+XLDxGxhd>~)0Uu1Qw8_9lT zkZX27?Q&E zL3f~Q!t%FwUx7fm9jP3z=6>H;(|@*PjO{e&J&$+NjRgPuAdtQ$nPi zF&94x5vMT;=Y{Js4XW#J|6D;%ArPH>iLkTeenL$#C5ZjXH|E*g)8-ET`S@DVw>y7Y zbr3;qon(A2v{Y7K`Bjy6bX@ViVQT;R?wgLcq&R;!WJKGonybvfq!N#ZEnVpf0571j zv(o=G7nk-(u_9~HIr;iNZ|SGATfx>h;{pDuHKJ`}7Xh2vM^!;z6d&;zfcGQTBxOYb zdg=Y+YkjY&+)y0yOX)YC@X#YuOYPsn5aDL4mu5lyxF-P{!l4UXX*?ZABD;-pvu*$U ze2f1qBoJ&+GQxeQ8I@V&p-i9mM?7V@6qPZ*`#h(0_3OV&#Q%9X-O>R|Kp)>f*f@_` zKy`JNbvm_r>Nm(1);(ANfw--!C1s8cT0=QKzxa{vzf`T2^dH*(PPC6xJq41*DIvw# zg{RapjK(>=mD&*nP-T74Gp)-xENN-7x0`+d%Is%#nYAPC7F=l>QGp1I-+cypmYmB2 zrCK0Mc5R2fwFoRuF$QG&OqC%ENo*99IO`Fz2{rbYxM#F01jzON7XnOvzyTYF9=NbT zehS1m&YnnYbbbm5(Qc&R;Th1PgsW^%emdPOs{Cy<#lHvupY+(}1`<_Z%T1iAoQ}1C8?Xv-4c*u5E~eYuDF6@421025&Cem+=$|^@X!z5QCU@MwB)p2J>jwWdcVYz)OC{n)eohm>l`qFq{n^Y0S){6n@%;0MzUDr{xQY{j?hgMI>(5|>lR&lmUPfzP!I^JJcvK{`yp zRjE+d8QfM5Vbp$g|2Ql!Zys<13MuHMWwNH65e~Ad%iZA9pj{(5cxrmCtV71wLb&5h zXsyVqQn>cnb0G2t1Q@Xgec1dC-Qt-}GvCDUpL>3C=4T7>Gga)r%OW_m#vTKay5>hf zIIwPNdZ{nV{V;1{d%AkUeS7x?Zb z&_nP~jd#9>CAM0n{%MwTD%HrB2Z`v3gbjSNTNRLaSc>dGdW@7p-&VZ)>zdUVs)&cs zmOLQ%nuDB~vA$H>5iy`kApH^z5r_ZXHp{SXZ$X9SxZs6XztOz$*7~i_6;=w@0BHvn zYfz&`H*tQeb0F*Sp2HiUF*T|AU~>%lAY8<#b05VQ;t?YAr|E0?H-LObfzGWWh(=)` zcHuPbzZhH0yS9HQFC&mc(57tUk7@YF1EE#(gYc=BTXi(X8|2vhsd z9}~BH;SMOfk%YpCg7}rcUqB!6Q8#wvsQ2h}Pm&vWQ2MXe_p+8!kqeUV~U?fE<25G!vP0d(&JxLaBaGvp`9g)9vIr!dz zF3d6&nLO$cEdL>wCmLQ*ClFsr)A|?IND?tC4*Ap7zhj;Mr8WE)!0GQ}{P)5$sh@NpF{%@w>B z=bNu_LEC(HO;;JcSvMZg`C9M(r=rgk}T?YQUK0}IDPcTzMFZ7}y z?x7T|VP82_ic%hwbP+TbV9D>`0+)eTHh=o%#rn!T(_u&F<%O?A^}Vyt{IgLiz{n_K z7~{%D0y~^4CLARTuXp8wKsAo zaCH}ePpqi7IpCVit0&Cmu4%Ya4L*WSG8>k20dOGr%{kCo*iLrQmvaW=V}|sUfTKk0 z#YcZuU)*o)5dOP}{;5#?MD}km_FtgU|Lq7dO0;8vtO0kJp8E`jJ~ zoJuSIKgjRvMOo?x)-Ukn0%jOLlU1J$)~LsGEl=I6cMSuEIC`>LJKnthgB!!IBHp8G zM+M$Q?im0ZeBmLu!W}Q)?9?;<$#%y_Ks2f}=uedfl&>OmEh&fIqdS;8xQp?a_7fER zjV6?}QsB2UXH+}As)x$XHdh`o#p0t>ULBy!4zbdI;ayQ*i`(#9gK(wYc(n4%zgb); z{>NlGWF;pTFvs5qBWJum7`g`bhP=#l(LBibTjwP&)H?~#MHQW0SwOk<>};WH4~!8a zy#eAwi?C}}Y3%_j|{~%$9gQ;8>e^^efn`qk!edH4;QjMm)%pYqF|GZtA0HBY9o8MrTZaj~m4Cz@2 zoOQ8+Zl(GU%%1Q!m?!5MkT+bc6^6@raV@3;wz}gmkE%UTsAeReCu_O{)J_46$y}*e zt5^bh!~q)DRe;6wT0w_Pe#4I6bB2zH42Le&D20BhQ2_nyULMTwvqvVPYssPI7@7Ab z23Z$@`9k))r3>RK4+(=hN(7WwKD2I+=lyB@dPclt>-7J#34=;y5!inNe|o@7wbmK7 z@n-ce+b)El2aFXiH9@zzP9373Wy8fjQLCtVLBiqC)_3pkcD^B?$E z-=z2-e1Y=E% zDM~884d3B9nYs^ORake2%4Y(R+s_Io^-z*i0jKF6Ie#d#)UgAK#g`mAQ^xm}Q1HW^ zbyT`QT78<`3?yhj>+a?yqHmfZP1 zM55U4noIyEN0~ zhc%uNp(wV0Qj20RwMT^-9#Og`SH*sG?*8uot^eF`oY`c5b`P3fs0ejm$S0@iYjcym zRcnz(oJif}`+e;8v|O~t`@@4U8spCNL-ym1>DZn9U^$XUO#W>y;eH?8SQQ!vv9I?- zY-Zb-L$W#G;W7Sr6|W2aMZLAa8#O<+Cg|HyDanN^pnQGzM}xJVQsKR0j6F1rekxUkPBOL&E{O26Bgi>cx8^xyGpN!U^A$;I55nYjk`~`WbMlqL;~n^} z9d3AIkDJ%cx085Ww_+`M$`jKobd!?yDSSvabr-aD3#Gq4{i+0|`l17EWmXT;S_$Q= zs~BpNVhDebb*65H5wd~vH#G|XnQtV!&SMK3Z;-Nv@|JgN#jXf4WQ{M$G3$y|=I4?Z zdMU=sg}>)^eRJI0+UQ=^??;kN0ROit^7*^zCgRd!yvE51QxQ2W^SnBR#p(ZS=@?dveZ%}!5| z>%vA};3TLaLHs6*F_Z3^BZ+T)9G zS@|ulZSTFnh!l5uWY{=wWYUmba>@OCUfW%07K*8F-Fdut)aKLYH=U|e+~tXRdCpWC zgolV6!OhX~7Q@W~jQLW-(5h%b8uoBy$WFHAJpV{`%&DRqrs|nyW}b@J>Y6xmnZXc{ zBgO%EpCkK?e#C7^lEG6!dP8#F8t9mgT9WbgmP~V;l8>`c>l%3>Z!DK%rNVLt&+4rX zUiD11;JI}fa%Xk=S?+R&$2G$e(lS@<)HFf{&Ovf=-P?J}_23o9&ILGLiik+-4E+aa ziL8_k(iQKY>St)Pm1k=&rdldza);@0Zrz{61sW1ONu*IM_UIQ0GTYM^Bxt@@u#qWS zu4@erV{B3k2(gKaKRW*rT6E1YYBS16J<~T0g&dT@O89cT(Vt<*q#|TzpLF@mdaS`fxA4*_ zAuwQQ@Rd7RInymcHOon9gP-RLy5*1X-c8BL1ES$Tkeyy>?g#kcCyG7;DVYqc@GYuF zJ6UDH2&rb7aE?B1C&>87lCGWksOc5f6az0r2;BkunJ4yKw+7I?xt{WCi6KlhPv5*{ z7b^RtfVyriAKV;RwjEsdP4OyTK~td0+_9iVg|{3j_CN-vPdg%RqidJl!GjSu&cvyG zSA3@7>nLaZg$`vWAk#nzwVSAaC2Z~%`(yHz$Jzy3T2*@Wu~!QEtb3n|sDG_>JYC7^ zO{wI*BEcT*61O!6S${B>0JW23A5oUDqOdQ2`ZE&vRt_Rc`3(ASv@wh$Vh}Ic!Z)DP zh&G7I`L3!tPZM9pv>U=h(SKzmJ)?KCP|!t|XyHgZD5M9Nt;}8yZ+Xw#viXN%vJxIq z>>obN(HiHpZXYrEu_Rd{=t6S+kSwq$DUy90O;`S%10XsBH7udwJFH2j;p1QUTGJ3p z)1_~xX=)YEP$Q_Lch@vi(|vz6qZjFiYp~v`E539wU}*@NDWRQzoa5*@5SB3Xma$+m zjAPRrRl098r?}O>bd2Q-(^1b{vSzI2HnQExWVj!1h`y&`!w*Jgq-@ObgrzNS$b<@B zbt#bWSjbOl6F_LbrOgd1#3uzNGs6aoZ5H$UyyxDP3R0-&aH`b^CHmWjBoyEU>E$G2!^k|# zJZ(6!yLPU(h)NS<6NQl+KOC!9R#r;&G6M4y$I2}8e@-pgi!GvhZPDNBV!R>Sh0~XJ zA#hqSH*5~cJ5EK?l@7|eCndLf1QF<%cpZb9+E>9|!Hv&79VVmu<|Ar-!G?)uQVk^~QqmM{)mVcfD}viJHxGHgAv z)Z04#N#g4v8s}&oibc^-@Z5FDClof1s<_3p&P2CVFEaJEk$MwmL#wJn)HKpm-iDES zZ60B1lkRSKw#4eYBr1$nm3FN9-_^O`Wfxe;hbsmU4qaQ!#O3UlCPKGc+ zCKr9)-Nj>|pDtx5 z$d<{_&SW@@Ro6}{%r*U8ii_vac>OB{$5`JcsWV^6`DA7UB=-C1U~0|R%zyfwnRv`R zMwKeU2C=H zXArKND@lj!v`4f>UZ&gbuG&1O_>wpM1)9w(=z~g;YS52gq_-{zZ_VVW(5KfjdmojH ztFbt%vOW3uV5@OaA9#1fM{+NRu6`1)M4I*$$SXGUPrhfPk5oMxs<#%0iLK)wM6?gE z^bZ%#67Fhb<~w+?(p35R^i|yO%&1|OgHp*|r*eY0szt@|Uou0FZXJK4>OU4>f<|9a6 zxZIOU+j4$YNV4_f`Jj7I(bLdJ_x5_fUT(13xu%jy;4NR?iq5%5-n!+fobpAx`<=^d zf5uEEAH>+6{X%if3Vk$A_v6&i{xmm~w&HSF*3BGp&1;Y+5xqs^tDhb6Dy^6HuB;B~ z+kLUHcd!^8i|J>v==rU72ATQhoe6i>Yt!!FrxoOYiIC~NTC^P8IogAyE`w*P6<+fm z3HK17wk_}J;1VV=*Vh)=UiMDM)$M9S?c&?L1of`?M1YO`uRKxGv1@jI`@nW+9v4hI zq8&YXJf%q7nq2QlAssB!5D3}F8ZwM-A|W;frfs40&C3@Sm^-}nr&v5ID*|7N zD@vqO2E>#jFFrRkt?_AxZMC$gt3`X~hS5ckipUgq<%w z3(!ldSRP^T`$D#lJ~6Z1xEZut?8588r_&)Yp6-9;AgoCoFq_YN> zm;{3|^;N-6o=v7#HeXkZdcS9w6!gA)so#$!kuH_4gtuBuf|K5_aON$-+GQmpY=4?a zIy{>X_d2JR=qp*5`?c&R2e_2JjHy{UYK2O}?5?oKlxo504xu3oD2vvz#*nWt_y z{_Z=mm%5%|eV)|!tw{72J(@Nq^BWyFKu5nVN%f@+O!G?f_1Eo9jBl^qJ^SihGW~}7 zDTWSO?z^UM#z{ExUT$(erJ#tcCs`A`v^O= zXQdSah5_bnEiPX2>w*nBr97Fz6)B+D-@yTMNK#TnrBK=GyC2JnLSAWOA;Ywt%C-A4 zx^^?e@|j(#rQdhDOTGu%4Xe%-N0&huKiB_`A!PMt$*MbL+$E#n5hjtuu6DjZOYY3J z60GomgK9#)GQU?`A7l}DV##vFIwaN?Me`H@Hzx@cy(c8VN#NOWCPT?Y5AT-r&YJr- zldR*L=)O&8(a9zX^>mZ3GB3EF{`T!es7~`gI00ud#CS6H|KJt=2T_Zjbh)5|oz)S6 zOF#uKtS1$0&37d$e3Us!>Az2|u%-t7{}2B@Uq2*@1rg`Sa6M>qGwt#XG$+;}N_uY- zUY2`OjfKfsGhtOz5(yVf6L{p|UZZ1|Ur>9rsbnRw-$o->H3*j`9^BApn%Q5;4vyu0 zGKHVbnEJH>oeb-tN%ohMOh$T@g&RHZj2$i&TJeoG>=6XQEKk*a2RbsYHHe} z#a;5Qu03l`4=Vzc!oq0YTJ)g#4p6oEW>Zgx>p;H1ttR!koh6!P0kj+`gHU;krI^JC zD%r&toMTKOSzKq{wD2-7S2vT-dHHNE zy1nE9B1S{D>huZkWD3no!N$$+xomH63ELN5ELMi3XlBNDuwSGXbxg(ovh=LH|+UkX|2M3HM5Ju(d^cHW!1;CrCu9KEXDTnCixlU z6w&;3LCk5e$~xQdmxJl;_xT*7t?haA?EEiJoCATbX=jBP6NSqZcnR@QIdlW~_;bz8 z_iuHB=jvtU?3)!O^u!o5pr(X$*6YJ|!N#s}>bWe#&TKp{I9?yH@C*w4aQOHEY@9Mz zK*Kk?+d$qo5K)8~ZpSR$5xz>x&Bc(YaqCga#`gzaUV&HIMTtfaGKcAbfY=UmXPDtR z{sjZOzU|5(*MvZ~=e~B2J{Hj$i#d2dx<}SW9)IP2qUHUuOBY$R4UGna-wuP5_ML*_ z^dA>~S9rY_hYj@a@X}+=*Xdz~%8Qb#w8Y-?yuv+g2Zjc;1Kalt8fD837QX5&Z~)dbjq|(3L9Yf` zc6>GwVb@2cN%xgjej#%Yh$dRpy#y!e(R-SFklEYxT$wNR5)yh0t>!C%9EtQYi)m(x zJW_0KQ|1-!RJH!J&CSfB9GI-T)w_8t!atDo_%p|qN63eKDdlUM1A^CCkeuXZ?Af2^ zexUo9jG}bx29z1x&s?<h@aDAY9RGY|@91nk-W(9rz1mpyAeP9woLwg5#3fmWz06iiGwPb$6# z`W>w;cKsc|1?^D%j_H2JJU@Zapdm3GyI5bq_H8Znq@OIj{YFLZEEpo~4_HSj;P6?E ze5Ph@Z;p#ySEIBD_HkENeDp` zf@>fI8V}OA1cF23ZUF)`?(PtR1!$~s5AN=s;ElUWaEIUyx5?h;p4oHuoSFMP=hLiD zEzhb|y;jvLzxUr&aElN82O37fodf?90ne+M3VNM~K3;pBpLRu0<5=CT$?LI;dwZQn zu#)d9n)>jy_}F@8FzJwzvoAdE8#!%k?C5*!taPbR9x;*C#=n-=D@-mcJzTuqyqhd< zR9Lz@+dj3pZ7WNAyV!J7y4-huJv#0|-u4~7@$B`PO~)7zSsY|fXmoy3b?f}gn?(29 z(CF{yK5#57W)?5lq3p`%cB~OU<3bK!3hhj0dQG8Y(72K<_8!2nr5Az8B#PH4(Bgx| zp^ES|K^0f)jaYQH;tvJW9TPphkES1dPNL7tmRktT>H9ST)WV-1Un$X7ui3b;E9ve} zBz3>R==yqfrh9vOMc?R#6);78>Z%i<_WJ(vEJ7xaxfJbV9DTJ0#=LkTyJJLXfJDx? zwL%7xWJmIpRV4t&##zM8QgDv_mBY)x0(N!w9YKpKvkM|ME*|zKH?NWH~ zTbFmMemZ5jk+o!VCM>(QODStbH|BY^f46o6I>7R^mn4t=WjMfDjWnVhQ%D%mO-v2>O;-@Qx)n&_*o ziM6krrWE6O~1q`&g9oC=kg?N5uQL83SZg13C%M>_wPK zbYsdWdkK%DRx@d@g_$|%OD6;uL&qbwjVTJ%jR75OWQ)onHG#KS>Ac;4_Se7krUsSEEuvebUN|}x-?9a1<$j0!<)mnGj-aHF0qoDudSpcZ{i$EPmbik^K47vXELrEbQ- zK|_k)Heb90;X^~p?Jv-l{o&A+15f;qFrl7g)Mbh|cvRj`s+YwbkAu)%Wff3M@9@{` zBOv~#*{7|B{j+!o_ci}468=BV^3K=Govb3*q+V-&*9C<(XRH+f$o|lYY#?biI~Fc>PgN-g}bJ?axM=vFzUx zDEpL>sSv>{Y;_->^WT2yk13y-aJA@*;0ue4YRCyFJ?@Q@Lue9mIlIqiC6H;wP2(e8|1%=L z-Im!|RyPSkCbsK1zt;C;ZPc4>+doT(2AoS|##DDtrna}QTsv7(Na?EC#_h6y9yYF` zV@OSiy!4BXbky(Z&9c#qjWq$ka5|*QeDUr6(13PEh;Cm1dou3wVjcs(*?sk{sO;yx z{1M=yfvZ7NB z8ZZ2;qN`{m{wiA;D15tOvca`C5f9bR`B9iXu_rHR+F~_097^M3W4#-t+U2L^H?7yY zUHnSTbTZ3ha?M+zFdj@Qg_k5A(s<(H@Rjp}%A(;Ma-7$igo#Oo8l%T_$7vPLdDM-8 z)veN9(N)V{P}j!|oa8-K%wnLnuA8I%YCW3affjy0EclEoWDI9Rfxm@AW9c0-Gef}n zJ8Ws?;ojH1E>`o5N~R%bYyn}vs&*H<4BbyS%et((l{e>SO#&Gb~%VL!!v5 zP!JmJ;0A~v{2DFXWCjrz;;xMRW?>@ruJ%q z&A^!hLE8u^KrN6scHc}jx@3gDTa*V;IHPNr7;Fv|#?g}&;hO0rpJ$G(%wporx#-V= zXDry~MK{A#t(tHK<3H9*%evS2F$R}QeeJ{un5)jES7@y)-B*a*Y6_Sh^yt;@=(mk%0s3pB7Y`I6JQk1*kC|1>-$HP?r{}a(=Ro(y+3*vuLrU2o^u>3 zPmYVmUpbrmnZWh#+o~n6xM=FAI1{;QTj$XzEcX*3sS==@LOEH{z`3e&{`Vita0c5l zD|hD18X^t`qoy)Y^Dtd?wy#N{|L7!wWgH%^7CbLv<@}o$(KW_F>~+)A>z88vL@n9F zZyM)OTSBZluL@};-k6A9;3bg)3zvs^HS-zg^_DP)heTqi-K*EMq;R#)-U_;wYUvP@ zidOu<4&D!GCv!RDUdoXrZicibYg1q+y0QhFv)CC+cn@MH1bR+S9+`;W^^@(N(4A#V zXO6sYAc=QVDr1WF5nHS0C=P}HtfWnxxfrYwmtDU_+D!8iZGd&0!N@|bCL3+? z8rp(I@?mIsa_lF}-wzVZZsGX;&kKKQ~g)29uX+tA(RQ^(f&3yM7 zz`zyTscGmNxPlNBUM)pW-W^lI!f<#4j zR82bo+GGFoIo35o*iXCTVOV7R(v(zF6~^WfyuFGxn5K2)S###8w{+)uY@`-W&=3qr z{2ESD{-?$ub&hsciYbteo#*s%9r)t+x3M=OQtMoMO54{T2Q0h8xjA0GO?Vt5B5)qS zHD18oS!kdW?Woub!kzJ!qzOR8O(K<&FEwbBFc+1xYr{Cd(BckYTGOz~0l|TK0NC zab=uxH+fg%kWwH=5yEcRkbg{NY%HJ%crsA4mOw0s`QfbS2#0*`OTZ?P8*}Sio`a(V zU3EROw1}^G9g)%=Pi}h;G9A0nNXiar0zLYiv38pJs)Y-^X;>6%276j^j`FJ)-7=PJ z0qx)2*8-!YI+6H#W9ey38|XX*g)>lB-??=;1y{dS0*r|YFk;^xt>{lkgrx)-pDo!<{G1(npXQAHc&HP6 z8Y>kM(i$A3=H+y1=dfZ9gcu{!sS5#)e`M3z)5WlgvWE4MEbl$bH}Mh*J=R@q2;Y$` z6fTlO6QO`8ndav8W3Ig}!J9R^KHOa^SP|rVK#LA)1u?Y)F zpi&L2hQ{6G;A-Jpwajq?Nr;fX*h84{;PlD;`8m4BSexz*=MGQuw#X^Ok-UPBoKNHT zzOB*lrd7u~aaxMBOh&b2^YqwbE3WJJjEM0CqEVP(E-=$q8X*);vfx&UWX0a?Js;@X zkI^);88sU*7F2gGBN|7RG5Uwv0Q7|q+CIv~EC)TV$%jn(&c1x}<_+5OiL;K7?HKLb z1ek>Dtm784yLRNPkScPItIg?X_wAgq4`&Zv{WNC_L52Wf$#(G4&{z5uFB8@{n{`O% zuu(eu3>j_pwd@B_w+^SbAiD;Myvr|Lw&B-iwjBdC6cj&YE8GH{>xMQQJ&o}EhH$^O zWE}gx8?F^Q$jQ*Og3N6N^81BVSOqu-{c*t?x#SK7>?FaRb?u9PMg^aq@W8(hDPB@y zwj^~dSkrh9eRFEvg?36PB7A*?c3>SvHfoTfPG&QCxKFi%q1r9f{ma#zTe|rG>^>yz zPW{EWPSrxb|7zfpYAx}=!6CVin&$Zx$=&Pa#3`z1*+e?Fqp60ArFq8-F3uqc3!?`~ zY2$o~mTJ2j)@s-6ErtY5FJ>9`u6K@7ie;euhaV%xYJgrJ*DU6-9x-`?)A84Rr+)-81($dGrvzjQu*?T>vax<%UnEohYpqujK8#~c!k zJeiSS^Na1W_@Ew;WmX|ipB(teY_&OGebES?0 z)vP?p4@}&-RDdFZiB1oh_=~2al9x>mmoWoECSZyCs!1ISI_wCcT8pY5Dw{`CNV#f#V=2nqJ6 zWX80|gt#TEai}@M_NRdf9_=|Pe4s)oBi+wi38p_*D~M^PkPc@wp_8?t8% zN+v^UbhEZjVJG9j-obuZ(22K3cFz(otUOzMlDVmem{LkG>?n{bm(We-#8MlB8)Sl4ff@(umlTGAx06gvS?(WHomJ@|NXJ*RSEq{+jpjq zsiD-$zoQHN^-fJvwgq%EIBe8tI^bds<;}Tdg42w|771Rn58ku_>|X^GOkLg>GKM2c z74RzcBdifBMBElN?9)}Vf1K^Q3QlGJHHT^_rv%EqtS@{=S-L)xoo3+fYl%Gl+X@+S z`Q9k_V4PE4clm{k_$L*-Kd))xXbi%6p<_C#Yq<@&GBzEP z_YAYEGNQTf(RDz@aspDilEEzw!r0ra%*3G+!Ws(tea((?G4=%OVHnFagCuUZ7ctW6 zAFELsxn z?T|E(WRozT!Pu7sUF;+Fa#96b@Xj?PtZA_7o*ACAcEh2fMuZd@rUtok#)m7;@dKge z0|U-FGZFl6OgX!L%Lh)2&ivn6@MM4-V=^(GTTwQl;yixI*PKc1P|)=vmi zr?%`S6D4BV2~biNRnk`#E+Jc~n24oa_2zTiq#5%9#Z zN!cBwgA;wBPtN>xQbSJXz$X~|B?9u`)9F9J@RwixjGr1;fLG5DehRVG#kjg&tqnfj zEI-oR-OrajT8NP7J*>fN%#V(@MgzgEP`AsoomtJx%acW2=HTDV%;fTFf$6$w=^yV~ z_{UB|6S|JlyG0`O9=6uS1(tj+2W`CTOBjzM1U*laZCaZiVfPmb1+B%I1HRGj>>(?{}3Sd-z? z3_Q~1^y^)V_knM?P`({Az^o^?qMeOmCeiO;)PO~C^BXMAnD=MA%zOG)VMp904{X1( zr2>@VUvHZi%*q*+kd(y)@Jip8+7TKp;-bx{D;K>ywt?UR>vfKmPHLzsFN*nI-t zx3>(57wUIcdb38gKD`K}&q*XPK}9BV>{IdnS|*UYYm4~XTi;(f1!m4K-z*T?C%<*>n9Asob$ zEDpR5py-N9vil=*jsZjoNTD$P__2kOPOtUW{W6A}3$=>H3<33&xyyqI*dc~Cj=vVq ztk>Pn|8V&$YD*_+XN8CO(#Y!V9MV2{`s#X5`v4mA8MFH^InZ{9ITQwQw6{IZs;=*j@L8}unfODoGi0$dKga? z^P^WQqZDr~XeH$U1qSk-6t%KQL(yI=P+s<-P2_K0pJ_io9Z@_R3o z8WsevR~xDj;>=+>Wf+>(5~%2J$XtEC&{HwX#)^eu^Gp%F2V+x`)z#@nK3Z(;�Fq zhcX3sg12=}zrVwb87PNd@2J-)N=9}TN5RDGm_*AywdV{VZHpEVJ+CwXRjj);R9=v!!xd)iX+#ioEuImcae+j|9 zB7XT~jG<4TSY4TOf1&41%A%+OEO{-p99Z*9kr)X^1v#>Hrt8+_ZJ&#MgR#?2eNU^H z!QdWoYVVK85sNWcQJ)qRre%;&_&QI?RZ^nzml(qU z;IuQ6qobOl8cwm!eub_~UF3mNY(w-D9}fd#WTMe4Ht~KIVp1pkd?k*f4L`3vpEW&#?6pH*@j&`@W-7^lLE$mJn9!Wh{~= zMW9gkA5~U;XBZx5Yr%68`owa2V-WyO;13tdTGSLMbR}BimuC%>DDOpP3r+-#P!ce% z8>PZI_0V!@gNj|;DeaWW;41@%C@9aZA`&aej zwV9{Nq%4xsKg{6Np{p$ ztTVxqj5*p=DX}t-9{W>>(Gb$$04Lz@ZNf+*fuU0{wIa}LFWOr}_MuNhx_Q1u+L6`P zo+v9uM&ox+`df8k^2SeZ?v;x?Ez&%qFZkHqIQ&+OpN2KHWe1Agw^eTKFrvHqp4avLLZKPCeclWX29?R9QQJ2;8{5ez)%Ju zl@z%E{0E|E3zo@zS8I@Qq{FNKa;d3Wg0cymd&y)qcy-Bi@XecKRJ^D-!vAfXi`iGy zL)<@009$@b+PC3Iv`>HI|NSFT8#I6sg8_eSJM!OoN*)9NB^h%w(v-m4lLVJaQ~-a! z7(XXCIN2&SsFl}doky|VQ0cY4S?MLp@&^h`>OP%DzFywo+rx9&(TI^90#wYBH>Hxf zbA7Jmm_Fy&2t5N&el}bN*6cCcBJxYP8I$Yx$4D!GsNzxK;q2M@Gs+pJy|>qc8}KQ= z5&ZGUT<*)%c4Htkv7WFoV2^z7E$zM>5Y0>=bHwL48A4CjQ){n3!63iXffoszZVoxN zarxjYL~pizj!yzKSzsCbJaBVS!w19L6%|moE9lP*&2asEW=U|=CF9k>jmI6h|v2e z$n-+t=FZdOq0k7s)TYt`JJO_`=5+npNhbeF10dJLt~2&Rw6ESB^LeUfRa)e5n5fTa z_T59P&*ivPLN?__g}LbITb8j_og4N0HlH75&kSmenMW{=tZf}|kJwfxF?YmF@^?wp z!n#%1C`*l#A9~V7eL^d#-qw{SjeJm>U zuvil#CIX^*I^x8QwT0)Fd&PFTM7YzWCCjwD zU*%BFnBsGQx{t5}E-HL*#bv0Qhl=06DBjwe19k6RGa;W;TOriyKZRjzw27qjZkI8w zpZQRs&iWW6zc2vNkUyQ_(Bt+wN<-kBulL&$aOLFyDyM5$4Hr-5eW=BP0?!j6mo)Vn)hRx0FUbtjh$%f^_cT{TI=TB3`*cvcC{3=#$*Bb6wGc2Rv!z$ix z5gWpVt;#EMwk#G6+s(lhnN6=nWIL79zB-AAxl-35gA{GU2d&1sLN; z>gWm@M%-kpR{U-&09$i(5j`~&2gkr~axx|Rpcy ziLOp)9`SHdq!t9ManVIDHC#dj5|<;4$`R@gKqG`r(3|Th!ZPmspnA03b=7aC} zm#3i%H$VF(cZcy^AH!Zr(sSw^1&F8u#hRsbgHVkF;%pzE{}f1oo8bXeI-<*KR}Vyx z@vqKQ?*95u5(VJyRu?mEtZ$c0zTCF@;PRdz&V|^+umkY`(JXeeNv~7nf(*ZfAlHLh z>fMKf2QSV6X{GzdqKYFZw{9^F9V`}hT{zg#*b3k;>)sW#j_*BMF81XIR6I zb!wxZPEyvmIcF5UifqwFQGFzct}Vbv7Z)$L-F$7H{(@8{+{2 zl-H%-Rg6Jv7XXWIxU9O@x>MLQjCj#faZ_=ll`&JrtYK%X%(# z1pLvnt-AWLyklm*MtOR>%98X)r72VR%k(nVX$6SaQ&W}ZX2L&=fJeN$ zru}q&WGm)nC6y`WJ-+1HE9luT zpEY@nLxxEh5>?uFk!R+ZDpGFS2i_+{WWcU*sUU&{T|FcvF*b_1Ufm zJ=KXv3>0gtZ#SySLfd{}$3~5{wX#mX(%|t5(ZfZFFumjVLd(%@GHs@0-2^DG)x7FK zb>bERdto#0oIJPFbr36)UeSnup`vJcmz3ku>0SbrDgsF^bf^P&rZZyOZU)Cbfvnl( zVG4eCOW9{bC{0Pxo!|iq_2J|^0cPV+PER`+eB`$zuY~11O@_pCqPC+n0k69g<`o<_ z=2~~U_3tkFO*WZ#2W#=-dSyO-VCfKbZksc(0T}p{0Ujf$I%;vhaP@{vWudSS90hDh!k|aackbWsFRzbliI+z?#2uD?OkCoh2Wf^jWe9xYqTOoQJMB zUmZB)w10Eg;$G8o3Y?`dPWqDcWC9mJx#=YIB@>IfuxcHP=YVmX=eS+!Ea-ajo)XDd z7Z*WCHuKBsM_;#ZV}iHlVxa{EN6sK>QOOBfM?$#&#c>3dQTd}-_x}`2=ozgNM05y8 zn_D&y5u#zfvM3|S1LtNR2w&*jJ;Xrj$f(7>N;GtdCy zsh`=bRTibLUWnHH)24{LZELhd!^4|05xmsn=P$OrqHe=ruJF9Gw6-yZ=M!M9X7?&# z00qELPYn;)xR-Y^A|~Z6uR;R0UcR(JZ&zHXXG_ zGnkchmyNtMz@6lJ7*bYPr%w%wflQYL&Rp^)9%3hxfG_Ihx*PgDqm&ND(4}D`s;oQT z^T3ewd0K$Tg{;fo?04vnk7+T#w}xfj9{6s<$2=qSgQR`Bi%Vz3F|Gy;8*)|g)xl$+ z`flyGyd$5I?#3Q%;)Tnxw8;^4w8{K7&vimvpv&bLJVYC2X;-l^y>!XS*WLUQ6;wsy z83d-3Z{D6u*e zWs8N(FY`iDtuHPz7f?HZUn`$-Gm#rSy>V3o8xZwb(8PG7KzHiqYxwU3bgFkR<+N*A zt5#XXVB9v`d(%==(gZ@WD*Juk9e^y3ny7Eep6iUy8kL^*O#--8{wE(4>;J;CDaSyxD5#XZ`NL zLBn#p?sP>N_UCj_%wfGND5aQh?4c!fb0wkVS1^3x!LN$Xzv5*50H>5)utIF&&%^IF zPgr6HP6ChL7HnV+r@N;5GbDO?CV5M1)t6|gD2L}7AkPE0I-BDIi-;aHRyybk1$`Ra zP9;?ZwZH6`fofKk9~4qkIXaV%<;gx{^K1IcBCmN=CKz ztzXWA2nt`8UGZzHB$NN2W}v@ zhjHg|*TGlV*w(E8C-o_IZoA3?=BCiY;JK_%GR#_TP)4j3QCv&U`RyS)v$cT#`y9@J zhU&2KS+h!yV~WK@EuPJ(A+GXf7QK3gyZ0Znx@so}{=nC`aI1_C8SRI-evmwtRG(1S zEBqESvn?11E!f63X6eL0>eUFFt$Pc=DXom+UN2?V+n1~^xNd8x+*j|o!J|VZph=}W zB9nN)XmT*C(wNG|gLc#D2Oy{=_0f_c{C;u8m_ldw?3|UzTy#m*?NS1cR}NESk&lBI z8K@1H!)kk!bmBQgy+($f%*FtJLG zua4|3cEgg6tQ8m?pulUPLvaRpKFZAx14?nIiWSqBll-Bv458>kfQhLu4ireHLhYJF z3&wA7;u*((2+nFHk@}2KEh1t!5i`gcJ_0E2#h%+QI z2^fFZE(&k-FGh2J=x48-xkpF%x>!j9FdW>O2xA%gShge7{E?2=P9OF@QQYk;yBNIB z-C!5r$Pb9#S1Ep5r@U7Rlt|ZcZp%#&2j%R>rq9CZ*0UA z3kvMZX3>)|4rv+>ZpF4EbmK_vBOZ@oFBgfy2+Qp4&j1H&3foQnz*0g-_*qafpMW7) zBs^eQeVtTFUmfP^i^7Mi5CWTFTG9xpWC4t)@0Be7kWm^$R&~un`>u<$II|DwuaBpGBEy?twWMKLApa2uZSxOiZk05|5B| zju-*Tob83_|HyEgf@@eQV{N>Ki{S5DDg!}&=F~omXi209^L!BIuX7S-9jx!-PaL+u16*yaY(TRrzu3zSVR>u!ZMRusEp`Y&Z3pc zC|UkfB4+%Q8hhvnGvQ|VbCcGsFOw^llcy+~l5Au8Hx+L25WcW}>Hm3BFyq;R`P&Ze z6d2#oCIWD1=V+$>#%0_d?fDG^)zP3)931D2U#HQn&SYXi(U84El@?HvI=e+$lXhRF{(R;K` zJD1~U#6J}u>dy11YH_l#*#|#_BI4=r*WlY9WeXdw*r%egZMQm9mr!Jl~Tz9CihwZtzf#pwq6*m*YSVLt%ZB959pDbx7={ zVSUX?^!B}lbP;ym%lKvMw+ByE%eYXy*)OGRH$psaqvV(?SWw2ac@zw+0e#r>dD=wF zlpLb`0u^9m5}tSh6xLt?7#BAd?kFsNwHpf|A_yVa28E{75~6fHbRM8jcYB0 zdOkfD3Sm!2S((5gqvEN$qRrDAAS2%ngry>ir!+xE4aI+ont((VKuQp87b8Rdc&x>- zt@{0mK=(-6_T?mCEc-=I4^)FTcP9(A*{T{pk4_fOaX7T7)U4KV2~T&w0Vp@HZR@L7 zNr&GnXc>BqQpZj55@|=S*Pi4>o5#a<^MY4yza}6Ucvx8y$UDzwzYu!vJ&eLU-)a{spW-q+j$L5FzR>#2| zMOTi<0z$Agz>R_L9WM}gd{DU*wfvbZ7pl3$(n?u#w{neB7HtcNj*uU>kwULi4K?o@ zRoVZdy_u45IcCezLC)aGEq1=e%wLjCJwf7T(2uOE)A`; ziHUrkiuw~)0WbQ1^`)YWUlg5;{*#uc6!G}ZD&E^xde2{d?vW#*4AHAem-VqqBf*VQ z)BE+?X{}xpu{N05`Y_Gn_)T;T@RPP-Pw;C?ZEE~jm6gx|7YG)$Q$nPNw@3tTp_DCX zCa!bLwSV^!;cMzR3@%EM3`Fr3!F`GBEsb>YeF-xS*QAf=KAY5Au)52%TCVDN&C8< zl3W>T;SDuAVJsgYwo++92A0}`7;QhF)Yjk@S*T_Au`~A!TN;{mm`GO2@D; zY-Te1jbF3>Sd6+c!cV(XO>Sji_+$?_AIn)#<2zv!7N)JF(?B zsEb%iP~CaQ#7#)P3;NsKkE1x2Ir!yseNX88*yC*txqx1t{pOM>Lt^Bb4pe?sVyoV@ z1YFOru#p`v{yF!m>dlv}hoVk!AW381`< zZJl@iHs{Y!CUQ~>7ekz{q+|{>14uVOP}MyuZg09byXbX@*KnwR;qXa$R=kpFFZJ~<~RC5&q1t2^IarG3i!F;lfnJp^xvck zuYaJ~sQC7PWdLi;NQs|d7#|SuQ>O&QO3U%+4s>M+B4eJTPl5vDQ&N>=NYTD{F{~?; zU@Z~TcXElt^8IpR`9rn$UL(xlz>&$p*AYZwj#b&4-l}3JVDe!cw%i~geQFDZy}YO< zj20FXR=%6pG+F`5wc)DZG|q<7iS4AfG(?8|oZ{YynO8gg)sU2pHu1wDct)N{k2MH z1Q00+SZMk#@t;u$vzfK*vD#jQI7g7_p3w`b?=1ad2jlTE7*?vfLla+b9O3bYwA{aq zKgt&ABezKnKYwf5N6!41ZFmr-aLrB{eH<%ef9Zr3fn30JXa3rd#yFD+CHruB(>2Wd zk0DSCr3OhMSlO@NrY`*A$?^4fg;=so6W#wvY2J}wSx!#OmD zF`+_Fq%){*X=E^wgA?-pjS5h^06Z5$IF{e^NnLAQ1w;pL=J(efYR!}Ez!Gr&m+gql z5TlmH&n0u?9WjG`O}Neypj>f(nN0AvKWu#qg-GW7)g~dbuVgc0(ci^F1{m;52;{{5 z>Ah6RU7mdOYYh85J)Gza2cn|$gTm|PR*Zf*UP>8D@M~Ub9593)%aekOlRYs~-% zuO~6OYB9v&7{GO5KNYd9=cQSR$ijOqjI{s`=jM|oiJCg4+vchVNe%EA`8e4HF()5O z5eVohsag_-)dRcHpyjBky!XEch+y_NFCDb6$EC93{)Qp_;xY(49#;9GG)2JO4uWT$AXueHGMjhZ+9+SOkYA{vm05hVWOy_O%1)?-+xB_iv7r7wKi`E#42_ zhf1bPZC+>lhoQWlkE`chgIh#>Rgy_lu4n6m=fe*1hHtju#q|r=-X96#m93`G&E8N< z9!;0*dk+smsn-8_#3H%lKm^iLijcWm)mAiWI;s?r{v>%Wr04ku3!f10M z92?>5T1GU(j#>pd@5!Lf9l9T4Th;)VL0HtLA3OHDygx#W3%0X{QEQ9fT(k4vUI-FSw$Bu6@& zg7FJd6X0C;#kY_cK)+g2ox&Jdru|3V?~o1SQENz?6(PjBT*Z6$iO z!CL~lvUPM}Ct~zpE1YzRrR6r&$|5!C(aPnJ7tFJsC`uVTp}bhyFeM!CvJ2_bK zbPo*PC+o`-0i*yC4E(TqdP%~|u954q%>)HYveI{5ql;qg9kuI}3#$IB64A?lrVl zidDHB=#}!o3rz53P9Hh}{p{QFwQ+$1JNa*vT_}IcNl(%dxglp%(;o4wphm`ufp{-8 z*XLmPk{n8-Bu4&0G7f9W-8z(wcZoTNdhmaM#4XYiS;*yC``aD5$zrY^NR0-g?~%dS z`?6?^0EW!0u|w`rAnMry4KWrej@0MLIQVj66FbrLiNf)=d?iP;0fu-VNA_DZD=<3A z;ZlTHDgD+2j&M$>i1zT|p+i}(6J}L9{p&Sz9xbwd6dJJ^&owd1Tqw^0l08BSOH&x^ zPZfRVfOvA*Y5q3R@pCL^+8?;l6*|ooXh!;=T)}DWHX(ROhFSPW9M4szTLt)_6p0!$ zF!KD%sM)>pI+}LW*x{t(frOb_ofhm5w5V5VWqKO-=S^+Ai2G!Uo8hVp|52X0&1X0b z7+9TZL`1j{6@t0)y*ta740DYZIAOF%9ms9U@mFRO=P|MQzEGp61_S|(D2s2*Dh4$G z(T4kuRs)iNwGZ2`dX_);ihr?4vG21gy8iuHw)G);kZ%TEa$qNL1~fmw#G@k|r-rT* zFurUW(~)w-cDb|d9;OB?}niM?MXg<-3FBHDs6F_Y{+X<@MWKqI6`Jp``C2#{k=nLS`oe;Bp7Gt9Bf*Y6Wz9$eXJ}( zm1wYhT?5~y3m>r-gE2j1aQYU33>oflp8G;Ifp$;>EQ)`~u>OtthRcr&G|GmC$^;Gt z(j(NjOp4AAPf^)pdHHTHcE{5ylOghDL&@LDtb=fLy*!*Bc7N}}TSl-H`EwMt&6ELV zoEr-Xba$=KIUuOtXPBUi3@7%jXswPG`m1t&op!_r0#pHHwYxaYCPQZhvOgxXOL5dp zl3L5l!yt4NPl~Xw%I)XnLa>GIH!p$>N4P}@01E%WBZf!-4brS)aDGjs2f?u^N zJ(*{(g;r~{k+4$@A=0+-_n)eR9E)49=+grYfvr%f!&au%<9Cw*dV~7=oiYOM!9ump0~rk zE98{zuF1ih`spilcxGV$bYwEDY1QFKpN`j`l``=U4jT~a0e^#37*|eU5Wvxhmc?fo zxIj1zN#3H%UU&e0CO4?v%7c!&qXWxrP^Ji6s$0^?!B*6dr&Cg>!!|9g%HVx!{R5Zd zJt%j*-f2pkmPox@LkOEQLphH;g@;m8ZuyHfgAcFSg#9~sV_#;!qrNjKd*yTtj+X_! zp;Fl5f&r&ZgDjOA0XrW5ibsf|x6~$vez*gw;;M|K=x35EHFKR-eNzlnqUA}Vg61_m z;`9aR5n9ySKIpQJo8(Pt_+t9@7~mD=zt9r!zo#XR z|3OP?iq3~#K|d9hefiU9w_W^fzLS85bcEmY)1a%_Kr~ zGpK|#?4(TRInf2NdCOCqa1PSk7&zX*rs{Vc=24Q7%ytTgC+?2q`BQFLYqvQq>*hV; zE_REq(vA7OOyY0oj=+%NRn_*pYIlcY@@J5DxNn!8T|cVJa2LP|CV~u%19*FnTV;kV z|C5}sXisQR8KSBQjN+V5Bo&iUb6rJco6$7};G*G1@}1bX1`L9ixbSfA#{U~N6Vn)5bh4hU#rii? zd?9~pCRwfzaQ>xca#S}j+&%jEO<7}#dJG@+vTLYX!6_}1PQIvbRSk!kl5}8lBjE!# z-C`w3FF$ggr2BfdT$`?r*$vt?OFEa0if?e1r&)V>@2ycSc+m_I-}H$ zT}7(#X#IpATuj3WW1)8ff>IAAivA zBGvdEL3fZGUSxKYM~3|(B^#mb%h**xujE&XyoHj@*{IP{yPDYF)Ncx&VFy2qcO0MX zNTs4oYQJxuY-6S#GSK7yN-E$AJr6vERyAz~k8t-%#G!lPl zF?Kqn2IDH5QjVpu5LVYlXcgrU_atc9p2>{zE2k3gYVCyAyK06$!p49 zzT73vXVkFFFBKX-{OBm77?eO3)5hBcC_@AFvN}kUe!Hr~U@Txf^*)}4Yqp0nqenHC+h5aN;U2*b%5EpdH&5S}) zi(>sYL6Ec@OtT25-%O-;H!ujFEOp zFY0w`liBVs?;zgp8Vpv+9S`D7s&(MwS9E0-%H`Lm@0p)HkxIs0Lv;%@%6;=~x;7Qx zhtr>4*)_SiY_&1fvb+a47*9D^TdL6#758##U94pp|_bcCVedsjzY zkrHXC_i6O~KAfdSF|ky#zn*=K9nMRO*R6BYCGrR~DogG;^y_H!vcNC44(tQVFrpR~I*wK!_xJ^B`tnVbpp3ESyz5lwD!Jet+z zjr|Uq_g>?{jczhE)ktQLo}vySTpP-79+gu~kaI9ti*~e9zQO%mDT7DDs}6eR^+@>t zHmE}6X^J0|fOhOZAE8Bu@A2+^ta+?;G5A&{W=oV3YwmNh%w^1W)~5g3^Vt@ckrDkD z{$lZuK^2Y1O6riW-Pwz>git+gR$RD7a#aC{R;E6;>()itr1yL zE_mwkti28klwe(vsj{fw$B8r@l~k3l5iYr-fR0En8E-lvQ(0O9n-i z5C6BZBXvYi+YGcn$Js^rjHq<#>%8o1lLAKxv)^P^qYt+&sPVAhz_*$^&1ye_FS9l& zV}^UppRZ%7-E>J{+wEho8?|HoLzO8_d{-OJugi}SzQ4fa_*BTR2h0q76#tZCU+SU|Oyk6`**6+$Y~M89dDY>!#$;K_m@zcj7V3)L zx`09}+%Mz}3n>9mglRu>s-Tt_AphKJa0dUAT4d#`K{l+lp2t*mhJEg&=19`Swmg;VR#jg>XdI;gud;;Ab0}~_Vre;Tsl^e* zeZOlnY)`COPh^nf+mduXQ*+$_PoLIMn9<4w5#(kU5Ty~MO3>qp(4}alJl}dzCOG-D z_&Y;`)Dd){VC2J}oUHhKNtL=w<*CEl{a<%-*?)9Otvxqo>-IL49V;vWwk_ks4MB zNIX&9kVk=BQ0cTWHlNE?dtK=yWcqJYsHXn|bSZd||9(^G`Bg7oC3~SE#)nWaLx4Oj~KLqDrv%co7CjY;4Su9G^;A2*0zzZSAR3c6CED#@S_*)g6A-;D^h1ezeDJ7s!l!9?y5kjUDnt zLUEH7vL%S))XbfeTV#fnEWWxj;c|B+ z*4K@rj!;MD?7}R6)`G3tB#L=0=iFgm(0t$f7wb6~?A?nSsBwvQSjBC~TNURxJFj8e z5n_Jz7EN;PGMm@@`5 ze9HEx)qRNsnv95ioZdQy>MqrurLT6#GmTlYS2&zQNPLq!4x6pJSV}Y{iJwR?0;ef%9l&^O}$Bzzq*VZ#BYM-^2VCw=tlE324%L0Bz0r-#@#0$APp5c zI=b>%ScNBEk=WD?UDQk$c#gAi@0WZIZ{w;WPDVWvGUL}@eERzY#=^<-&o3}p(4C8%ef1oV4p`bzlCueZ5Zj!O;bRkdanNjm|*@X>IF9 z!7q=ea>tT-IBVhlw|`99Ta6F)zL4IWIJ*0uFP|J8&4l6AbarUBH}^6dF$=TNP@Br- zQfAQKTiw#02OqAx-MgEH2VU1XGk(7A`Qzq(+N0jgbo@SXJuK6h1l?)FYx;y?-F@iY z+mhi*8(m?d!_4`C||Ofhq)(W_0}&8^RK zIC2+~{;I+kNxks?u*@^VO1^rmSoKP;F{m->s=nRn{hmlg)fK{}#aBgr`BnFJ#1*5T z%GJa^9C0PA|uZ_d2F|nkV?_A`V%=5e zV3!!)leyk9XX7iJc)or5V>{%LpsV>%HEL734wWSD6g~Ik4~pXkyXuJo>&l+JUk1T` zXz8bqBL}N(Uf*@KxtE_OOgn{F<~+<;YKJ^XTPAq?u^v7q8G)LANLZ9BiDhDT;yv{T zJWTwbm({fJA!Oem3UEWYs>bpe8wWWm@fj9^s|jt7R2vIY2VO!<1Jr&bEqq4bv!J4_ zrXZ$p8B2b?5Um(OcXn}Uee>tFP#QaGnS&|+IYBD#n9`_~OM_{cjNyw{(p<5MbKy@p z+e=(n=(`5so50)1C?iZ%%!#xnjJbQXsEKTdYmFQ9i1i0@Feo0XkEiuYU`1YAvWdyP zenES}e2-H}Wn=2#v@P(v4b@Y`1}<2nY`{$dd8Sql_kw0`r{Tx%809Mh=LsLg57?hk z6L~6GOR%LF`4gv)q}E`{L}>*RXXTW4H``3|jh-AScm> zMM?W@SI&^{gIcoOoClIt&=2Qf!%`pj+zu-m-q<~M=*(y4%O&-qbo}JL1x#Gvzrk4wH zXtP#Vtet+p^Olx@8pq^OOoV58v(R4HBKCGg)Z9BL)3g)6F;E+UQ;nAq{Z&TUwBLSztnx;K~Ca42Gie(hc^L%a)xSCANC_T6w6#kC6o_dN~@9#PuNBYIeaz^T!@}bZTMQ| zv&->fx_;Od-i)<$u)z3MZx|teft-@zB`s%_*9UTOyho{I$4bg3TV8tT>S_%hZ)R&_ zthrXMx#Dv#_dmI2qOk089Tu6}qP% zqlZU0!+Wnp4hwZ8zijhSx(2wI-Y7L-Jco4nK(OicHBE*|-Oo$wBvrYr8PgA0$`DU! ztdhlr=lIAhCO-oDRq z?(9M(5xvFCv7#lHJtg)Tp_q}HMK70^F5-gNJ84&$wJ?+0$M-ygC-%8F3aKv3e!&W;bfSkej90Z?mDr10hK8 zO7&-s01bxEZ|pLf$LtHU13Dg!G?qygS2OqbNHO!gB>xje!SSDr;=lFMH7*XGe|-I! zgM;h;yO*x<^73&1GiTXdKzj9TY8L6>Y14C0?oS_IJ+)C_Ah!-@O|?<@VyJj5<%Hc8 zo7@SWGGr)Z<@!?DHLap5UgMXQMfOo6Pd;g}U#o>O&VC=|p_=RYz|fsN(?H90 z)t>Lr-VCp~`TvUQKXg3!)vlDzhfhFYVPVm7(!D)Zaep$VT%)3iPAu%>wKH9L!{v_5 z%F61pm=GK+eZIFap)qw|SSjY>zR7%8R=3FKxDqnC^#HCAhmtbKVlXvEdweLJe>jc1 zA}dS8C84hFJOBk-x7K#1ShM7O$yb{N{-wIm{f$$VsNoo&%NF=> z1w9S{fm~J7+qv46ZoN7?>ZIsH9*EnWE+35yy72wY@vnCOG!CmO@I{m;;k#EgapwJr zj0TPIwkvCELz%*@@<~h!jV_e@G5xDJd*$E0#iPwNB~lWuWIlcR6x@-lLE#BYZ(C-I zgT6jd!~D=t^&FYE#)j$e6zuVqC&?5JeSDXN@V`ye3sXIe)bo2YeKhfmk zy@p#zZ2s-1*3>xzU(bDNf)aLdO6CE))iZ49ir2=hMeur#RX*wd8f9{|NQB& zF_K;J{iv^`qD78G$k#Y;LhFkDeWlnP-digx*$nxW-{AzDbbNfNt?kP_QI`c0;Env? zgIV`K)YsfiVg;i}1XFMN7Jct;2L=X|g)RferL4(rSL~N}cNOnseVAA5s|Jmp6B61O z8;kBm?)V=5=_)p&u)>=mbbq#z9Oo?J!rW^PhsmJH6qlWsl7bHrtuoNiFnj&_*WRAe z($RFK=?Z6x?alSl{oS81=HewreDh;>X~W-;v)k+Q{^CJ%tam6VC|zA$%9%oM!57U9 z4M`e4e?N*#k51C6x@|`y^}0Qs3JeT1dw(};Q$Z}`RsTb<+@R^~bjpZ!D!-s0F6j@a z&1C$oFHZ}PKKS}3`y}7e9U_YG9>W^_E z=y?|1M1xMnO(Pk*P`vk%2ol{y78UkP;bRa-qQDDZU*Ee2qfGks(Vssn{5hR(a9Vjs zK~0@k`e~f_NHw93%jsnQ>Vo9lfDrZQp{0PP%jqQNHvkaEP8td!~ zSmEJCBrD_M?eM=h*ffuMPRZ2$LUPZU~kXn$On?_c&7E+(_NKwaKBzhT1 zNbvf6-}iV;@veIXYn0kC>c*gOO*95cCK6ZXOmm5wgcq&eaaB$Sr%2l4Vl~MqF@f|Z z`aQKYo92Ybe%!D*R^*K^B-vvuUlC_7iRgpZ`GQ-5mfl1~Rhz|T!l?|3bwDO_=6>@D z`pdi9>q}3KRW^LuSW}GH)0LK9!C1m$`|eos=MA}8S-(cI#aCQ1?j5j3ZU*0j)28NL z-WQ`wII1HjqzdYN{?%rxe1%2CrQtE}GxDDu`yX-#e&$H`7t1t%{mSA<$i_wWGDoga z&L-_vWxC5EU;r0vteG0JV0F^~9%}XQ1o-AL{ct#8b?`T1omc3(rfi zf|~U+RQ62dtiwL8;03;PQiAj@@N$}Uw91mP%OKL^kfzquaNf)7f3tk*E>Y}B)x&b* zi3&v-+tu-^W{H;fK|2x%PnF(>$L4pdk>B%O_U3hPtP_fzzuQ__HF#Y*`dshKR68@3 zSd)#8jmh@Lvhuq#qGMn%)04u*$`@w}N=79u%+FhM8s2RdWYUEvLF&W9MNCai6Xd9c z4cD*>O1-8f%Zb@721tEx+Koo*?3bF{_O(3l5*9fj{6empy~#=8Qv34_9ln_zRF%I6-jit*R&t2um0j$N=gcdQ)MiqY4=|4!x@4r z-NnO6zSp~TKDSrq=H_|%`7L)>+nTG6I+v_)?&t+^-d87^AS(3t_fwwB1eKdP8~y%p za2(hx-rL(tCfmL)cG{p|*cSHbQ}2r=)1FAGzWzde8dF!S$d$d`5PIZ^5!r0!uHZ`-2V)tkBN>{;(Uz%MPrg=}R{^2xu@KW3-N1)8FEZ z3nW3tvOqwidX=|&b8~ay&onFVlp-+Gdweh~d`}f2=(a~Rv&Juyp>!ioIjnb7@|#pr z47Be2oLyX~F#?F*N6YoL8{#|S!v&Oy(Et~GkP{{Jrw$@dn%mgOOO>vilUYeXE7hdyK=BN!}B!V8%PmYu3=H}vh zWPGe=zgZQh3;^%8S&_BYpb!m@q2>fa*=&uCbR_)+r3lbvL+Onbuh+#pHTcUk+he@$ z&dzW`?nnVb`hgxAq=4L%+{zUth(TOS0`OpP0R_e1%gM34aGp>B%9%B^71xi)Y)ECw z%_gMjsR@@g+;Vf&4-WeY0Y~AFRk=JzpoSImH-LmlncyS-nJuo&#Y(zYB?%sNy*)QZ6m1tkr>@3zv za*wSUD5kk?j!F3W@}&vfkL6)_%i%vQOw?n@@?IegAiM?;^c6eLgSNSGIkIy~bJU3+{rCtf3T8$OX zhBO#M+<(7xS5`Zw%vhBc>W`A6^nLtg4Ao>5)r9?VrUh>I8(eC$<`rc%B?m_(2WvY> z_4n9s-(yd1M#Ddj4tyNl5tCJlp{kQf)utF^jzJ6vi14^Q&FgPrjOmk1lsNSw)iYZF zTI2~7ll?;Xg0+X5YW1AIGVT6xwZQGW?hj2lwTm0(w^41JOTW(cNQN(aZngLyksgFN zBFj*)%8A99QHR>cItS*lHHbm39!#W)Wlz`H8-Z^L&egu{_w_e4lhv?d;^*TlUi1FB z-sBn6+xP&E?9s|3(?phC0bJAy&=`|vsAN-LwGBRp*TG;{L^{ah|bWbl1mjV1q zcpU?Le#uY}fK91HU=;}n9q$i&?F!^@8=~qt&)#>yyU7lvmO6jwn93FKf@rQF5|#&& zv=Dpms#e{PmB!DTr06dVzm7{y?PGRUD%2v-6vg^Ef(|$0WcDjjk0IiHqAx$i?RTRe zi-a+gNgrDU_PEU}roJjp(JNFDe4PwL3x;I9zibd;6QSuaV>_Z2U;FkQ%iyL^n;+yU zOMvf!MD8$b?K`rpgg7^x$b9cB&gv`T_j*KRCzL{iax@PCI*w)0;ni zBjf`Qh+8(VJUyFbI4Zsq-SiLk9%En$P>#yJTThTV-F>_6(Kj&g8Sv#Eha9O0HAcu4 z1=Uk@fFXkuuV_80i2fI7A;Ye|v97#ihtmtM=C+@1mj^HiVjo=Yx7=Ty4yDa43{Ey_ zT`f?=B`BHN+Ic&V%pIL{L`?ngISy~QdNISyL{DB)s6q4Q_LqcMwh9`FKs}&BdbPGi zcU}#DbuFe&kx;OL8%(qAA(?Lk3{mOf)Gow2_?KkC?fu(zcK5pVkU?%buUdKEx?Ypu z>l34WufwMOs_F;Z6+wF~B%)`(Fr!xvsTf(v*R3qbQJfJLohEZ{ZoC?9E`LXqlx&C5 ze`xs+rP;_3Sm4P4lk4pr=j1powZHK>FC6p@WE95Z*-vIh8LJdtDrSjGxgYDFb=Z)q z3vCjxAUV3b8i(JO7o9U8AwB%mu#x$G`>;CraE5gg!EE>)(C zd)mt5vzl1-lfY`CXGUV?IeZO_uY=oQ|E&Q8x$d4IiIuBvap~ME;Ci8<4JfNu`PN-{ zk(w%Dhl-9-81+L5<)^T)*4s0^$Yl`wK^kUoOez5bQ(@Y7tj*=|?`gk>l`cDHc!Ui- zXny7RFWTES>5zNL616t$3K*()3{`*ag1cx&`oW_xSE{XD}?Lr3d zk1WU0=g-shy6-<5aysYCjf02n`7U1rkGUjZO60Hh@K5#FksM2eoIL^p!tGH%^G&S; zMbVs6G;}4AVRPL0#(-SgdR)G@nRxfO9FRW_bM}KmJJmP(zks88hHIyg93HeCL91q|xdXGTwCzO_6Pa7aQD#@uU~b&p&S1VDDnVf#eYYxF)8 zuqf`u_x{WEDeP}7%*@7}>|tk^g%K}juA$qWdA{7rkH^!!hMU<1LIE&aw-L(Od#hTB z{C(PYL89$Hci_z-f0KPh zBas(1%S-CIKdByYH3_MyeBM{iz}0$emrYN9cLuyJVwA_2fAyuDk5Y=0Jjp_(-x`C5UF7q=~R;R>U=Uzt8`S^)wlGV>V*5;@=Fh=gZJoB^6IWyzxxRKP>(^vV zOy$NMK{W<>m3J^L_@NZ(J8UhEJx$BZ-0L_x5eKn<;2~p#BAj7-e0--p4-e0{YeM&x zILw3@)#(!KvWu|$lobTGqm@OxxVAruRLD}rf*J;g-TXA5)tcykA*e_dD2p2>kx}2j z>@m&m^$yJz0SO6%m@j_09$FAM)yFOt`g;!iSXG}G?!8|51Z{2m&U@0unWiJZwgvf` zS@L|5dO?YHMOE1&m?ppdauoTK)Q;GRMWJrb%gPECn!{b=kpq!9N(&|v3pr`5MZK>Gm)2U zEc-7?X+beeGMIUJ7o z!rB6e!ie{p%ZT4rNWcDs$Fjb&Ghbsf1vo9JNa@gEUuhr1G@X^P@_5zf{KemRciCkQ zQ;%BF&03m0Pb51#J1R2rYXhYSn3y8oz&wV9Zf?G($`3tS!8QGahy3Fc4*j=tR-M;qYj+Ur@MjI5VPritGFk$8qXSW$`?1Aj%{T(gnU8-`D6cY) z){kh{m;|w3e;*CK(Q%|9d!ZT}OhrZj65|}{C{PwP&`OkPNeZU=l1&K5OwnP?_F}CS zj?*%o9-kqOoPGNX+?`=wrDPcH+u3iI$HT(laTyoQzgDNk5OeRazX`Y{RZP$HJl`K2 z|3F$1G7vgx6;nGM=0T}AHdeyr%mt>tUwP|EvyFoIjXxu(j#_=1olaHRlnPM9s$aK1 zd{936$`=OIXg!8oh)}O{f)le%Plb}uLBt@|(l*IP`S|#_PPN5h_4m%lP^^j!UkVTU zxJ4Bl$`wpJX$MrGwEw{ck|*>l+jHD+XHP(hqtxan8SK{035iBWx0liY*MNc7pI+c^ zJHp+O^YdTFDGUAPv0Lel`9s2xL>_vFvH&MYl|Uc)zAL%RX}7u$(tYV5S~Q~F4lnr4 zZlMv1#@TPObU60|;;@yymx&WtA!l6pG`@FD_8g1#h#w%s!|T#LpqTpM!-vxTpIET# zZe!xrZQZZPWmiD_YzWLZal}I&1f@#P)2)dDWzrOd*2NAOTOC27R=cdIqqr_}fQHKb z2$>`0Nt_2a@U3#D{)p%b3JQCR&Har;Z(+U+6TA#{cyWGDDG0Lk`AE5!&cxt}h$I98 z0d?JVo}tmvs;?@fN$8SLAYfKbhyS=II;IWxYya+Q1dc_`YOy@&0fJe;r1u5CA$5`!o)L>K?H961XMNc{8XPcuq(c6GCV>`n<)Zs79uy#XbC z4+h3Oy3&9-&=+-Y{RJq?f;|p@0UWNV$Jx#d zD2KN>%!3co;6oiE(FfT6MtIp8{^TluzC`3+PEZ0FUqAiRd!1WRX@p0QoI!U0_`4?8 z-PnGI#0EN;A#WsJ4158ZF1`-0kK>BrO10PIDx5|^ef|5r`37TS<5JY8d@$$`|GDR| zna3;+(%&K{cO`;}Gs(27x+K~Fl z6nuPqZf3Co1TPdC>?9H;n3$Nnug|EFthl(iPF5Ql8unZ7TN)ZJ+djZY5%X(JM1_?S zlF=NdNMgIWCzm_65JmSk;`+(SP{ji8&t*IPuKgndFyyx;auf~vcDA-e*x2G3Bvc~#AJYmj!sNWOn;M=p1u&`2s#_% zh7EAc;*nHWO5?F~Snj#aq5eNOh z4D{%lzkk1Ydn9pmdRpd;VX}p|!J*KMNG>lU^L{~47pg6jc8QhnU;2Rf7v;gX>0CO9l+gG^NBRPpaA_)~-3v?YT zj9Nj4@cVmesy`HrZHd-fE+F0Ph5O+M?FtBxgZ9a*Jk=bSWxvWUFnnXY#fdEI>Uvg? z>C@*h4;pnkQ(y34e@>3>eI{%I{u~N{;TZ+$i4uY{$`1~`2Z-JFw?<$ zO7JKs_W;_XHSI?G?%DAe<|QXzgGERDkuVU^p0_!C&dZ|~QnY|^C=pZ^@RN|-gGQHa z0s!A;Pd9FE?#a~+PMD!8sw*}d1_2~c0WGETyLHn=i2W5-wLx;Up%uE{5Pc?LpBtXm zvq!iASje!S4YmU?rUGwSY1-pRg#bhCf-S1jzi$3MUti6D^27z6CbVPhZeMf`#-QHTdrkQGf!b-zn%WMsr< z*v+Do3{&#B4262>*BYWYE%@PTQ;IF_Wde%c6Nq^uEUq>e|H222L%CQY4`*h$FuIB`l9CJ1Nxc- zXCDlcXdD}C$|Ts6Bi|5S9VDj3DF!@&Np`RZS;#&yz8wV+&dIX2x(dv8K1&pw1j*NO z1Z#BIl6JXA_lnI-G0;oY)zprbql9B6Xc`noQ(Sme@L;05MC*kE!JmO9(+ZE>?;n8( z2p3e6+Az;Nt|g}R6QmsA?5AVp@_;u3KCHaFytMy=$6pB&f)4?tcLIZgo{$Q80oPNC z`ruRq8e|K3d$QtNz#kPLt4H8`xd2@NErBObo&b9CAD5tjz}W_`Uh$!FV`Br@g98ya zz!pO~0}V_xX6gibpDGNB?C&RNVEgjt`%9pHE2w4lj1-CmzpY#Qt(rOP@6R7%gSI`` z_(~lrD(Va_d@2k`D(C8c(Y!@7S{wodL3qz7qeUspd=+J z3D`3StTvOS2Bfx?%^QWr0;^FoKnomsEjUAnpnw-afc|lHef^jnpULohh$g}5BN%r@ z2isuO)}8`Y!b|~o0F5k7*nQ|4x<-{Fft7q!RZ;o+?zdRvGB6cC&g>I(*zc4%PiINg zD@3=yH#c8u68K*H4*v7UWOCK77Ip;js_GTqU%&x8hbF%Ji_L(G>)<`Kg@J8Zxv=Zb^Hu|0-M-rAuVFhmNl_~j*m(NZZ1v)&=>EXN?{pu}Wb#HqhnT~9 zJOnK+rWd9t4|&d04-|lWSJ2sx(I$yp7PnCW~3FW8g&B zx_SlP{Us*Y;+UMAoL1?ppJ4pr*RR);HGWTE4weyFDUs24>XI+XEGX@E`>SMw}cRj15pXU}XkOq=|8x{S7p*wBakz zT?N77lO};EBTSk{p8<@%i7_SZ&(>_O4W^mtWvhH;Lh6Kvx(er102Sx!%kgbM2caib zn4Fvp9VJ<=2P&^DN9aU^T?TcKuF)N>9l;oc1O&C#6I;N8@`T|P5<>;tDEy8ERfWU5 zcWrbLS*oxj3IpI72C>Hy4Id9=10XiWgZ36RTAZj8Os@4uG%GiPr+klrhSWhJO89Cc z2gEm8TH0!GTMXE3QH4)E=Fjwic2bvr{TcxlOQV=-yVOEl!toIoY70T-Z9wRUDGFy@ zct-DtxIuau9gPXhs0HSY(#aC&OPK*eEjw;5k3p(OA0zV$@1X~*5D~y!A#pYH6P%M< zy-+t;CID0;0S`H_QGV@%X9-IOkcq&?^B0;ur#d@x!Qr&t9H9c}D?^PmC>px(vsO7u z*%jb3z(h+La5Js2&3y%M^R~XXk^CVPCOEjbT#hTf zpk?>^%svFC<=qdv8ln6HsO$$p}nH}9}!S5c0o^+(eV2#mkBV&Wn*P^IjLulPAYT* zpn~HwGBji-(U2kNXh9>B}I*q^B`C?>_z;dVv_f~+wZey^8}qX9!=>{?cj(qUd% zfy(0ke%wYFx;o&OAj19TzL0zY=ll?AX_lGRTc-x#Z>J5Q=mH8UV9-uxpdK+D#wT^V zm77Vf*}>AY&v0>db#)zyrdoY{0i^*heVhQc06O5aNj1x8&^1CMBlpG%ltEgZ$ZTY& zuRqX8!tDSF@UDi z)0^kRLqj7Y@74xVN^KsDz>0(_%wVsa6gkT;)$>87eKu#`)6)YrId$0b5zzf?fcOoV ziq%i>{m2QRFB*CyQa-cAdpK^S{lFoqCn(w5E_0gsKf%9ccBz2;wriihn^YORAKvI z8aJ43{Q1?m1Jqw%e?_~3x!f(NA`Dg>LBhxjz|kBCjhHTR$p#$mbp;T)0w;{tvwm=2|ce;#1bC51&&hnDabr~3y1XT$>kPIO9!zGNC zQN{MJg5t;I{GCe)p)N=xRFvJ_-4~kNz`O+o&{APgbX>>{^CB2|_|p{zW_WtDPg}gN zLD7O2v>gT)a-y5sM~;mn-vDAMz7V}WJW-;3Ic6o~ef12uXbt6FSqX~wVEzxx!exNN z0E~ozfdLHGaC$_E?IF@bAr_O7ad+55>O|zWF+vWsvw=uX8v{lTTgj99flJ8=#D0R@ zK&VidZ#c&Tj(3~@pT-Sj%Yf#B{C~xl6#&cGKRV8G`m1q*olRtPQ?|D(Z`aNEc6G}I z2d4E~kV4$hMTm-uLh(y2rbGb`@2_p>o@d?wc*)V+ial%>+2*35yp(nGEPBB}2{t#h zy`b0zz?lVOApSkT512a90|u4N^%xa3i9x3d6d5N2;Wk*vX;o!qA;1sgG8@{yc|#iq z`SuQMF31%~tPB#JLTY>aeV`CvDIga&9_18CN8t^%7|wuJ8c2k^F8ncsUe(&B;O?pR zE`Z3ZUs>$6b^1g2CX6~c51vy~SJxU;xL?11ZDzLe`*%A4`~uAimD*qrjlcQ8^(e^6 zgZMy+9@;(9Hu6qLO6qCEg-fShq59!vTPEB05?az^1*h{i8h#DB+(cJAYf4V)TGxd;+PE6@bws^4hB}w2sI=TZo6zIf( zVwGSJ2(+$i?3eBU3xL9n5S*FoVpBd!1EF<+23^#9;JU_V!GI;8;_B+^(6z+CS^&Ot zT2fBuFIMcJDWdq>7IAtTm)(5*Z-mq)X>vF52*7*lc!Qy5 zFX8BT1ZE0A8o~#3ACegzhrDlUBj#oCb7f(;z%Uc!B83mwn1r0x6hID@#%=F&@Jkf9 zYS@*>EzoX+<%Se@wM#kZW&u19N5{ml+DtNl{@MHGh>#FuaP0;H5J5{TF>xQ9M`0^g zk=GU&t%(Dsf0XVb5MSfe!Cp^HWG8CT1fL?rh^{4(K|?#JsPCV7|dUDn|&A z&sK?E7e-kH_KgEb4DiLip=_aB3SJ8@5+DWpt^DuG1q`p}1fh?ts^atk~=$V2^FLzzRj#LX5ij(r4BR*B1_ z051@uii2?3FV2H`4km*}9)5n{|KaXvs;G)-SzS8rtz0uTl``-5=zH{;-?xL=Gw39d z!#v1n4isO&iGmu_M5bk9OrjB+^>zezUDNtAS!fmm7~4lpf(HSz9J0B%e>Q?7@{`?r zn?QH{AYK4)@vog-UFm!-pO%J(do)Dg$g!lcio$prEBE9=ViJ}oq#;1s2ktHNXEBtF zU?2g|Q#&T5&c|f>e`F|Jo{Dns++xeVu)m`ZcLB!;Mg)OtSmv?&5r6`wltJAVPDA>U zY_3$}V#Kdb{jrH5Fmpm1M-P=t_0_9s(3%Bge}Aq{IlB!TUSz{rFmznLpeaU2g%5O+ zFU7gQg&#$*QkHle{yc(08HX=j!n&YofehY^O#v7yo0$bb#}8111cNYtR#rM2G2se{ z7ZfQJM;7d+d4##D9KRoseQ+UfGXw}qGV*~q%!7&Zj~_pR6b`N?r%5&!g>M$UqSqO# z4@{eYL)d9(YC7MU8Eb2M4XXZFC@sxTvOJwRLOCSxU~)P3N66OJg;6^Kx9TY!MbbqV z0mr9^7boN7TuvyLchtY^lV6hV@c60V`tq_9$n?NOj)bf%3UH}ed(KRu9CGW84mWnC zF$t8HX+SOoE32ZKni}94L9IzY@>~JVIb(=AMru=wyZ3oYc>Fr)`7+)xf*=UKluk}g zk;}LYucDKJ!F8P?b+IyI&V__sSeKv>B5l|3!JdA*tiHY;DZDX2W{HlA>#!#R{2Z8FNI2{YIc|M1HJKOoPLII_mT91w3964^ zNcYeF{xI-=Bgh7_UkDr>95(0bDgfn+h!_l;y1Kl?fBt-WZch7jneS)B%4ZYM3jpo$ zNQodP;_W0L%;9p66A|e3e2b5N23&!k)P@AsM6^B=Hy2lAXlRTK7074-d&VhG2lZ0m zhziCU7_?u!Aw9$YI!Voy6Yav7rP&inY%^0ujsFq^2 z%ZR*pL9jU6UlIm9CVgnt$X*h-h1qM`DyB!@-Y$1Xn0-|U8URR!8^rR#njk`%M?l3r zm;=LZy5HYdZWZU|Qi19Wn^`$W((cZVRQxuez-N7Bf}ptAO`o2afztL)*7q~N+Yp%J zw(T`zD;-77!sv|e$79mZa&m{nQWuw441IRrUlgp$ZdzUi!za_3_A$a{{y=ziaIVlX zS{}RZaD3n&;dY-oVohiP{(rtT(O(E=`i#N$h>3_m+VHwb6tUMVSpl)%taqRhcO)e^V;MZi*SzE_NljNsYlBaIHUZ2kd9ef{m=GDTIo zgc7YXzymjCs@Kc(>Y&!SgTfd(jitfOhAIcJ{eQ9cmQh)5TiEcUf`lRs3P_ivfV7B! zqJWChh=8Ot(j7iZH%LjUba#g+-O??R(hXAb&Ik8#?|t4g#y8$EKKGC9ki~tky63v) zHLp1r#P4kL(fk&DhuuyNzX7D1pPPf#MWBg2ma30^Ss~{6M3ZulM}37N9(mX1?tR8E zP?QE}I*D^MS&$-*f?kH+$9&TpFm0z3kVVn*4PLtA1Ptp^Zf&PUENHa>eBOTfChU$l zb+B157x$HGVH@0?rPsIt=XAW|1qW;#j1{U|;`G7v1ei3|A601GMt66c*-;&YW6a2Q zd58-(2BM!(oB+!UuOffbG7qdjDuyS1+Z19K+EZH$pOWMjz;f<<-Q%z-2L--?;Efn#;7<5^aFlEFEksV*!kni-7$ zWKM`!M3g_!=?VC=$0ZK;E*Z_Nu1*xbkOdeBJSzD62y0@?=#*o#U>f2pjA3=$SGbM$ zbHoBr8-`u2(IPfIeF3_SnogmMPW+6aS=^V*(M#&!6@MAqfdcxf$+#~Lv+)hHWP5= zA82kxsR$o_!%w>)^&N&#v)RfDXRo!L-3wShZwi>%1+zD)GtoJ=jMI7-%dF9X-f6Oc zoTd4$94tiQ6BwstlnX~HVDu$Uz!eKKnM@`YL-<&VWKDaInwA{QLlBjyK5C!fLx-%!Ut&oyyszrG_DtdsgV)m9dbuaL4Y(38Fo*+8 zSh~mja+ZExCf0|8xpws2RirEi;Otx=VFUgJq|v9*^)m>UH!xFadta4b1Q9UeDT1I5drp!dZz( z91L!|QEVrXuJGuao1K40w%nCRD-4f;dq4T{G3fg3^N3fsIePmha9k?}_c5>*$Jx_7 z?$D|h8->4mB?jqR@i!elg9UP*hsW&LO5{9#1QP^d_6LCr8c0GSB3(1HPKz->3DGez z5WPpZgTG|BxPpo+bF0{5KYB8KON{-k^ekXZNN983SyTkOia0t4y>2wSuj>o4NJqDC zS7R;Z9|H~avzSR+TRRVC924)fMeKSY3}+Nypfd6?Gm$R@TzSnWj=%x|hC$p8hfdkp ze7sLf4v}p5gfFvQs0ZJI=}~O6#TcB6k+HEreIVRfP<>i#1aS?w%C6hH?zHzFL1Ce+RHILTQFCv>D z9REdrbFr2+Eof`L3$%HJOFU=Y&BQo*7rzA*9fi6Y$418CJeCo8%n#?7)m%FWF~F8Y zS>qro(90iWy73QaU~#D~5P31M3|UxOF7_nL0Ivc`leA$isE_2aaI@Z1k;;%@#l9Ee zy=k`M)Qc^c?|0tSU~>_D z=T2WYF}lRN6Ykx5_7qy<=SeDUB^Jet3MC7W1loeOACmbj5o@y)g z!FfZ$jBd;s?(EKSf!QtRowT$f=beFb#CPu8soH2Hr)Y8kj)nm17B>Qcj~e+{0H^C- z@zD1`Ui=&Piludc^F&b_MP!J2Z0Ls?KemisN@gtoF>%VSt?udBj)P4T}Q-RGc@t)z(kFBo=Hv3%tex5xxx#i97Pb)LP;X*)*7D%AQDC4WkS}| zTFxafzu}+gANGALb^ZArgZqK&O7Y<5FJDd{rFipZt73L~3 zBm@wT5CLn@|DJqpbtBeg=pJFij~K{)Ir+6$J1{VSn!M*&FlLLgTn=p^ z&VKRYMWyVg9#UY(yPzK?)T`h zwq}R1(QXHygk+$|P#$%>eS+CA>c@$Grd2Yr!*od9(NCuhNjeh~@!uXjsQ=K9K)C&G z@ok8Wj`d#ZBoVYws;jG$@VYcBunM^tCKIcB>|0A9>nkkTnu~B85e`&$OM36BjaG>ot@4`0xqoS`^V46l&^vp?|NhpKnrvbAnO2a1L`3u&m!7p z8yg!TQyOMsZ0sf~&l$3x?QCuNhF{v+Qt}!pC_1H~phYsAt!rJ%(QA*DYNV%uS`!Q` z%*&&$MFD#tnYd;PAblH7hy4}PS&b?jsdA-@!U)>pp;Pleo>*&AIaC<{WK)`J>bUkny-1Eq=*ImPB5Pk4f!sGO*cB2pcB5i%~vqXRW{0RIyDr^p4 zEglW*_X9H`nHexvr9vLY*_2{F{{Azf(n>7h<>e}Q=McB);LBaC{7xKg2FL@hZtv7e ze#{JR+cyyR0FO0o{1|~C0|2V{4TpTbiIFu9OyASYdze$x)Bg}FZo7OYN4Tee8Sl4- zL;UIT%LJRDdoerLBje-2O){2{kPsFYPA1SCK9A@YfL^^bJ0gCI0y`90oT)CL6PV+_ zL?Pe~1{6_r9zMbha@{lm(}cmFag>(F0v(an)h-ZNcX8fc>VU#)G=M2G7SD@LFJ+lm zMJ#=-fxU-H|DG1;@m+r@66bIU@d*xiB}M*Qf|hH=?EKPtmh6Kc_24}a0yXYS`wE6Z zk*Nl*=rIL*&$1%wqDZ-jjnE5Y`Ihc>0P#a}YGD2Tfdj|IWsSZx#wG62^!m_CHf;4(2WuYUVw2<1aGb$i`as$4uV=2aBT*;T=|F6;*Tpkm?b-DZJ`V@ zr~}#k5v-BI`2A)U?gGo3YmuKy;t!~&r$9F{R=MZg%o%e3I-G>vSf>xT^);G4a!pb% zFFUmpSOdOOtv~E@6vvB5LkHB`j{}Z$C=`U*$4U1i<+S~WGVpHAz`0gD2CyL|4Sh=b`i%Q(jA6sW!w{DTn+sb! zy+X_3;5+a(!zA)n`}_OfoVOkVAF$Ai0M)}2@f zvgp$R=fEkYF#dD-$1%jj_0-yBT67CQvlmZa05Ls~w4k6D!pI%<94^Q$p%8wbuq>0V z0LQhL9|`+s)Q0=;3iZ>CT+Ow1;kmYws0^@E;0S@-Bs?598fE7Yi*QoI0~|`{`BRUe zqv^rH!N9IsP`uF5`GT6R$D*gx1)A`-&hvTfDQ968Q0&w45K5bk+Ovp&)1|R@S?VC( z4T8bE%Fbp7AueO5%+TAlfh) zuPBDRNr(la&`>vFvmV*E01OLN`bhJ8*M(E{G&CmsukZ*2LT=78YwH`C0LyM4o<2(X zY}kE{d&#qfEE0@i0aT)t09Fw{z{~}#p|*2qn@94GoYKZm*~Keb_y-7vtIimrV56O(FKFo8%0EuqrSj z2wvFII9G201+c;26?L#o&(6-y!&8`bq@#zzhlpZu{-beS;@e;gEme5|`DXK@TMO6$ zqbzI$VjGT1eLmgGEwgQBZ1&lJqdzR{x&?&y&-L%`-!D2a0ixQ*v5e+xc4ltTo1c6; z@+&bRK@&1e$oWjlT#p^o6*7EAV24q`gq%As+NHPGWLSJ$S5$Q4!UaEAA%hPrurySF zp+yU6z)Usi4y^BLXlNw3>_$K17&K6XodG!fM%bCxQXEZ5q*dDya5$jimk=Na05d(k zbW0X>>5b>Jl$~W`Nz3v?1*PMTQv{<{_EJl%u1x~^nCJ;7v6;(xoM%gN$EGuu4ky2k z0p_nRE@s4KK=<6Bdsm%sFW2^d%rO4)<;#9ClemNgiakIWoVAP|D0y)*?B$|S73&`Y zm0gAbTpJr3uPCD<5C?!djEAe&LV3;*bNB}aQu3QoG+96yg8MR=JIZO0-fVOUS`74C z_iAcwGXQw-^z;PA@0QIXQA7g#_#u4jKws<3?+1l5g2&DciT!WhpeZrHiKGFR;y#Bk z8hwbx21=0u(K#)580}NW|3<=sQbSN(D6|cx^avzN8LqK21=GjtAdU<^71d2u!UaN! zdfKge|IsV|R;7IT{A*7tKP;>l(jx8)LCFMj@OBkf-am=qSP`-|=t*h;!Td|xhp#ytDnDCJr6-^%2t@2~adT^{BkdET7d>1vNDtB_f&J-wYGyR@x9lVX(v^D3m)F)b z7bqpYe=y(0?3U#f=jp$2tiZV~A5h=deo!04o??c127cWj#qoUt>RBOC@2-WlIPR@p zB`0s|I{YBYXlre)&~fMp{#(Wf$g*kBex#DU|MOm2f5S3cI>p7q(Q z?FK-tmHrHjf4#o@0W9Qy{%B>)O9{VHQsjY%kVx4WkSCC;T%U0>PF_*e0q_Lml!0L! z;e2pUu~!xsH;6{U^CE>n_vg<@DN~`;41I_X)Bx`f|4WJnrd&rc-fSOIAcbw01q`|q zu_KpWT*3ht=9bBxtpn;9861s>w%9+Qfew-mWVNT^=P3ly}e=etA6EK30w*%oWifAc{>zn7RIvG z_*Vv!Gc(ra|Bf}xSmG%5c0qBIERE`SPt=9d-|2_0fG9158NwqB=R`cj>(V5z5|Wbc zX>*|Zxt|ob{=w*7dcmoCljzvL&2#Nq3k=m?HMose`JpH(omEDrt#rcC7)%NrU%Cp3 z9O)_1fDnM+TkA>od;k9Z$B%R$&)Uc)|L$R!EfRV-gNj>000c5AmXa5ej1B~WtN}0= zf-_^;0TWBW`rk68%l&CQ8HS7w;;z7==vGk>6NAtox2o!;MLCB(%q52O=j7|wxQa{qNK1ju2v*rDE*dUQon&$EHi%m3L~q--kP@afRZ z-m&db4#>zzU}>Ix3jKmT0w*5AL2In=1#T~yjih47gGY~CL2BRJ#%MSPCZw+7!T5Ff zYT={;-Dw(37{v7MUW5bofBrFue)Xy@_=J>{bpHGIuTaqnBKhFIxIqyez1gK38<9|5 zXU&Vs^|?A+TjL&eg^aA{g#Ox1(~%nmsCXwN5kbAAeg?=pqJIa1*|rpLcn~6w6*&k| z{0FMo)D*)A2R>L}^R$VkcrG2uE8%TGyn(h1);&X}ps)}n`v754nKu09hNDGQyW6`5 zv{9lV)NU<*74d>dzN8+U%0E1eCYo|yN&)c%-_5ym=Zc?FL9cG5J8%$!v5)6@5xDCM zD6gBRxOH}FY6_h7hQ>yt+*|*1=>MPp_-bFYqLjJye-y9d{eLW8$0NY|r+6JVKiB_{ z#p`ZxasR7$T^tmzQyti=eX%u8NxKo%fa1ue6Z8*6QE;ZYv1ut zq>XwkcIP(wnRC9Xcu&v>>uz_xf8TP2-tW`TtIX_bp9)NUb5}=-jY0qa`e$OW@-tfN_{NQ3^09rkDDp8^ z{d2Q9?^`Th%QG5Ty&g8m+_SOP4x4DMVr|`jjrRur+y2J(`>*w0m>DfhdE!VuU{0CE|D@GYT+eLlcAHGOpiUmDd zQ&PPlYxusXG>q7)hH=wB`IRThLnU?BI=#||_BFh_RV6*N7mgd~X_-fw%H43dCms#7 z?~h>oia7ty#rUzx%LY@PcylMq_vSd~$!2JOeBTXc;Vyieq#yS*yCHTjzkA>*GnU3p zx4@{h`?FZ&Y~L(LG@RZid5nl#;`bG~7~2_2**U0Y)^b|aSoC^M3=Hg{?@tbV+6qqR z=V|1qt2Q-dpU}{yN$c(_FU(t3x6t!A^r-89mi^FecbjOqOea#W^VijK|G=tH%g91H z??ivE-_!H0!FRVx;N95g&+~Rqt>TT-ujw^BYm&jR6Nnv}#}s?Cj1#6OBY9Tr6XA&X z!qHMw3{}GGM_px>M4S$SIW~p-uM=+`ZI7u=T}QMXt`v+vFL-kY?TqYm9CZGhYT9SD zaH8K++As9kvXCxj7}JVT3VFCG@!Y*p&KWSR;UIL2){pip=z z85wKG7fu)UVt#|RFn?-2k9glrp=n~?jG{dc^qtIy(fHdOG^?3~WQ$7|BST&%wp6TL z4p+UvF7FXxt4plMnoa)L)JMiR&>?_^`JRKwI+NlZ(Yv=xXC0&?V*BsYFt40B-CzB7 z`BSsicvcc3Y`eG02>m13{39E_VSU#Aq|mU0kwnK#Gx;fl!AQl~= zx0zGSkF;AGqxU$FQ+rW4a?wEz8kxLxubU7r#Ru3MrasUqF-mV~+g%RxOFS<;YL}~_ zZLy>(dYu*1Xr!c^l`bypwaP?jc86?eUfI-Ryr^<)wYY-u7i2kibud{91QpyEuvrx; zD^)D6zkGw&7fmK+(nB7dsi3YN2YK+Zu@~$3G2BRzs~YPgW-ojiv|O8Z%}N?%yzIBRS2h<<3;LQ};&TQaGjC1BsDf!QPzEtmO}ko!5^8#?9~ z{ZT1SSyFyvz+*MJN2Zh2A>xl)MYIboWaA%8OZ)o!`-9A1uJ+E|yWa_3-mp(fNJ!AF ztx_*_!$6)DiN>F)(z~jWAsaMYVir(Rv8ivomHf`g5H~k8FmaSJupM*6xH>fY(c!?A zFC5JL?Gjow3M=QnVQ2_zX`(T}_~y$9d62s!&XRcDh9^RVL+G;}aSAHbiljEXb?G8` zoX8$;I)nY&XyapL?VE(Aw53;8xgR5+qu~|pT|gT@@=tuqzVj5PxJD$Xw`8@TpsP^9 zu-ZJvXvd~SqWe83Uj3c$lyy>v3N@Nf_-Gu%bN%s8hTcV~l3LczEw8{pd#-BZRt}ac zKr#uquh`A^F3|z-_U1aZS3_SXL79rL?MwN!RAOXG)TC-?zxN1#IyOHQ1cS>kxk9 z0sXr3?QauUZ@CRz+%VK8x0w-qiKk;LtEjg^uo9G-H!fVEQLDZ2>&s2=YS!%4MLSuw zro)O9S{dazpZ?UG@YT&L*U+lV@0#$fwh$7KkWj`F5fIQuZK`7$wK=_KF3nqSP+zvN zo}2Ehzy!cRyS6*H&Hz&HY~E{ z(PPE(S$3Mi(oQTppY&j0eZj)IF}y42qg^)d&66|wR7Ah0xdTo8J z7&dWT94TC$^I8=jB(cYSUaTI#iMo5hktV5{pZeiLr@?+|)7J#tXEp~ix3pUaGEytZ zy6hV7@Kf0`;fq~6Td^jcvEKAm@Eqm6y%-15w_Kx1YyN!ZHZR0f4=#QQ5$|p@uGgQA zze(fdS)7{=?CMaZ_q<4eymrB~zm)IJQ1LRVqpbF{RQ`2lH`jMWFC3dHtKfc%o_y@H_71rx#raIh~lao`KTwCJ=B5-O7r5v`ivqN6{^K7D( zdnUFcF{C#@ipmxxY-a{1E}E&SDKHV#QR0Gbct||tPdu@pPP~`^r_DE@f+Qy=Us_rM zHf4jpGnwY@pC(UIeL5ON9K^#I9}?ioRyJ*d|+(M8rzJS^7wbZZ{6vBEnoj@ zq`tZNKGe*hp?QC%OBQNiW+o@2JNZKt6;jOe^64}BCMGn%y}9oG2iAO+#dB&_h1@xy z0j-6qGczw3goTHDL|&r238{yeVy31mwI|2smp?UTl*#`YpLN&kA&E}kpde*M#RlzC z*Y6D8FgmE@D?9WAPQ236$N)u)ROWeHaXfK6D%u~NPqc9bS=rdyKYu>!2ek~N-6{){ zlkbX&eTO_4atQI++Y6A(Og(+_XE-Zg>Kjj|q|^HMEMw;{;s@-DD2 zGs8?+T3KzaJ0-~6`7>Gk<31uYY{=J9o}P`MddpLJ@?>MSEz%^*S9qr;@KLq#W_jIJ z8sYLf;w@rkyKVs;v-Nl>$+72rBN@|;V$j9R%1X7{w-eLSFr6skqN9BxO-xK;f6 z?BDOsi~9{x9e+bqD&*M`{FrUYIrS%9e{JUOa`yjzlP%%D-Xx4xd}#U??2bQ$<|x2? zOhS1I*8lS_)N4Ec^_&?!ng8k^Q#R@&+saW%y3<~rnIY{f?YnuaX*_z%W?O;0P4S(d z;*NE3fyS-It+@Vup?8ZBbBr^z%yX;ZL2c^-&9S+x4@&Z{_bPbl8R#?Itlx?Y7j$V; z(R)CPq!i4363u^4O24EufYNHBNlDW1Ug{CvakpOz zLn3;MYmPENl>sN(ze2$=Y4sM{eyd>8wbCrE)S@3s&fe~V3z*p4!V1bNPc)zHtalU7 z9WlrRWh{rbvPn9S9cR^CV8XNh?E8B?i0>d|4X`b@`$$*9%b$`N3Fd0AhsJCLhI#Et z1Ru`%EVSy`|5{G}NIs|*;zvCx^^IFDzBuxQA-htClz*d)nN!>&O3PQ&d;L1{66bEZ z4Q#D9+89gSd2HN$>0SG>b1qH?X>5^hGI!u84kclE)0m3QcX!pT7hP;OXK#}sNqQ>U z+JNj-Vv}=C&{Qe3B<4X1Y1ZRj#>LE#8>Dd|CAvA0lw5YuSQS7M)=pM%xpcPld$P=D zp*8*%&>rwcA|d`?juzQ~zuYQONQ zuU};{yQI1#4@ro*nfH4aX`|!kYJcf?crpKHkr(-8PSq^#NB%Xh8$NlpR`KJ#)n_;x z7%y5T#(~rjsnId3I_oD(WraS?aDnGz{k_t>GV?2foHWcG-WU`jwN#R{NP@9!<#f)^ zQ}P3jlXW_LY>L>!y3MgZwyK5xdAUKBGW-ce3bMVGzK?)3JkyF2a~+CJyF+WHL~KPt*g=(vI@C5f?wm_kPX0|pl& zz1NLNWBEpPHg@pbUZk?yFEqar$#E)?2;ScQ)t9b)t&8e*)r1i*8s`VI5WmFrZba%s zTNP)K=D}e@LJc9PFS)d8ibvltv82{mc!-y)X?&^94`Wd3PIuf@{n5xw?Tup7Mkjv~ z+{@i~lLE@lLb0Et!bT&~&zq<`qD7L~u9{X71~vp7UMlezKboT6-DNik5Sk`5_HP%Z zP5V&5%Ad>1l)KQ)MSxFKxvTptS%uBjY%PosZ>K@kqyuZ{q{`R?9a}3p(h2#k)W&vz zzt_Bq`dGD_I3~;v?Ui!Aed_0*#cn zkI%Io83hF*jx+aO-^uy4>f6OhkbfJbN^SZxDwA1ec`1Vy?POQ`>iR;rhvz^q++GDce*vE zUtw0v>KdhA>xz9v7gJR4U%(S1bvKxY2l+I2{F6+$G+Fo!8_Y$1^ED3kFQJMf2QE~+ z5r}t-Cj7x3iA+lIn$$m>`zEf?Oe-s$xW&11y% zRpOgZ7_XaR)kxW?3rJ+Lhc zZYO;?wBvj#KsB|$rCa}^b4>R|$E(+uS92DtYV?SbDJM#|dbyJhBl0JFc`&$)O+A(Z z8QY`1$LI7H3)nVa{KVjz+EQ*S|5U1REB2=MD>Z2&@l>_Fjm1qS4O4+Ir|`eYKE8+AlVczsX$_uP}2*)PG7biBDW{o~-njr-y+_pA0I za7x+>?|(zLQJCqTAteS(8W;Byle3?c5dd)8i|UdgHJ&b7JJLRanIvYB%1>=);1R3& z@#RmgY{_FklXVJnGp$5+bC`3%LJ$`et#0}niF^qP`Y3v}?4U&Gos6iqQNTkxMVoIm z_n%bD8FG&Jt-a=Vs;=$801Yz94#<)-u3d#4R%0bI*An|?k^6%f~7E-N9W^#E zcms#`&V{pOx~>vMb=p|?Hrqdhl@;C+ow<`5xN~(({HXfV(0Qrol*E(=g~c~=Kc)sU zBR_pDpJ72(-T@KTDBJua9_lUlPx@ljYh92dDY2$c4yhifg}!KL>Z>cpHkfvMO9J^}8zf2X7Shx(_Ye^2mZdF)~s5FI;j-Ec=mTy?$wo z!-JHRZ>}pre{cmwB*7_6Es9P`PUbc0V`gKF690o{)FSa>#!2RFJK{wkr&xfGZ?`3k zX?+8Lol_4d^4i}om5Lc!E)girgsUx}nrmxoD$_wdkTmj0b36Q`_H-Se*n?b+NdFuu`tcQF;mInf58^rY{`GY zmP=wC5iGyktYunV+XIf%>}7QX1^>?t5Xa_RA+e7ASsmj<@x9%fC?Y3EuX= zGoSxr3EK_+)dm+|SNvaGBcLlr3G{z4pI(?xb8au^J_O2v2o{-uz|zi+>alM?KzML) z6ez`FV=4Xtjlo0t`08f9S8RW8FC8=U{nTEF@Pq$QSWvJoCokU%ReoforKxk$)3tJk z%l}5~NldcKG%p&OnldvowDZ+!*HL-Ps7fr2(q)=|M%0&gCvfPelMixTG@F8iL|nSaj?CeV2 z-ETj6g1;*u#KS|#srTYVufdJW-4hd#gSic*lK9Bu5C8T7GAvPkkhixtsE ze4dSV)k>zj7x*Afi1??~R6W-2ySRV6r?}PfUyF8vryvpbd)2f<2)OJx(pj#tTx;E@ zu+r-sB(BOw!Bpk1yiTK&ofdbVW1%<)#)@stDG@Z9`xN1|OM zQSrVL0E+8jUvNCa0~-2e#{r@858C(XNA~G*XY~At+}RbIE6a1xlh%4j@{uE#ZM7c9 z62GWpC_O2!sH$wNYlY2fLcz>tE+#9-PW{%Q%SO_i!Z_1+Ss85U%liyVMJrxD)Dj|X z$fFOmLeuVB`Dc;~YwCi#TH6&PdcSbXGfIzF9#e}3#Yd{8y*I(UBE#b~wu}VlQPIJr z2Va4mQ}*;TYQUxyVl6;n-5I78y(^z0V(Y!^TTIt>!&W=-W@`NTcyG8TX0ptiKEXy? znTP+Pfmsj--~MZ7y-it(Yp(TNAS z2wI0b`g0bCpQRC{SSGE7 zqw$p1?0I%RNBtH750dhkpHM;nxwDsX1;{QTT~GFkrall{vzXne?QCyvR;ADOiS)mi zMJeixU8kK)ER`#tKhxh<$~U~?iD*0*NF5yBqe7idxpy>spE}JbvxZs(tSUZtz0|MurPBgwfGmO{dHIUc%)%JRn#+pqTEZ*OXNm%pbZ zaiSW-YLp>qY@1p`)8cxbF|~8f5`Wv)&s4dmEl4=_g6s3MXvJk~EB+N;4J$PBBWF7S z5&2bg-j(gi`?>J`@p`b%;#ONU4^v83&LhrCUm0=4^1>X556S$F$2(tPT*TbQ{EVMO zlOeAvCp92;(UzO*YghhIf5SQdNaR`Z>_L-8?IFevB31eu8U=5j@XfeDcq9A*vG+rz z6U*Ciad9{}I1sxF2nfJAX5ru~jNn*X@un-BbcWnMn7)ZSKuZ~s@lW<<0 zsNQ$~D1w$t$MJ}mP$sbI0SEHw*zTl);l|6AD!XaF*D70TLu5A9QYKGd43u6d;99xH zX{wTrPX2yRF#4*UIn0Rg08=kVleWd1*Rqz+iL7=aW&s{s-zYxov93-?(NQrXqo#f1_&@Un=0MChkqFvh_UBS|6WIPamg;mF#w zWbL>k@$MgM-160{3O~`jNpaURi#vRFaMKh>L9vXbODK*4!$UQ zv#%A3=!R?kgMz+IQukJi5*TR3S?1=JvmsGoOyhCKkIJkzsXZ$TsWrrG&*1s!U~uX0 zDJb(@HspCRlIvM?KruffcJZhrsZnk0o#58zX~*SPGH)sBBRZcdDL(aR*p=aDyu)O< zOwFg`YhoxR81eN9|9Q!P8_3oqVib_Lru^*L7>IR{w+x%Ppt{ZLFmZ8lv{F5Ev8%JH zH}>z|O`yE@g2~yH0!QsC3Uz1AlQ{&86Cfi(Z%Djmz%};_4oobmBK5Vra6xmd z0ovdCb=0bCYIK91rtHT`&2ZyUrCA#`)uIiNQw9qedxV=a#kkw#LD>av)lGc)m@G%5 zOi{)Fn@OE%qu24=l3%cK3h=B=3Jm3?0#1;!K_9~@HhNTtJ5=zB?3HB{&!J5a@a3Jn zntYSzFx)mqK6kH09MANF5&FlTmlI7*U*~*D&@j)YGNi| zq2OJmD1AcV!`Gg9#iN|y>8nZm%LrDIptgEb#}5x=TPc;$$WZtmZ`C!vCAm- zE6=n*@ssJqvA(L$CI?&1q)&SzE@Fu39BS^furYIRuvm<`o#iMswLY(tj5v`A?&@s+ zvLOzJ;9YD;c(jw~QAqP0!{#XRQN_2)P$o%HP2S5qtyvsTr-UGXxQwY7%6lC`)m+sp zpo4P(B^zi0A3l7D2}xYuO@-cx_`KwpWLSmX-XVN`m}E~11L0q|kOKOAWF;!%(I~|G z6q2A7l#~MNgb!^_K*mizoJJ z7aY0oXLarTn+X4It%%wO8eiKYIW?;t(Z!&If|nPDBMBywTj6E~5ffGTr+ z(w_@TrUek6xIb^!0`WOyDTaoILXmLDx`cYWYH$_NuGhU9#=jH+ZkVmail?{63&2Ran z{7xr3Gb_sk^06WPg_1|#KR%xFS*Xp6KO>foPJ3ula1f~@r=)ZV6Z6Na^7H4^|85bV zC~?|?Y(0Zy!|&NQhQEKAEcf@1Ao2joU<(VRXu7{vezcmjj=T1}BX_n$a`CH7MykF& zoPQ!dHhHqYBw%)(+;ryvS6w@-zm`H?O3J6C1eLubzi_qv zW~cvhSWak|joPtKN5@1Q9^z7q`)8tkDGHIO#ccMer#eF>_h&kYZZ!s<{=3xe+mnrt zX_tQe`H{6<7EON3qUNO^q9^-Zkb%`vOEm8$MmINbSCIjo0bMZRBSzGgjYF=C@v@rd+ z?;t*7YGR~d;=p&$XAeT^>|tL5Ji;F~^mC4Ze_#jxfnH>vK6gg%kHPKT?+#s3jJ#JG z?tX1aqBiI+u-QgVX*;%jcZokI{mM0xCLt_3HQB&h@6xi+yGZ${81Rtky2MH0GY%YxjAGfP%yHlwcyT3)bTpK<%e%fQaNRCnBD zLU&)Hmzh5|FEP=esq^(YX~-sc?d<3n@%AlC-E#~t_2BmQRuRYL8_zP*bMH$_w>39= z2DP%Z-52X#$!GOBF7|=)U|{j!@LgS9eVqw8cL(3SsNg^zQXv?n{WZPyg_PC%2U}a> zHMS46K8Bo9=SpVk?|o+|6$xY--xUvzS?}(9Oohzx%_{Yfa(RC3;oxAu^YIT7L(I*h z1=EZb%%T3(;!8t4_{-e(?Ulk4BFTbOoU-OW4u9y4$}9F=ar7nvDayOc{bw%lJ7T@- z*XKeSj;{9@e&tnp`J^HJed5_J(Q!MjJtc~3m;_`ZUQZNQ`0vTjl$H-)abVfnStnSh z-~D<4Ga}<%N|lt?^9k#4Imz-NDsDWlZ@wcHuDG6wubo7iN6^p6`u<=b=p~jsVT%Zf zXQxZ|jD))`x0n~P&|0w%ay64D_v1!!J=Lqf@F87~44t*KHi$wT+)kR3ii)zLr#9`S zWJc+^H@VO*kQ!AxM{gI`Nw=Q=`nBs9ml1b;ZBPsr)x322gD3&=vp%Z6v$Nqz)ISD> z!cl&-tZWe6dm8s>ZE=x+l$2_n(EYKZg2J;ZdoC~hdYmpGRA)$TlDmAY8Y`yf9+RrBXo&jLpvkscsZJ?RD{#)(h#QBYNyLS)Hx!RGOwI?7uw0X znnca4Fc`f-kK?CFfsG>AX=*9_x}=69YnrQSrl_xB_Q>-%9SB_V3tHYgJDn^;`k61w z<}-L1QnK>r(cp;eAP6O-q}vx*Oi!=DS-_Nga>Lto`=a08iU@Y2%&U1$wJ71|Tqa?6 z(C5Xjo3?&t%C{IHYlQu$q$JG3LgHt)YI$y&!R-W3hfs~p^I_*ttU^x;XZGcsj1k}5 zxbnp%axNhpLNWfv9QxhhLQvx>DvH(&7OK@oWkR;|`tGgO*0r{9kTO+k7lv&X=hr(nrF=X7w`nc2{1G7ZW3sno3iBeUj@Z8f+hq_$e~fH{c4I zGi^}sa*X8)PwzMV6#I18H}p!UYUS6m$&#?g_sW!!9??pnZ?&$s2gKOM4s;u5fyken z3?sYT@T~fU!`WTYxQE%dY1qQ3HZ}_ybMo|Z;De6aALtH_QK@RtSMDBWwa20^eDHPo_W*vl7ZcWipEhbd=)G_1tqyNUd6_w=2Dm(WQ@pm|3M6NjRtLFKlWcW zb@00%b70-i2xAvi;EmM~U#oq5Pk!9n6pdXofA?r#My0BC?AP`JqKb&}*L@8QQa`9? z%|Z9^*34vIU;8n}&F3-O+lEI~4t^M86nyuSmXV)bd1y;OFf+p>c4VQX66N86PJ)4f z0i~TOYqcC4%7M``c_R=+4JaoO&uR`zQ$2kuaf1E}vPiC6xdNG>$*w-WzMmN;4c6}; z@l0CP&!R#O`)oYOXC-cuk9F$En{fCLu^mf;9Q_0L-AGMu*RDzfV8@iH@rEf!&U~qdc@@AL&WZ?eSqQrZ6!Jdiz5I;bk zyg+NX>D=f~Z8{=N{a~yxGL+U=zOggF*L&EYkWgAq`-VUV)-R#a(P_5F22q$#^|YJ( zscU(}?60wKdtMQ{9Z!4^F@MDQdG;k<(dTa8XqJhI`3<={cW&??lal*ADPlvStrq(P zG3UAlnORusQvGC@KczpsV}0uyCiZcM_rKV)P^cIHckQ9Y-s^_+GYqEM-I&e49HlEN zd=xBLtD^0w7=$mI$K4CB?zgvunK>N?R$44m52y!ka%_%G`lw^sRmQ8&5B>Iyl*bOj z_u?X2J?DBxO5UaHU0t&@tC|GI$=-%{hEA7nboG*;Tll_GK_SV!KIzL%YTKh9(VLqY z1d^&YHl|KaP5rE;*95&q?C~VzdzwN&#eQ>5I8&F@66&yTEhrdABm2UnXl3?WfcI(m zeF&0pnRX!e@CmAZgv}BOd8W23Savo>F)-*^xQ+GLNFiw+gH1o*Q0@GtufrC&QKdq` zZzc;)TG(xs@DyG!-3IS!ib%p`+-vZ4v-so6RMWN5kwEu23DLk^iyy)s4x?^W+oNX> z6KW>ks>?dK&R;c`!6fJ*yneYQbgJNP zAuq^)GA`T_4b;&2xo=@@BzGQ7M&ZGxC3b3H0>;J;t6f|v6%tBftS>YaRPs|@BowPX z%Dr###OLP?hh>ZHs`5p9!}56aUjhdmOA2$UUxv|-w@b0Cg(U2KFYdm%Qo>;`rPf5` zMsd8TxH)(}SFQBeeaQkd!z2kq`C$MKcMzetRUpLY|cuY1o}XNfv2Y=6j*;&OYJT*M>zXDA4&akyW=^^ z0n_@L{^f9zd#2sudWo2v(pzPDxuW9hnM+Kvja!F8WJd26S;#V4<5xTBZ(Ud%#T>uY zKdLf5sxV4yS849F^^^AJ^fk6cal2JkXWgcT<7!@pY8$<3n_2Y@JC$-lKkqVA+oTYU z;rg_|Q{QS$0M~P}d^G%^s$k@SQtUb0-Lo)v>wpKDo!XSKSMdeMylYkeGn-sG2!hK15Qy z6g(dp!?z3`RiP^likEDlL<>PCo-DY{Ua)1$do^4=kLO8rU1@Uz>y5LdWQo83LGbH3 z_m47>IbST;1O=};VYzlqd;#@JdU|wJeq@WMPh#-502I&wj$JwWc);b-_wZC15SJVDJ56wue%GV>0Jc<5b;kd&u zQU8d?{P8q?xm_lV88@3d1En?Z+`9)InTiI14|3xV@|-#J;zBttvdz7{@}RU=R$+d=p9j9=SEMUc!i9#G^96eekpZr^Zx^;9|iF<@;Tvj z9={W^VWB+d2jX$a6QZY~5xeg3r%@H^St!*K)O>}?vg>WDt7Z^*pmP2B>N)nGF}ZAI zwxe`QQ0efsn~}vQ&JkR^KR>*h@EkQuExCXD3p#`_H7NbaAB6q`LNNadl(=CE-TWE_ z82oQpHWhM=k?c3vw}~AUFOOp)vv}Qfd^3RjXprh8am)?eAl)&OqVT0VbpLwRtp3OB zUD+G7|I~p$GvgaE`u0B>*6epk{-bM=u+AgAh77-jG=B}svhb^tFjMxw6zr%6wi@6=AyT9C^GSr}t zlV<-F*l6pJRLf2%iv2x>ccpKR7-rD&s7X0SlqO%Yns||&6S4ekeF{AkrL0L^rnx4n zEUxp4o<5Q-6avIFDPD`%tYp5Kl;xUQoth=8(Ydq zi3Nw$C~CPr!LOc4Y}+`KY*lmm1uKU4HgRhc>U}o9M?CX&%j!b0qLR4eT_w&1MI(L3 zM@E*O=S>^-Xz$Cn32=fRk!L^usPs&-{KPy>LVP?sL-uZQU1(@47M3|Tx8>(ARKMm) zpE&0v1}hjF$4u`YXHlaZ5K=R>$3;5xb!QlI<>#prBI0?KrFV>9N0L9))1QSrFX^^4 zo#=#Lx44*pK6R9|wSDxfQ{9a1tX5Rpr>YJMD(9`BeN&-&qea#U`s6z9$&UrC+;Vuj z!iHD!TUK=_Nm#uNcD_9biw}2ePZ>538~9v)#VhN4kdHMtpHh5KgL@)2r*My*7)MwD z`Q?5lQlVv1?(9}=dsfpgG8hd?IK0qgv-eC>C=d^va=dJ16%>lc<1WGRaYW8!)p0{?ko|#3%!LFVa!i;)BbFN z>z01~&e9%)A~fB|G*wjC*tplsPomzwi{O=bM#*Vt7;{JRmgn<2@of0@8b14j2j%I# zq#_OkUUbbv*6Kg{NAZrf+|c1h4Rnv>+Lnaxoab&zJvUQOV0-<YigMWgP*_j`IR$u<-@}c zDp}@vb5Tvv$A=<7Vp3lkA@S2{`dnqWv4zXUo!_86WO>A;MN;=%AFVFS={v65(de76 zI;r!sy>3@|R$?$|^{xz>zv+rlIR8TnQ`^?XW%}E_hm^OFY)n`1PCslIt?;Ol*`RXc zlyOYNn(BL@=eNIH@hYF{&6mHdA|@?<&o*b3HvPHqIRbp^{yE*A@XKs9-zT>=#UVP; zIx?MivS46@jvW%1SgcRZiSD75U%j&n8e62~psIJ*K~L{)ao>aFHSum=Vx{>m%|>mjEu2)Bvm0{u^>hv%3@S$g zbLH(-4HB0EgWR%HYsrw=qo~q*G(T$-JiZ(3Zq=sdc_-?z4#W$)Vfl5muT;xoOeU|d z-?QATP=T_tR@4_yrw4*YV#UQfaMBL&jn=eK$wj=cv<^=lRK+|`huL`Vo+zCjsVABOM}$NT{SV z2ndoQ-J$~0-6h=((yTMsEZ@D~_j}KGoj=EG|JWC6t>>A~eC8Z;#69kt$GtPr_-zPz zmMXaHmE+=-*GP7JZ;6;~VhSh2F(jW>jU{N@j-JS4hv}wcV7iF%ylDTUasCFZjQii2 zGf;DUqi(NCvQuIoSpBSJH);}a-=?CY1D1FFbs^WE&cs3mc4?gG04Xj@zHZN-xGDH1 z>h|pq(Qdjj8o^Ik*nMs^E@+jzqX};hmqvfKetxx^8=s@a@M{2Gn+f7X+=0c%NCv!m z%h&Vn4=)$Gh6?8UcaCf2{ExWi)e{^#01L^NEyb!`OqhR~>sW7g{?1=OpqTGh9$h2- zK_xZ~Q2YFr&^ns0wAjCBeHBbit!CCmF76gCe96;E6J9@ZxxGzZ`f0)P{{3!Df9*J- zSGBm8etOrPd#?5%I?R_4V|3n++XRkYa1q} zl3N;*R}0Z@+@$>pCy2}qpWo--b42#U-CVRSockdE_*YhbL0RVWZS4+UT_d*FvW7oY z!L7yF0*{+Z+vDUHRv4GdFlS_5h-!) z=b+cwI%akfkBqDgoVR z3GafZ48K14oKPDBw17Y_q^j1h7aN8+R_9qhsA|d9`h}N05qm^ocxAB;#uD9!ZHZCmc&e)Zkx9VUX>DCMf!11(XD zXPR+X4*#?AflSVyx<)2EN>KwAoZMc>ZamvEfaANBoNPBT%0sQ~e?ghw$L-|@=UEP@u^m~B3<}V|HX>(!FFmu{fZwBHa7V`Z&PC6b0dEv@e=05 zTsY9O0K4m5pc)|E^h3U zAc6;lW2rxmILyJkSkCzv$n4$N5V;E_BSl4)Q<%+;jhudc5U6B5W%*QEx(BjUcm8x7 zfK%x3VHW+;e*?OM01LEb;q&{y5$^*l zrDyOO5frRK(2P<4pbJGGi@O2l|8zqSoE`s%2dq+`g~Y0#<>*gea~g+E#6P|J)7Q)} zM25s?G5(GTKiqcKxBC2xxd8f3JR?#^ybg!OtZblAbz1631GLt^InYArjfiBiGrZTo zVyZ7w|Blc?TrPYPcl$qn*GiNw{2#w#t7-m^qQcvrwg1EoaqRAj|C`5+xXf`_;`g6_ zGG9jhw+ZpWzCy4jzZS1|F}98pDWYZ;{=AA z><)HoYWHbsZmd4|^))nIS>aYydT6Ki+Ym$7r7So4*N36h`v8T{ZJen8)>Km0yJ3~w zvj2*cbZ3y-F*+!Q;~+Tg@UwxvsinsQx=7gOEm1k?1lQQ-)BJZ`aA~#ID=zNGwYXc> zMLeGUnyc@^>*q3v;bblLIymfk(94m{R5jBw_5Dt~gx3n8hD0Lfk;9!AZU%kmN;#~; z4EH(86DEyJmSz9OhV_iJwVA1K&hmZe}6an!C#MByr@f2pHCen`@z^oZ0oA9tFVN<$U@y93S=U$dD4ZPjgwbT+T5 zzraXtdJv3poyVuGy^zL`fa;#cm2yqbkjQ!KhfpHOgc3nl%=Kpqq*dO+3cYt{(=eCFlVlg3U5{eLqahIaR?|lDSNIH&e@jx$@`A9> zd!wTlo>ca@>}*$HsbL0@QJ`!0+cLR?zN|aHn*58Rfnzo*EQH*nNL7KXL4V`jvCfl9 zhy8Dk{zVTSUmT{2Hl_DYYTC>k6x~#=Z}A}BX^|VhAp=RXf%kswy<7GR%M>Qj<@*Ki zo$m@h`*rOmvv!${{?t%B{5BP%TXm(MN9RJBpW%bjed1>uR3svso3fzB;8R!OL)_kUNv7b=cP?mMO)5zK zE19p)d80wV<5QLadhH2`2u2Xjv3B65n| zMBB9MWLcHkFLL%ju|4XJl8un-nOh>b&X)SI;|XQ>5k2Fc1?|hEFQGU**?!vPlys>q za_Bi)rdKc9U<9h=J>#*TMb&xz>ea{2?aw?kvvocgG0xIr1|lF*G~d}RC8F3{f85%? zrf*x+Jy8<1>TY}4-0WqJ(qVxbHJ^F3F{_H)xLRLFT2#qVHS0rEkrTD`hb`Zk zFQ?vTkD;a|KrHua;fue^e~3q^$2GX@6Z)m);lNjeRHH;5hmZNm0Rrf())putH&t00 z1l`+$lBhZKv7hlQx63uVTu*f1U3dK&E&Dc_TNUGh{q2;w17ab(Yfv`{3aS=<`$mCW z2awsU>^_jm|2nDbi4UnX-TZH_BMu9EljO0gg*)noozG+6Ps~CSNo&nzlGvX+(u#MA z-dDvve9SkW@0S#Sh?f4p^&R9pIiZe^)@SX_}H4 zc`i%L|LR;`?#q#HY?>BM{&6);?hG-7R*=WW!qscJ+8)QVR@oZQo5G^Wz+Cb6J668e ziSp%oe!f-XzZz^=4?SE|J4IhqKh|Rn%Hv;dzU?(|zr)w7o%}Bc?)-%dcn<(!fG_uS z!8Z8RDyn9&pYRO*W{=m(sjydmD%@;Tm4G7=JIptLUu3~KpJmm#MAu}sJ9z&F7{};p z!yfc@#5PaN?5ikI18)6V)gA2|)k~N6Bid<=@#e5ggkt$Edr zIHy>cj5&w3uz^fc-$Ff84=U0;mPhWdthLIPz8qghfB1o8k9K=0E;f0Wctv~Q{@a1a z3tf|Jb-Y6ZQ}cBfq9)Rc7=(mE9>_NR2xZf2T331?`XWI$h@`@XgJfg|-;>?!JvJey z3^ewMsccV80nfXT&{Lf+KZqeqf8dA{S?RoS@JV^@aV2jcHvKg0Nn;er(AvL?o#~J zDL4+Yx0ZLY)}E*;4Cr=YLEpg2io7QJ;f-?vEJ?ec@qI<;X=YQ91s;Ug^n(eWw zS(lC!)m;yY@M+inN1{ECrG}Qd;@51iP5yXVe)@eD68BjHlno)Vqojc@8?=$s)Qpy? zU#6ua1$CE#BA60taP~*CebQuT9?v?8+KDicJTWZp!E7F>COn5`$F`M1nTR_;m;XGe zW~XK|B2gi|`2q2B3X&(;4zqHXr`g%;K4Xd4FuhnS+1_66>5*fRqrwsy;LR#s z_AnK%GA7sRTirt6#mF7g#<=+Fp|RPs=naXV;jtDzoR!Tf`guLyf8dLDaF1sORAJ7Y zAFc5k9~#mCG>)?JRUcqtp4|9Xr|%DgU+)9(f808SLhU%Ms7kb16i!$pxFh}G0r1h}-*tlRRs=_JOsvq~AQ_=! zj_3b$wqd#eZg7fL{+mn%W@M*9=#2K{?}0OWk(@fF`!!lWYF_>xFL;SJl7G?a@pr7k zi&VHW4?_>QsV81?y8j9>wE0dbm}E$9t2nZ*I{W|dC!3Lf{}#mGfB)O?yG=7G}SnkPJuUvs%7)gg)Kr80A_MsO0^p+735d+-zK%fQmZM6FqUxhk{hHz>R zch@G!e7r)o%)ib|Oyt|mG@ZkqTxUZOaddQiu@#4~AP@FEgCU$$mP2DkXhcLWG%e@f zESBy_pezrCm<%qzPWV18C1q=U;y#XA7qmVAfNi#9Yj&Lwa8V{4LqN}kMgHo0^B$oO z?a`Rh$8uwJkiKM0%LH?ly z8wjDk%K|90MOSaninuf4VgNaA-npxBFMbi70PSo~ZtAB`(jp=hz?v1xIa1-&-q&}- z=k#HKCE)|AU|&zqsVdv^_)J6c;I|zj7T%zWgqL_34-c<&Pm z_t#|(5V?S6^fjQ14!`?Cy{)ZH#e?gu#Dme%QB+h^adB}t3_wW$a0;X$LaSk+p@a*_ zA)Qb_LI4ZPzm_^AC$+fv#&4m^4h{}Ko0`5^`EHp%>HDR9`A$?PFo1V;`CtIGv++sR zLby9zTl7Dxg$EtuZ-7tp#SyF(iGw6d6O+ARpv7)S9N`@$?t;icc=kDTqC>p7_bkTbx$DjM~w!# zDnDOeci{?hDymd#Qx>1qu_|)|gCB9Q&u+v&XwXaQ2GUf2G3an)iR1;CsGGCNLMJ z3(~#sIU(}jT&}8&mkFDj32Uuo3`6PPkoLPwi9d_vICLS zl$7sBJmo1V_r=9Ao=HNR9eiE)eh0u&I;Twjx3}@1pQR$~j=ip0cs%+q>|Gt{>>FvMY&Gqf^xFd^sVVfiODSdN|>*G$`?CEx~;rXO*^*{XlW)7KXA6SQ7zzB7Sjc!?){W>dFGicq`$HI>`@-|*UGP7 zu5B$eZ?~hjwbi+;y;geDHjy3vkYmh{zoO82Yv;{E3HL0s)|9agomiB#o0l@qn2+Wa zri=KQBrH3-OKt@M?#K58DtBkMYLr#qQp7HIQWUPUwPt)JIwp(KzMxdM&n9qB60K27 zrvr86+M>BlUvzWSLVQuDI#EJ)5$W2wJl`)tY7@J2E3X;a-?;$^)g1Po&R&x?LGX+` zsXBAxmF6C|Zq>QOk{z}&3z|r@_96@R&mo!YR%}&?Neu>XGOjL;Q8ugnrlThtWbTyS z8eHSUT*g|U#X7MI`Z*ppwDz>plQl{xJ-yjH<0%fSnXII7kja*rVb-%X`G_#Abb*JC zaUVXvy>t24A}rA4WV6CWZAL)U!T+2{``{P)GKs60w^GFLAF>4tH~(n8W87WoJO6Yp zTv&J_{2HAAt&_-YTq&D`gL1Bh--Q;YB;5RLq;>xGSfX5_wP|+cXo~|l+vJ5GEPdbM z^j_M$>SpOiu}IQ=^lhtcauCaal`7!X1ZI24K6Q&{;|0E;a5cTxKTXO8ZW%^=f1gh( zc<_W2L34dv!8hCY_SKNvVYZ}_5+AM<+x0be%Q#8(#D=dwo?BTj`;9vF)?;0qAI%eu zn1v#l{`F3Ia)#BN^u&>n)Ddp=C0inM(%T)1-34rq(T))F^cYlxB8!pD==DRoZnswx zt}96SNY)+X#OWJ*&>zkT>JFP5G7}fljy)f9%;2zJqxtf3(wWfVl6HpDo5jadf^Uu} zMo+vygnN1qt0;*s;h+VE&UOoyi{Y1#%M@b^1d08u$Wuzv&dt_jTXz^yC2SlMX-jom zDW=xcoSj?pc+2?voXnf@1Sba4{vX-=lT4eW^&JgYW~n2HIZ<(QTnZ;UUNhwBN8M{- z$+q6hN|0XTc2FXn9*qtmO8MR^h-Zu0m(61TKv`(BAW`{zLK&IB4|XeQaitpnWup>( z%hZ#-sU9yOj0GCoYk}AUsqX_)sW*8`W-hZ!MEGsWR7+J~T62iH`c4n~>D{iP`-(I1 z-y{?BotzikqYijY_P_Du=(G`KJvO@Wv~pv+$okL?VVa;$wqcTeM4+ULVjTS!)4=n$X;5*oF(hYx zte|IRsPBNotn8@g@Yi3YEuR{Lkx(-=02{%@#``Z~LJltY|NGV!)^^G^PxaxqVusI5 z^$j0NisCSfnmX7k8rt2rwzRRfGPH6a=fPqA-)s*X3nvHXKdsNoD3+G0BLZvvyUpa- z(*W;MwOl)c1>M$&=rmJxLDRGk(Y?yIOT}$JMqj|9%k^z}_z_JELu>@~OGMRfbs!?j z%{{lj`Lbc0y_fq~-rP=Q$ed2wu_vB`;I3N(Z(ZI0mCI34`^p2kxde^5tq=T%kL}Gq zCQ3O^Na#I~bMs7V=X>y?$of-kf~ESDNKT^VPqiY~p@8>uSz763Y!lOkY-AgzE`$ud zo?`kl-FgWOYh^g;@p8^}T+MmtC@6&w8k0{>tumpcKF@jlBfxP6 z%SrmzX_F;Hp8i(Xeo)oOjvB15oC z&_ny6Y&+Y%GV}V!jrL8w2b4O!UW*H|9fp+-N0VH-d!?uR-g^e_2f1Y8kE12s92c!$ zWLCXbpO9z@R14-&u8EzEO;=DpEF-X{^WNiTrQ_xd%g=W9cvQNWu;|3FL%Pvi$DljW zeY`$W5Ex~mT(pUiM*+`WYI-r&u;!6^Z99F+gg6o19UWQ!{(|M=-yU2vLV-jxXmtLH ztpTb#fE?TRvQaO8etT2o1Y1qRBK)`GljGta$rhsuM@s+|L^n-OL2=4z;# z1rQ1PpQ0bEtaQ#5JUkZRY>;R@G+Mx6c`19ck+nyu4e>TnnlHgsJ#=eL=`s7zzsNm{ybb7Nav^f z5BK&I9e@Cx9lFFB8C#p0GJ)Xu$U#{}1r$+|peUyJt7&EvBot%lfT$@;N3O_NSx!za zT2i#LK1+_qt%&T}{cK7dmse^iw4Nt#_n^^AA&%#rE-99}mbrS*=LRrd z4ZytZ@RrD(J9q9{Ezn-4@>>sle%{yNAjjG|4#DDJzP_aDC6I4f1Z}M2gB=K_5TJCN z#q|YrU)HJ*LvFCKvx9iYaPoaD&;c2eTDVDn_iif10VlOalGjULUkCd zu-FseNwR%0bIm#-$pqytbqPSgvOC>)HTau~m(USeJ19>N6p2#1m`EMu*$G5}F@J#f6GMkD`}MA=)eQ z^u0c6zQDJ-vpO0(85Fs-xe2)zfqVCQ)}*mm`GPvWf$WWp|G{f+S$5{pXk2fHptKoK zTezlnGY{TiU`WWvDGCx5;2;Z+h)~VG_pwugmd#}UJ8-pwST1Ounm#7I=e!PjKAfbs zGfffJRXaCEW8&iE@C)?nUQcdffu#C1j%_iY#Y(qbCK459?Q$`OC`L_*B|1Wr5=G~T zkbYpo7zT-_8}p`^y2X6O;B1S62=3_VD@6g?t(ix_J6DS&70?L`cf3u?NHQwa>uFNSx^4=xDr8f>-@x zqeEx{gylsvK6I+GdLSOPZyex^;jK4A@$MrdUvUS%K4{DW`o9k0CcgvHiHp1N8q?73 zGIo$lNFKiCK9$RamtdZqO|D~Vp)?wdD-Y?OG>j(ft5>gTNXf~iF352Pb<{6hPS3Y3 zPhZ3^drdWDWJ^66f%_ibPDt93D<8S?yTYWVBE6YH9X_3Lm$`V=tVf?}rnGb_Bg+^# zo?SqEK}lXu)308nA;dJjm|aTRo14P=473+B6VuMUrD5aS>`s+9moC`U`Q2lyl{-@; zv?2ZG4DO0q@8NPd0qlRKaa=>Pn$Rzyt8s7NCUs(8zt8%ExqHnAG5RUx4hu*04Th;A z2UW<`%oPMFZY!H?qFF?541Iojzc=^eU|7P0;z;)%87XO7-uA{ua@pe)l*JDq0dcem zN)#r|+v#u|!|RTi%PWOse=wk2%bKZ+U{C{Pt^KK+B*&RNRaRq_ z>c^ZqIv5)=(wXJM&|5bzC3_+K?$PDNxw-U|lzrkrj3fO4DK>$%D>c4zyycQP++n5!kNG$B#4hEut$#^-D6w zHi3$RBUml-!GdW!@U{H4dQC9XD?WKfet~Sw%Nik0adR3F6BIK1U~qJ>lxK>XHku)0 zELaDd?fD7HUc`3X>vqcEpR`-Yiu5288=(7f9OGExb%eUymNxW~#n5-+ZRRCK=4QfM z-f`@ zc4mHFDp|tqg+z{8f{toCpULdQV6{bhWxU|>YcVqdIG5BxyK3qcK4p*E!z9HGcjr$Z z)m)7}ytac@>)vgRXlK=6XUMJ`ZI=U=`VgwnVwZEq#*$**>w3%H*w2gfxAKm@0$rr$ z7%6S8SY>3tU~pPy-~9f?adDS3d+2$xCs!sxiARDK7=fjuak5e}PU{L?tP7tdo=Q?` z=5L}=aeS$QbD6`TgO!n!(-8>d2@{ED$8ARP^|40PcV13GTE+xN3Jk=H6;10ZRUM=2 z3@LFEL^~=mY=%vsdjtpjJU&QsnD+IV_|g;eInWlp4Gk5=;y&Tgir&>(7^nv26iA*z zf~Lg0KZFd^Yk!7-@593>htgFzH5VR&0-VGf@eA7uGPDP_CzqCh?CK-|+&8mj9LL2C z8UNjLXqXm5g#mW{k)ZhEyfxd})N_CS6RN;U@~5|+Zx@pr}aJFpC%%89jVQ_(s*X@&Bve@<9F>8q1{oU3*98 z=XXJ07i5)}92hRqafD?i7Cx8UO-EA#Riyd%?KLve4Fk8>jXL^3oplRz6dzsAgCv&& z`tTRSzyr#MmfMt|2AndGHla2(VKO!Dv8#!4>;vAOYl|GxIg8`(w>z*ZI8a1DUCOott^vvgvXl&Ha(FBjlmSszw^yhKA9h$`;6a!a>+uW^Wv< zfE#skx`|O#Fy)!TF+|lif(8~rFd>7AFmKPg2^|Y7HYR3uARlc9MOc0hBs0O+7|v2- z4&K4>o2*!?PC<+vZZFs${Cd#7{to{Qe0}mqz~Y809FCiw zafI2mlMogpq$|?8e^VaUFw!0Wtl2F>wpw|UzKtq#GVuGP1tZ^qWnV3RqRDGp6z>CKv;hSGtasutFj^z7?;jbf7O3KR00s^GLZ;-9o$b8@{ z56{Q`p?g!1f8M;XCE%oFIqwkRd{AUL{2R0%76}v#*aF_4j?R}lis7V;h+n_vO{1ML zI|D(WzD`!ZkibsH!F4#u=QHnP#6u)ei5xaN^# z-Fvy)G_j~C-a`bJqog;=7uI#bj6kwF?+B0W&pqUl6_;(?1{{7}3z;f+SeRT{(cVuq zL_W5e@)NB-o@SwK&8i232P>#sBO@bG2evd}uNpr>$o=ex;dHy8L&|hEzI}1A*?8w* z>&kVmZw6Ob2d}}xKplV8!?d+qOv>(6H|W1mCO+L;{Qb{|8Mi;V_oqqbjK`*=q>mSS z__wsQWLo^0qYU1$2|8;={zv1Vi5hIlt;4Ls*;3B|1eMnnYG|)ySn5o{1qDJ zUh|FtyWtbFalt>IX@A5AyY3y5T&oxsy^ZT8LMBP#Xxpe zdfsqpU8p>kZ;tPuDe_jK8F!+tY<+J{=tNZA)~PmcH-H=@TjR{;B~4F~d+kFe(cN=c z9`~;n_~mAx|C#(D&>eHdBW<(Q>K;ousZz6y3d`a{-cUGRG@A!Rt z;p``gdh}P3KTcYmzhz9QK~&v&SmQrxXy?~4W1@##$<9Eow|egUs9I_D$wCYfKAmWk zG8gi?HAPL_t>m|AhIwcu!s-&pB1rn!(KHe=c6v-VP0yR@BC`iB?wd0z=|;J>L!J zUVilF>Lf}kDusG=I06Dy{kmQrEpIAlH5uFPy=|Hn?ccFOZioy@;IK0>iQgDpHsxnh zEGDfaq;L?=`?IQxLGCaqDM@dJ?qE0mD1A;wt*KAHTHzW_XZ*WQY{+Xoc?|uVU`pZO ziinJSMtQp^E25btwt4phyKnB&pT+i-Dn=C&A)}?XQ=m6V%>T?i*6nkn-P}9Pd!b)& ze3^1&{#;JM)AIyG?LaC}$kTmqD#JSDfQZpv!+rCCQMK57SLSQvdZGck6R5LtQCB=U zYRlp%8FKYAUx>{i{Bs=%QPFSERJ@PJ_AWKsr*rsT#bZ8xp;rXOpUr+CmpBnI2?R8e1*6%puED#gsWYlgg5$1@1|K^yK?gDvR4edtuB53{bh+%@>k z^v7&7MZln_np*3>z6!#>UH$!#Qi>P5oou1)z8TWVc4zBqiLxDzA5+c&a`PpnK}~tT zM15;(>-5~Y@Q$u*ZEgL7#pvRVyAF<=e#nQkbbwI24Ft>! z@_1AcUqNsOzWWOK-IZ^;4;}!QOi$1D!Ol`44HG3I@Vh5Rp{L8hnsjELmd0u?%b9&o z5{Keoxzk#kZCqKIiehSU<1!z z5xc*%E+6$h)DB)+B=Umfo_J(}#Oy|LFy{rF`O#!Yp21&s{DszLuS;WO=R_hOn%syZ z7veR54jq7pHZyJ-(R{sv$?q8))-`>{Ei3QK*L^vBH5>W5h9_`tBiV4gR^qNO#*6{HbX8su-5iefD8x6Mx&?;VLMcz zd5>1p%eIm^tiLl^_0PL`2f_H!`gc6u5I2yz0!|MTc@3-14_8a*9v|j7I+c^@8vnf? zy>CLv9IDS;AR#+YY#AH$^LqMm%3+@4n%+X?r~pre@NI|ZdbMW@)BEQ1++2GMCj$%1 z+eoxYwte=kZiG-!>$P$Y+oxxyOISEJHy5&5EsZX&ZE1Htl_ByOc-?H)RITnDe^`HD zZi;+=*thxl-9Rp#xM63pm*L*MO5xkXi#IHcX1eUtmO=t4qFtOhOD+D`9YJPhW_^8q z5|VfTxtAp+{ZbOWff)S7`^?k!*1o9P9kV}QWb+f=w;J7VgM&A2NS-c6Q&w>}l5Mc^MJQ_qi8mZ{g}b=L!4S+gk*b_uJu(_4N`S z9!5s9fWCn2$#8+O0zZGnrl(dMxKFQim6ST0A{chIx8Z`4i144&Sa}lfnVeS3x^@yP z^7ll|X98FP4A`QQMh|^B;x|Ep_Ry~XZLCxO6{jI zupv{`dy|1cM*7Ql*|sLqea+}&jt9HkhI+9;N(ikNF>hXq#hHzCtt5A6*;sQ$2%wCi`B#!3?Vxf~N z^u2&-zpAH6UBe6AXzZ!p+FB6-ozv8Hc|a(bgS73a%OJQ8gUHU#W-B582CkRbE8KLq z-^;fk$EQM{=5<5LV5uFet7FJ3=P=p)-9z=kyvw47uUG=;oo$`L8CT2GnTc9htA(Sa zh4IyAa6$#(*Vhv3ChTAT!6MJg1W#0E7yloEChO z_4d7c_bPS-2k8ZE zLUW{z&Ug*gfp#H8+*Ii$BCZZ0dz>^O{;`zgh{+upsV^P9tVoOMtv0*3Xl7!Pk(XCv z)Jhm2b|o^L-RSUo)1yFkJX&MF+z@%>ey9YVRVSEe;820{gzg$ngC?uMqw?SCD=!sT zdufq_(}|ROw5bHGg*JfkhnzuA+&33VtFDfN+O>YYu8rQ zH_@oKwn>3?W#?jpG_LtM62m`}ADLjJ4n=-$LL{XAPkC=}8$`KxSF#ClG{&;ML(8fUY zmw;`$LgGg%N0-ZpzL&Ca7MZUlzV}O3WkC+lB#C7d)ITA`9?NZQWo=Cso51bT&xz9q z=XI6MZJOji$K}(BZ+;wwARo*GlD0?3rO%g`!Ck4op-xrjsNwg=XMOYXQGl4}1(3Vs zs1khL9+P!6)|z3NP?C^(UYq3JpV`gd43j1E*nU@5#><#KbECDSM!a^YuFIuF^8Lj- zftRl$AGR%y7g8Frn3o7GhKpAoDo%n^L(?43&4X2EJPXU|j~BW41!i}!z}TLc`^i`D zVW%}~hw~qj9ln$-Cv{(+HgoXU68t5&f$FSY-CBfWv)A!AZP?2wwf9*yJr)j z%1+?LIez74LR%{|`}4I`T3Xt@H7|s0t<1*a%#7pgGr7cGtMD8yrZ>J!m*@k}4$ln8 zPm#9Tj`(0)0GC89&O@s9U}AL%PoLc{_ks@U*}%Tu3lRI37YAg!&80wq6>_AHwo z$vpma@s3^>8}emBLkBA6#haf&KtylGB|2nZa3Q}d;)`Q{nxfXG1QGI8W`{N!z$UST z?CNl_C1hw0d8nQ0JrhI2h^=-iiQ*|79M@kXcPfpazyF(?tUgnvAjB$BSC8=IEj+|g zi_yf>4g4XETSSN)T`Ckh3av(m#>P%GOg7y#1x!uitHq9L=H|CKu=IHY-S!0 zkb18_Ct1taGW%ueejKw8KJptx*KjaeGr_CmW?^|15->VTYEeE?)=$r^LHqWnZ!T`; zCFI>uPVDSXV?e=?-3MR8NBd1pjwiN9rX=u)evp1 z-gvXhpoJ(S3S1jyK?VsOIsmzKf62$kM=ChS2_~&3ZltK=8eAs^884gAK{Gdq;gSlt z77E`!oY>aJ>4QUNSNnWJ!25weH;a#pivuHUL);G*!FrrXmzZhac|FGd+#a^F_E+SH z2&}EGVdS!2dmC!~{*YxzwHRH&r*Y6$ltoVW$|hLFn?yvzCoU%`0@P%9Cp~?0W+q=c z#6?z+en;UqP!T>28bs*B)@&}!TTF2LJoqq`b2E9#X9zi*S8-yuAweBnT`hPiCkjnZ z(xO`Ke%5}#Ft6XkWLdOxNS{pa#?6~jlB6I|AHOrme5aD`@%ZrK!T}5ExM@xSazvdn z4<1;Jl-j~dQCqopujQkG$#LC=rw;zhK0aht;Bqp^I(t6tUh}81;!~*QvkPok$#8g@ zh06NmY~P8ALo#EuqC`53W=?yAiwDaw-+}b=s!!G0)$nwh-r!(8Y?bGA8! zsi2O+?!LE9#+dHNdp*!E?yDz{6gYZ@E#<(SbA>!tw<`I@90J z&A|axuuHF+rxn_2*7tHCt2N&xe2Ba;XKPp2CX_Dl+=+L?z6*exbz(jmPxj-2_B9g* zq)DXtY48PN3hi=-fXEp;-Wk)~>$!07t09QI?XmBxBCpiTbo=%s2-;8ZSiyOMk$kdAdzpY_V|R^a*r1{E~qT?yj_ z+#+B0L3JM8SK{vR788bfdqggH;5MjFGnmd6mT<3Cn^4e>;kG7)(z7c0{^Vz}OF0ndx%j7JYZI~{y^@UA;AKFr zw-}-*I5dBsmnALg?H>4M+FIsa8srWej0^b|@+9aZJRu`Z+)%YY8*8O@Y(%o2mb}yI zNRaDG1qayYptBRe*$_Ng?J_$4+%vVsCaO5a`tw1?n5c&%LS_DlX7cFPR!TKmZWs~ zF`&K0_p?TV_X1#p*VF1Fxws0&x$Fdh(y)N921PJ_9fP`1f#OPzwpc zeYq%pC*6rf{5UGGS#!u&di|{w6=1*%6(2u#-rt<*KIsJaMNr6@lD9%}eldyZit&}Q za^UM9>IIS?2sEZ>6cpNF>UNd~?IFxN^Dn&#uiU(Os&fqh4oZlDShJqg=4)QdhBy`u z{tq2#BBRvbsNmoNPZc1;kUR%BDGgzx!VMr}sOM7B)4z@k3vKc!l7tvTSpIGE3?x*o z;fRB5HwiKENfp5^_&?x1IB8w19eg43__o|_GO|QCDL0ylB2>6n1`8URnil;uFF#dA zQCykd|NZkFC2vS9o8jx-@9PSd9wsIvMZN5_g0k~nC_mnd!O0I+Xew$28Conr5W>yP z?FAasSQl^FY|kqNlNA;fkz_znW0QTCUz2A?XQp_VQjVsf z1Lp(zH)ls18^t&Mb%6v~Rv$7vmU2o!bPPff$o&Ez+r!x#VguJuRH6n3PRll6C>29b zTq%5M9vzIghwR!k5?#KIPospvj0?gTryAY53H(k>7`D-8kK+gx2@t|y)F?FR$>^+| z!oBKMAydoek*FZ7^|2%EoXM4^SESP(>g!Jd>C;JyJfKoCW5GWLzeFA+q??y|v-%-u zJBz!#=_i@*G}w*|TjObaO+I`Rkt?89p70H$LnQmZ#1lvIn#C3iohev`OK^xb9opJL z3SBiHYIcw!K^PQ0>uO`*C~P~Pnw<*QN)AM&B{)0d9hD&`4$&lIYU)SE!L2v>o0M|K zRt?zN1Ya+lEj&dm?NXbGoqk<14iiPaM<>MmLWCM~BxTXz+T;$}D9mSPp>TX?Y^*sH zS#7l-&!k3jZx}XCbXp*sJ;_U`8F$aN*J22GhM0XD1z9^1*Vz3E;ArbDp}p^^Py ztq|dO#W_Z#iTO@-r4jlWfd5#t(6nEFLh!Fh#_mFzXg|g}()vA7RaAs^`+_IL&7)(W zKPv9PIdAvH%{agFg`{T#$tK)7@qH<;S-9WvVO+z>EwRCw^CmPM{*~X?hvpT1Jv}^U zafic+y`{hqO9$MhmN0DXYr;imE`;|jjzkE1xwu%Ia}aJ4&2b+g1#=~x8-4a{V!ytG zRhBxZeeQ9e{^%0B9PNh4UBrMZvjJ_8HVj9EGf(dZu; zMb&HjSD8D0W1v!>w?i?zaW?3o=83!-{#~-Zg&Je5+!~u9Aq}R6tlF>0$fi&U(hsR` zjO~ck^5Qo_??DJ3Usa+S^BK>#UNj&K^cM@S5~Y-yA8I zg|$}A4$%eAL zv+wDNHDq@jcu_>p901{#RJMJ#VXws!&PkrtmGkU+SGs+3v4x+UohYxaVk}iNOc*6< z*p<5mYZm4U9hY=mKlci0hHqbs4Bx8F&4Q_|&vtZ2q^JY%1w0V)8_1u(7ES)V8(_gc zOZ39(JJhcNw=mI6&YUITdonNkf{h6)J7cFx^QZ32PEW%c^PWF@HRM;k#zRcGZ3C>1 zC4w);kP2G(mt9Yi^PzetM+03G&aIYY8#szrp>!4*SH4yM&|iXaDCFioC^3egj!%t| zO6k#~J}5#$I%Ilv^?`x|2($Epg#rnao)OC1I_EM8j-w9ybLRU6)q4#GYhty?{KUnY zX6#^VUM|v*x-HYiYd^a@UgHIYV_<&(dfsV>AI-P%@$*o6e?qG6{iQiVCz5*Gk&n7w zSIdb}RunHt_dtZ{DMAxgWYP)Qu!@gl_%KRFsP+85Kw+7l)5C3&oUUvA{blgBZhnXO zITL>ksSn)a?gcF~F)y4kGRog?SLU6R4!ZxC<0$;SFuV)!9GK1|c{7Rt@LB*RHzXzv zq_eso5qV{jP_k9&EOWCRRpW6gvQxL5GcYs+`dKOmaTJZSbfx#uyLW0FyT6J)qR|jt ziY0y*#9WA4`2lVUHjf0dFB*kE`}!Wy=L9zk!j$N=?tBhU7(e+qzR3xvq2{K5AnC>R zCb&89h;QuAB|_gF0$^NPUks$>g|t{Fum75%HYR8raw;0sOtj%E&vSJD4y<|euTcs$ zEj{htOQ^XQo)@;bhEpfxq>rVpyIeUh^`c(>gx$#sn9olqK)~JZW)f2cVa!oTYh7QM z7h(0nLt!l=clSzojVvE-gi1+DrhmF3$a|5TH2>DVEC{ge?Nrm`IZg4j_4dlco!&o$ zX|M4@#CT#~dZp%#1NEzwT*(-9zM`WV>+L0OlhN`WC|de4;dpZv9ZlM-03tG6I$1HU zhK$?h7z2DV>x-na_m?0e2pwp?xfi@eir$LB?z%MZtaiBI|VPQ-zeJw2yeTd$a;QZ!SCfu7^krIS(G8{vKeSFo>+drme1z6 zF7SB(RJegMW|k)x60Y1qXKCL-$rU~k2Z!TJN|qb*e|LKB%XWrVmv%N&d$!*+9bl-XGs`uJ}kuiSk`FE zU2U#%^y^XvQ1t;c$}RwH;5DKooLM+;g1EQGtx8^m8Vzfe2jn!$^bvp&)X~+gx$ln) zm>^L#EEI(^Hxcn{|LF@Px$j+S5SLL{9&gSrZ{~qNZ}` zd8E+P_sK0+^5gU-1N4sB^75kCp51aWdl|KH(F=|CF)W*-!v{g4$<9Z6`BhcN-I@gj zevEi1O=pwWBNFX$rMZS|TYW`huzYg)J8D4CmmR451LW7VH&fNf=wk;4s&Ls~)8fPD zr?*|`wGDa3YuWb8M^=()-A#LYdk}2eoG_B}0b#LTNy%M+Lv?fj?!4oCNA2LC`oJd2FJw@5F|hR~BJaBZPTy0m zs8O^ld-g<-diC7tRfF2VQvceiRqMw_VfOzkD0mVoMuRxEqs3r2w%(~ZC*GBAo$2cA z3^-Y7Pz?Zdaz=*K!0mItuAiL@%Pu!#_ZtPRar$_2$i+7ccJTZ{`g6_@GYUpnGSYJ@tG1_(*QYcE=gX_eaY1 zIQtQPetyv62?AHJ83D-f?GZK#vP#V&%%rwlbLGK(a{}2pA!~^ZvZuEJP`or;!rWjB z4svr-)0JW=l#H{J?|E^cT;uU_67!{;@u9{92fwjPH(1lfnv(U)ko&aTc@_m0BSX1?9kFBvNBef~n+w17yaCfbtZtz+UClvo+vwlyUSTB)H zKDvb)7?ForvpePnrLPzcIzd4lnCYaKkhuR-6$uE{0Tl6a9=QgN z-#2!iPwi&h?6L&r>0ePB3lva?2M0M#yL@N+z=O`xp~gh{4cBpZcZXBBf!SK+VT~hb zQh)+P0=qHp3?_xO$s|yAxZ}Un{^+AoMYhDH|o4n|pa1Q>{D@s;vvD|NT zi%Uv$3r*fFegtm~OjQ?(rcvcTs~Ji42-}!^@y1)YySnF@!v%?;8)QoXVib+HGHIo8 z#KPMD9(5c5B-h=;!}MG?!z=mcV#O!!nU8@b_AjsjJtR!X3^MT z89oI5{7$PDsRmD;bU-)^L2+am20j;tMa7L6ww778OF2Su)v?iclyZbX-37Ybp>ew8 z>37T+O^ocze_i5Lh$vt-fw<#HG8R&oGUHfqZ}dw!{7f$$@*O5y2)8pia~0B1 zQ(p(Nh9d~Oe!)g?JOd<<({mK&9?VgAo!d4~ZhzSaR|i0CF67JhELem|&Wz}*hP0#~ z6R|R5rbRqkh%9j^PG1#hqzuHgWc zfVTE1KsvRn-POP1oD-%xGvH5^yh(RlMtYn4PD(}vN~JRQM|-WS_l=-r0vKwaa4ZzP zGaL>!?LA)O-^oNAg-@b{S-Z}2fMh+1~#O&_Zh9>W%2=wc-Z~hjJ3}dgS=u95v1b_`*2A#P_H&(b5$KX zu4_tPM9^bms`k&|kj?Bli!-|)?y+ygD#gk|MB4mT%zLFK4V;S;YASjbx)i4A=x!8Xg>cOV<+-!-N^(=c`cKS;|+fYcIw_3FDUyiF(O z!Z!XJ;M0CN3aKr@4C#n5Wltei$RDELMH>^B$S%-53>tE1t!mxLz>g@YL>7l@f)fUn z2{(0Dh!zmqn0k+F>1_oogLxLn>Q+0IDp-BJt`5+D=o6BVo^E1bK&$A8h*`kAit+kX zLrSJH8X(ZK$1iszZKAC`2uN10zy}W=tZi%%e-}bD+hJxXSG3`74%eEySLacm>*KMp zir=-hxDg?z+>J4nXvJVf8iCohf-QQ^+RgyxN1m+)2E#0n?C|r8^Mo@XBO^0nd>Ubg zv4%>)pOnhW+8(-;HO0SU+=yBnDDHxr4UlOg*%g4U!i-NPUY1UJ=>1}LZw3HGbn^Au z1o0 zfW+p6*$Koj7TCZt*BO#ypYI@>w^&Tb9Ae^XuXH>3Jq6Du*o|#<21NVm;}slE{IVIu zp|;2io@UTfvDrB!Ucnhx?OlYQ4&R;Kji-5zz<)TF|l3#GIx-#HK|m<;;cR&eu|B7~)mQ)jQ| z#6BClKnPaixW*MY*OuG_!4ujV&SDY~g2H;r6_7qQGE6)QYN}VsAUJpK-u?TnP^ka@ zosO}+g!dsrZ~+r3whsi=I9LyO!cHsG!tL1Jr4Pu2R5XZlTutLZxa&PZqXFF`B58ZZ zcmLM6>VMd%^3IA(+W_wqnthV}Q9@ige>`*U+mDl0kb3GiqjutrZB$J3^gnWP;C^%& z3*ZC>h-bzng!{2oRHOi~C>*>5-G#DFtpf!~$Z9Vg-}E{z8{n0_#L)nFET$yep}!Kj zqeHpLaFDB9+Ygs^9&D^3wEp#ROtcK3K@q|@5gOKe=6dIbHvk&<_ z^m_PQI^G1fZD5I^ZsUZqD<+AqKn2%L01OuVx)xx&FqoPl5X8sxk(L=;M|?fn<9#@H zK#wc+L#7~|9SB~4-~na9XTRPR6mWrKhe$zSo+>UK+rIxBN@!5Q#-qCLI^l^&0x3}n zUWZE&#yE)JW8Kcon0vV!xXHQ{ zxeW>%3sJz=a$BvTE%-o=FeEvi-%k+$p>^HoaJxA2?W9=Ns+AQ;iHviZ|NU@l+u`27 zPjx@Zo-N-XfqeqjmtMtn?@v!pA#A7J-CZcn%crh;!sK2eK7OKVm5yQ~B%EPM&$7zM z6f3H#8oqdej!R$(X^zg1C{A#{14;j#wpH(U?}qpH5izC5E1)L{ zc+CSLpU5!($izCzrh5>iA(3S^GxC9BrlzJ)azn(VVLs_A<1m|&@%0$Y#KIguEm+|U}brB-BWbAGg`>UZ@V_(=dTwY+RN3iT6t~`*KA?q` zwqo_w?}Uk)nVL>EMl;wLArR~sv>a2|C#CPAj+?``t}|=nNsUx@fP4e&5y+zerLX|p zid6Ih94*K|H8^Knai1;mtAN{A0VX#G z2QDvVgf1p?r+$m^u0cOaJ2XQ=dO%L=6yL2|BOV0&!(5AillukEuPg>3LC8%eDl_yx zNq3>Jwc`$#Sngm&MXc>yCqS3BA>nB$2X`SRH%6EpipDVP-_soIWEz(x;pxv5wzBvUm?OB8^=Cs`w@t6f$ z%a$YEH%CE)tU}c{HXcq!Suip(zRSQz2&x`mTfTlGGy)FnaezmBzz_i|m=?PM2qA!A zbb_VI$@yLFaUzEK_y~!kV=PHDXslDNkN0_4SMe=C{Myd6R`vC1bmN{toIW-!q1T$5 zjcqp{8Q>+mnha3v$9GJ%m6w-8=^yR6A$X6s{pqJ3vuDe6;$v+m1PBzu47jME4giVx zeJe@H_pdqtT7MECJ>E(hzct%gxR0MBORGrCY~O zd`AdTFx1*%TmNX{xj!+3S9U+L{?DHzxH1=dbN4{g6m9+l-(e>4H|r3sR)*%Fru_&? zgVky$+g_bk>NDW+Xpzn!N^)D*5rK$1PW37>Nx&KC{5dWnnN2VtTFX4FQXA$Mmi+KH zxJL;3<6Ny`Mr`xCLnxc>01i~tn9PG-99>tBkBd88Iyzi}Zzjp(MIbV6Hd0yH+QMMa z*ATQn-Q5LN*OnaFLz`)c#*P!}iNqhX@yZmnlWn(?(2$3Haom0&{=|bzd*;j;AU~o5 zwisdn4#CU){!Il!(&mt@=FZgE9;ndvx z5WKpaZ>}NU-cRG71i&>A2q_|j;@5K_e_L8C2TL6He?ST#?ye4#ky?ZxxAI*{=6}g6jdhYB>k;95!08cY- z2TTmqnpX1wlO-a0J7lStaL~mQVi`DfVvWp-fE1YD?=?ZO8#dpB*be+;L{0<*G@~Tm zkjk^r(?eHWDxl&L+N}wOLww@I@xl#x;ujZIC- zNl9zma-he!pe-Mqj$Y!on>gm&|2p!kE zjEvuO?*R0j)siMSJ3Bivl2j@ci^a;hXE9g;VBK|vv=}Q(4(c=Zajn%1DC+$6redh% zcf7_`b{zrWFBJVqQXV3(UZB!rwjA|n7r}~Nr?9@Na*>TFKz#PVl)$ZXPU$)V;dH#2 z)BJM!1$T7I*X*GC0zyLlj;E`UT3 zgDBkBrpJb1HnF+6=t$fF0Fz+-5bZd}pDhJg7C`ba2mfxm;6c*(aWj_d*RH|#8zq|to`*X+5tHhtKPhoFxiIN8*8e^!Nt9ZuT!^pfwxYeBy(R?e z$Dn>SJ2!^{#*^*+XaC`6g-zNB48AB_OVCnz-n!P_Wzm~+9^wbYB}{lT`@+gIK%(aH zMABkmX3=s0u#FlrsPk)I;Naj8n*;v`Tb`j0O$BufW*;gl|MSoS(XyqT;()VuT>W zy$>RZMotQ1YB&mZI-F{YCDlD{Ajd~u-4OZU>2w?dF-&dfL>MNP9<_=qMrrEO0^WF4 zpobZRG0ia*kUDvBzsKK=5a6T2=^-h+y?yPFY=mn%KHu@sZu_(wcVT(CAQWH_?h#3) zVu~lsOvP`9XnZL|SN6X(?7S~Qn;;VtfArKD-ZhhqBWW#4qLWEpT627!S{XH#1jNXT zI)*q9b*e{*gvDw}dD6Tj$SyS9-kG%XvVfxJ{{C7M+NE*NYs;icqhd0iU2mAyX86)~ zG5Se`v7Vk4aK2+1U;xH3kHr)n)muU}GrIwv1q0|usSG07^a0I*egNV@&TU`q@a?Et zhL5ghQ+-gf(OKBfm!%I8PlS>U0?{G1FSd>=GN>pnJ#wVh(`8{%YuOJ+*^?QBN79gg zL#8`?3R9irjG}3s>t<#+O?q|#340X^Nr;rodeU(!G`&fgUNrfnYwY+LOM!sX4W)v* z9YR(?BuYf-)~}>-tDQ&reFMq`CD|1d%UK~@4+Id1KDhgoX!DZZ3f+0Q;iyrjRPEcx zLj7WtCj)_)zoJ2?gtx->SYa0Bba9%UtvR)8Iew{AGy(mqg3&j>Ql&k)ZA8z&FgK8O zg*(usKQ*FK-z~Ndm}R|pK2oJ=>lunOtB{uv_NFN4jEUjB9eZ&6HpXGsKBn}Z?^AsJ zdUqcOuPmz+=4+1C-Xb*=BZFA^9>*ZDSde@9Ur+a+&9P-i`L`u{pR0r&0 zgJalu?%a#sXN}ST^vu7v5)E~pi z2FiZUCF1J>gL-8x_mh>5ct!HS@LBqFr7dr5Ew#i~FOO7S$zJugpxW5$%{+i!B7q9DL z@9!<+V7$S934!llK+&X&Ij zfhu?L@L1_!XhvVZ$4Y}T>?p)&E-&C{Q&Xu?2VM-16DRR|Ucu>{fZd;F0b8!y%Yms4 zFhg)sADDD99wN7%-#-HpYiaL-o#N}TbXbqgTiWai$;oII>{tO%iBF$C{de3i!@L5j zzh^SbmhWASFvEdh@li=yvE$lH$n^q{UKyp$6fAmwjru5S4I(Iryq%#C067=L1>ur3 zkohI!wn``~6JR>~TmNEqVSmrBn#I>t%zZ$4WC5OirgrH=kY$XVpCK^=Qd`#-yqH+D zf8iQz#4dXifw-3$SZ(s?QH6}a0cg(w8h{Ykv>lL3+6A=a?{9C(GOi#H zs!9=KVP#*)t1a=aGXAZp5vyhX^mEADt5asv(VJ?N{1*bTJUeSzQv2cuq?6#rZE0x8 z0H0=lHwA#8K)FQ250Z)D@TOe+Vka6HO^Gw0I~!RHZToc{z!q-q1cU4Y2AeCG)u@N8$> zx8MD~GZ+LZfCpe*p@t~x$549$A!wU+XXW+gycz(-;C{HlZM7~W_zPgYt<4YHIyrA% zq}2nHHLLP;lpTs>qvJJE6sUmy(F(WNjrxUanj2@}`a4&-k|s+B(3DLGtN#dIw0u50EtPa3*lOW*wC5cc2EOZXQq9DAZ5ZRmijrlT`-OV}$k zALq{Vv6oC5bF*D0?8fHF$fM}(z7D)MzPa)|;Od^g{3ksqs0lb++Y(~bWR98n7;z&QucXetzlpp{IG_J(2od}?V=K0>!rl6pJ?$p&ReSLi_>N%peZ9w4$ z^7J1T5HkH-mJ{HYk+C3{2;tU+ceBr5yr8lgqkIM%~4B|yE~#o3c7cv1##e0@)ne!c@P<1@VV~~(n&TA zHhvv`dotP|`M>iNSSG;=w(WwAFezC{YwYaI+ceHN1z&yH?j`!S(1Sn613UcRpBy>j zrkHcHwSAGGMY9yo20Asz6@{;zcP-pj!AVX{PY0{2y60(>io2PdoNNHtVc1>(aS(lE z-1cx{0l2Wx0h4xXp)bNNDLOh@cETtE80Bez1q7^Rt17C4RdM41-CJ=Sp0>U|9zMS4 ztD2gc-yblfzCEZJdI(7?kU_nvjs9n3a4@8%fAR7Tuq!Pr+yOQ_4X~&UP~gxZ!~7h0jXCxH&jD0FOHv0hK_Bo?C)0>WT1R-&Y&6O0JHeJqxL; zlkLf#-A;8{`T6%m9*WSOcYz@;=oCtV8V3<3&^Wf4Vb9gN4Vr6ta;03n zV2br}9iW>o`~CaSibggAU^h4J=?V%7y)7q3J15#RGhuGYVIM;U(yx~#fn+f}QwMmd zg8C;xvLFOko4ivM@FcC^^g_wA)7S;xM?GbAMcftCm*Ar9)V75G>77X&Wfu?_YHo() z_m9n4c=CVy(myaCYJ57{`~GVz zX?wQ7x^K0wt4)BGxw}a0ZdG1+#-*PTtWQ|vRr7Gi##a}D+E@e_-F8^5CVtT|nTBd3 z1DExkisS1LalG>xI3i$NM#m5=Iyc@o7=7a z1^qHCoTaa_`vvw$N5vf-+J(&O4(4W_{#lP?&D}BC+Uh-0|MO{mt6%4^)U7I1+C`|C zBb9G+st|P}o;g*Z|w|k~EyZ-y~J^oqiMwk6ks~CYJqrxM{ zqCuo%UG02^t|#5Ibh4{+OVOP@qg8smMvC9+D$>-hYd%}=Rqm@S;X-x})H2pfbmnew z?|;PcJNx%@eo3Z=_dDy>_?z-Mot>m7e0bYa9lF}ts|_N0M@!tPjQ#JgpJ*x|d`c6f z=Pt8~E3+LJ_9qgRVe3>^RnTA2YoS~8`(C{gBULf+O9>+XMUSk3l9AG)60=}IKGJmh zK9wnAWVT4(F7NIEZa0PMxgMPOZ_n=hAdjj)%jKxc_|a&1;Olq6tNvpjv~IfI+dLQa z`+{7i*EM0jnkyQ)Dmit7&oA@h(pBz=9(6ae23~ZKx)PYo%QejN!>Z!)6TRwtRlgqU z@O*z%_r`d|s5Qx^pCRoU?PCke584?6C1FCSy(I}Bk;~T$RGHeuc@)&!9eaN?y^Caf zhw4=|5TS@OGi6P`^28*0Fg!8o$EPn+NG?N-$TghbG-=<=XiR?oUAnaSVy7*oJReJ&5a=u0 zDV!pB6(N_tA&C?FIBA|?lz-|{F;e4kl(Pg)lu}h66-saL%sKL2{Q|$1m;9}AN*>E+ zNzeAroK_rAt!njKXWUCy?vuA4Kzx~^EwnB%`*eqORpMMm$O2Z}w$--^t& ze5`fbDDGt`Wf*lm%F`#=lwIoT^Azcz zop8#Wv1U&4&F_v4GWTm|3rOG1Yb;8Rj6j0i>rTIyjUQA^(2x!`|-`TB$A8B zT0$fdUghwCj=$F_hCDyze$SQ5#xWidA4TswT5F@cxblfM`7Ajm@Tub~TC}Daw9?K} z=tN)XFRiNxFD&V&npJgWaPWRTb*s4Y?i26Fi&@inD&0n*!`CjJRFAt^N7;CCATMpC z(es?4!%YtHD}|wSYxd8(b01ui`=0)sl8~Kzgzc&5CDz&#tZJR}ntm;3FMn!c{93Gf zRitdnJ+p_QVZixX&Do1iPkC-hO`H@_Y>E7EpG&BU?(Thx`p3t=M(eAdVGSi!__zq>f z@#Ft?760G<5k}&sN59oigHjpjse7xyx*@X9z)5JWC!QL%LYqvN&pPqKxrS-qsm}LP z1ahmYEv#31Cv2HLB|~$92G4^1I!l(kEkTJ*ND&88KsV%b00~ObYROb)jz7-|LGtUR_OWOZ*nVi-$_3l{S6N{jr2e`{K`tlhai$p)!gk&T$S3X;pkq z^0sRGOW6@U(!R#X>VAnZUjL=Lv@)tG{#~tEDL)%X8q`%Km0T28LcTJ_uY3#xpU2K| z=jII^`T=pdh!TCXcbz1(!CiI1>+=^`Todrq#7JNN^+zxbs@L=yj-lvs$JfGL{}A>m z^54y1xhReztdX#neL%((-{6Myr(9*M4kK9aRotJSs7l{;LBEBd?eWG9B+aD!pdBqph?>3r-g4;mxD{Y-zubDuH>50#gTDUs1h2MW^?-+Pd%a zUt@|+NUTm~!Ij;kSP$zLXAg_{N8 z-bv3YqQu$FxRq7avyv8&La}z$8xP6OBJiBlqvFRPsq)_Qog07uM5wMUajR&v@ZWL$ z*&$z(EjiMZU&=6iOPe4do)m(e0zxOV)=xuFf4##HlQ1-q8og8lU|&J80%= z6ve_3w`y*e`nK-6bolNym4V_0mVk&l>A_Y5g$ORr;{LW2@zN!H@E7A9+IM&_i{s~R zSD2Dsj#;%cDZDNhRl?$yIyGULxXUYV?bRV+K~%P$l+}CU`OZ{On2T%Z?q29YYUXDH z*9O)l25l&9xc{w+aQrGiGrpm`^JyzFRIWHUqHKR}^cIVYtqQfCUsuG2@2i>MF@HU6 zkx#SvdOAg72YXE{^onaAg*|8Y{v`IYq&GyU%kt;W+D9tUGnyd(Z)f5E^ZyGw+-c9FM&$=;(rtZZyN3$Q?d@Ye?U zQW1(F`CXp8zxGItF`^FCHjSu8$Hx_S^wN0q0O{9GNyX0LsDHmFicj_m;f&X-Sg0u8$90UaZl;)y@pa(oF(jK(#QKS|XegD0f#uX$m5%jv`wVzKL9X+FmF=1imvuM+uQ39w#&soX&-=3$(VqAT%7<(Y!_3S_fTuG5b;7d3?zVp zCp;}NK!FcRuZ|!C7x4Z)I#N>UjPJK?56sWsazAkjK+!@haiL3o3eiMCc<3HU4;;u#wkW!H7+W}7L z&R&Wc@^H|wE~j`}4k~5}hbt)u*&^tr4V4q}{tcQFa;+^^fG~kS#l^+5d^6imo?cVm zUT>4Ri&Hzq7!W$sXk(gC$-*>LWSgGSKMqvBDM*S<%ZgR^0k+uS<;$zYHx>==gwo{j zLLv+JD^TidzO)C(3oeIcU0(xDP{f5)&vYk9$J$vt6F{qDZn z3sQF4rzw(}e?>LV8YD>$8*ru`u_<6)9@{`BcnvyhO` z$$*(q;cLBI6bIs_UlvoHtD{=|^3)XHj3++7Tly!alCkV-V22_V6WtwDio<)IhmN4z zRS963RM#Rc;c}EvVSibFjeqi7DSZs@gm9D8F72Mx7>OGrV*xxeMm6 z#m4t!ivQ+9-&!33C2tH<8}jPWol@D@)mmdWFuApzbV)lpHfnC+qS^>L^EFTiB z3DXLpNYNTM=t)b6x6HKSqtKeM#bE;4%3XpoBFDrK;D3ic2?Rrd&SwJ@PFx^jbvfNm zCA6EVHmIxV3%9Vxef{KhKg0R%tcfl#K5SOW#dmK=u)Z)dsu@Clj$;SdN2|1Y*w09GmQ$k?j9pEdBOsMG<7vAQHZK({3Tu&HrQ(I_rSLq?c z@Axm%H9H0U2d0KDFw#>xgdcv{@@M%;M^9-Dx}M^WHu4e+f)*fSzW+3C9Hu03?0rON zsK`?-vf!4M`H@QR$5j@hX@QpQ@)T>WDdP=)N*Gi!$E!=&G~)u689D+T9og8j^YfES z;!7W$%HgD3qu2S+EGorKr=S%4+R$CnQN1&}xp^Mc)35P5e4iDsC8Ph^#6IyULOX{} zVG#PvaZhH5uF{|N0(-mv$sY7ga&TPTB|T~h%Pw}L8GgvzFIQ2*35mEtQ~l>pch>TweF{`SWpIFwJ|^SG%8Vh`2CoLsp3(E|JvR4BMaDEa{xmAU&~ z@j4&+!Vdk*_JVoECT9ic;Q7o?@b-OkiN&-ZehIuGa0u}JxF?}wWVoJa{a%bq0SeqZ z!HGWTiAhJaDyYTl8kqwugB1IS)LW72H6@ zocilrSdB!Pjh_=#8G27H&`m^+h{Jp3E+{m>27;6|6h-8Gt)nE4)NVVTK+yaC;UT&L zy1Q?aIv@iq>&QkoRyKKsoZQsdxCmtV+fO0b=c6os8nwhd?#k4X_@+Wf1RT30;YYB= zm--9u0N6-r5nPn@uECf`;JSH0x2{LGgJUQWDbL^+;&qv#OTc>tXEAmkVAD_`MghkL zLa0Q5$F>?N!SLROaKZgnud>Z`Z0M4m6wWV|y@HW!az7@*GqKw>7H5M8K`E0I)8Y z+P)kk>+R){Q&oO`)vHkPy~oNr11{eTfuoXdx(=WKBBn$8J!uzZCqHM{Y1?kT@hFx7 zTr99T6CTD>n~42ZFN38x1>D`8Jxk<`RSvBgk*wm`?G4)~q)xn&EtxpwzYh&CpP`oQ zcJes66~C|;-WYVTn;h0y4Ju{ZGg{)$nS52}NT6&i1KfQTw{6+U%|YjxpzFcDVl^<_ zDXvTaDDJ;+GR_JY`G$VQ4l4dTWn*LpcdV-yGJ{s}^sNe^5yB#rB(eY-?{?dw^P^8L z%w5c9%?si&EsKSFmQXypANjr$z*DQ%{t-dBRC*ckiYYWxOVx6#y@wNqhK2>e$Mh5U z@EZO_E zXZ{V0GhFND!0dYSc6FI?hei8$%Qo1xY0}Qie^jwU=e%+$iq*lxV+6O_v3frcnWxgY zqT=|C`m)KvNksYF$2wxSejh{bXOWrOr`9OWraABZ`$98u104y3T%fqie|Ay}K<>U;AW8tfC+3o6SB`+>T zJgC;0__wC0amp`->pPP#pI<$C&8BhgOljF$u{3$yi+q_m~sp)OLq+~z2 z`tOx~@cK2)v%A?Z&}4wWa^yJlZ;3k~3ON8vgTr1<%Vz zI`1GCy%@;77uLV$@of}Y?<@V=wK4Q}cu-xxd%l=2$Z+}shs%18qw zcXtE7%Gd08(R*NjGHllULn>d{Y~YMk*?{5($vbBz>^KBtC0)l~CR9up;y=8&J5hpa zp12oryr0YO1B}tAkL92&`<~_q*Fubep-@sYG2g#EksTKwU%W+8Z~4VFA~xAMF8zh^ z0DT2^!+6lWAfSAxneQqb{cxj5dQV5tw5XZ5^c{9QXDE1WzXGVpteA;soIXsc&RIC@ z->)kCs;oqLQAK9haU432bqt@5t&{tAGM+%_;JVpk04tdrwYT@3f--ByQAkCR2D>7v z!}Ig~yV3SGCLQLhBk%9-Wlo40>($0`{=tmP-A;jy2#U57T$wFAG)vA0b5>4ALJfPm z`KPf@$QjI0!&ATTwbN*#&~32_S4+b4JLY`HgsrZwqFeaDf$VuLV4lDK%STH^_{xuW z%xQ7hRd42pKfpl;^2E4`#03?u#>2HdFSqX+C$Yz@SLAl^H?`~}NHYMZZ*e?KnW&iI zaJ8%4Vm|!eOPWEm6Jg$+kL6y-sUY?y41&xhP)j%l`I%QUDRH z38;C1pBF^Qlec9h>fO`8q05un2NRW6^U5>cK=ns+q7pUsyF_j= zF)e_529_Ayg?;y}<_#Zd6V1WC=}C&<+cvgJ@3E61rwZMh;A-JC>jfeTT?m8n{)CM1 zKua;o(|@1sW$wSldjaNn{~RX^3+U}S=&O4JW~kLY3ZQ12e;_9jIB|M$<$s#^_l!FPA%SeH|jbV*rN zwY&Vysbke4ad~;djPrp_y9L`$!dJEi-b*%KE)qQPZ=JuPVJCof1tiPV*}SR6YV-y) zE1g@>2vWN~OOLg$H+_Ko{?6OGO-Ni^+;l#><|4?NC?|WXJL{+UVK3kquNKiwP@O}k z_#jdbW2hv|PSS8vm_KY<{F$d6nKp_YUWynn0DyJ}f+%Pbl#fpgJE^1R5VG)TWS?#H zoEXwD7O(vr_PyIbL3tmIP6A~#$P9(nykOftn9?>q%7}nn%S7%$_+ZVGSylo2KC;i@ z@S|rP#IEB;uY96iC>9eQcoVL&PnnFX_4y@s+GC19^7{hmeJY;49WjMxzCG5aE<5=V zK|`7}ocAYxE6K7Hz zS;W`t1BZnqKtsA+j(uK7k;@*3z}zDM{s8mBL4Nc1=z~<6g<{`Wa~xl0U-)leZV0mE zKrdXSE`t{@BtPAYg-$aNtivGg&W*%@QzR%XO7#(F-<@en=mY<_sw-i4>`B6mIIZ8n zSUzRl#CvVrReT?Y|DdCvJ~$!!cXcXrEzh*)2egS%7Zn$O4fvYri^lmkGr=ih6M+Z| zB&wP$`+;;22|c@sB5DY11#&lW1Dgno9tK}lAp{!~K*sK;GpH`h0m)q- zRb~}8%HjfWf|^f5Kc1^iNEvvGew$0b!BKh= zNM2*v50P?PYb!{@UD(~h#kZa6-qlOda2yrC{dz_pL+(I6gA8&?i4i3C=DJWU^k45* zmY3h;=2ly{`n!V#A&9TgxRQ)Qxh)Sr0=>W{zHgPrQ-e_~gXfgoG(Eehi>N>b8CsG& zU}Xh&HRc8Z5d;0d@LLF?Dl047tf>_U9Kfh0 z1rWR>OB2E#FvaGbwW%F70=Uc|BfgN*PLN*+i}6m(Hk}-M8KOeN!#9sb4DqdPBeOey*=7Nt8IMK$_9CT!AV!J>hU;H<*uUACFY7Ehm#o_d5eVvNxD;X35_sx2XKgoNy3g|D!^ zL$j=XO=__bw}X?~J?tw-(HUfX`v&R2<^-`T8XA4;gW9&a4>vV&!$emSZ;fD0ydzV{8ESUtuHAj^q!`gHf}$8wXK zSp_x^7}Y>KlJDQgKtYz%sPzRLQOnex?4uH?ti9A+6>_g4GOPp9tPC2gPzu`rc9v~E zG1fc?-<+tpO#5Qk*zUE@*chl;9Ib4~$_m+ul?@<-)Pla1MC4vpn87RO@aDvdbnJAf z(+CJ0xgG7@&}XJ*nOK_eK7T`1Gp-xLqe~HQiSV#vs=IK5AGD{TzM`+Mzp!;KzMi6F z!HBVkhKuoqH}psubiO1l)A zmDL_igG*r@AC*-&W}zaqaxwcFc1&?JAvMqgGZrW?agXt!H+(Xwk|E=v11U zn9N=N!u5KKy|!O$&z#@+^IcG8RKvc+G^jGDs;RBi9R{!LM=HAHYd)MM_LO*GcosVk zA|SXM@G6SUC=P|XK|+#W$zE_kpB!lN#l8r~fJD?2BzG@hw&KmJ`{ZsQxl6|Ocg}pc z{ggIa`@t#!@^?MRU3$>}8%_V zs?nQaztAuVh(oZ7mgHR^!yYx5zkTHsnC_$rQ4n8EqreP3<_#|&-wyYo>;6i0e3#I! zS)pWB@rv_@X4^;j*kxpEhVtKYQ&Z>B8xb>|gQ10Y?6gWr!x?SlWUaAF(=akMWdMN# zo>igVQKB~=M}e*S*pE7<0$Cc8BDNGc?3B~Mz5x`kFu21;DRabx0?x^2@of#re{N8* ztH7y1U_UnurPS%am6rVmNVly0cgewpV`r~M9R9rGu{3+%ALDOaQkIvOhjtgB+L)z3 z6dcR*72h`EOOb!1*R^VlvvH1^ojpva`?=X#ZU=R3KU@Ji1X6@~^v$O+UnAH6@fe&e zs0rHG+4fCQb~2SrM0yQ1XNJA>V&qaTzA(LOjyWf1ADCb=((T5B*$Y9UdQjD zAtZ9FsjF+Neu0*TAsTKfZmS3K%+);g%edI5h4}{sO_4}{<=tVUejb>?f^SQ^R7OgU zq&9ta^D6c;#I?{ZbtV}JmFlhGic`BQFIDdgt}Hd&OB-;3zZ391I$Yqme@cBNB6~K+cK;(BNKklwIPln^Ba&~j#n`!KPq5Q4T z{k1@GAmBPD|Lb)_L!r)ZqyG0~c&5Y9PV>X&Gnfe}pF`IXV;7;b;O#g{lmLlnq)A?{ zBhu*_bMOfzY>=FClWg|MyfX; zsy36;FcB=`$8b-01G`uPG$attpE%)JqcT@DhPqUA3j^@0yb>0(?VakxN|fRqi9 z1FG!svkskxciCOG5JOz33c&A|Tb|y4>6`<{oto0n%xs_-O))mk)I?l5hwlIog)w1ov&~}f z()^Z;HT8&7DwS(^tnD}fH#5g`v$GYX2BEq0U5hv(bdN}=0f2K3nHpgsp?32}ng=J# zO?(3aqB+deL0ACjqiZhrn^z$$NY-#VTWxS&i>w@PR6NdV&@3+}2L$H%%6NesR%@86 zaY>~NA^V6Z7s7HN;u?X-@e!~7QB|x)Xkom)PVv=`R3KPE4R4k3j{)Q6rKGDHvzi1o zeQ09*W${B)R3F#|V8vjccKP_?-B=PR@Bfoqr%nQ{ao%7MYXqMmO$&7}^e_SGD8Tf2 zdg2^7#9VW0gPJlLzmZi8x$z&A%ur1j4!g>%2|1bpeFo0=hgEQ3)`IpPQ%|8KVIwhT zrdbdAD}n9`x;szaMt3%z{6_z@-L73uv+aozY;vu47C5nxRWk>S4khiBB;W93;Q^zw zrFyMa(5GOy1N$U?05(8fVVDcVXr!-SJZf`VOJp|DYTV|Rqgzg8_QCqy>NL;_2Q-{P zc|YW(^Hy*o1HNtbV&Nejzru78Li^vRl44?XmyZHSzrSE{+tJ?|7P(;i$OijO7hy+2 zj~Go+n_nf*T|)~?Idym~8PvU4@ZWG@EZR*wP_6^&AUfO(nPlo~IBc*TTo-*kWv+7+u`>bm{@>J1nBk*p<|A&FZ0OGR|<^q3IBy`VXzv$wbC&Cj0| zd%}{sqXsM9{Iip`IeR!nx(Nnt{-3Pr4Tqao5S|ix|xaT>1~ioWyj`{8*JJSg*;wn za8V3&-f&qYCS-vJv-@E@6sZu}-~~%3#bi&p=*gwbJiBt+n{OUrhHM!6ATZ*vskP^o z=U8foj*9nQ4ye%QcBHkcB>Ri4e0QZ|hh>4{U~SlwN%T z!s(o=V=2isz#YDM5921Brix$)bQIv&vms8_NOuj%H5Gi4z{z~6*XN+hq(g=zn>LeUYts^2urDz!S3A4bIL8iM&1+X-J!ca->y# z0qAQ1>A9H;^Fr;{$oeR^T>DMeZ$}qxY>=_>g0S4Rg_9|XMq*SUHBg(?cIoTNaXpbE z{5tc+p=DWK-TW-48S8Ro5Tx=wK|R>|e3S^BR>%c{a&;_(rKP-sKt~6=1=t={mnNTa zoD_9XTKL=WR~h-uY)im8`m+T=k)BekQDgB{kM`dCSZ}k8MGC+^N}P*oQ}wE z2=%yGHb2j`O+9zcbf75gkmYI-9m4Vwhwq@mE2?)4B=@vSjL6Rt3Jdu4F{XEVw zs1a>0EIza#eMO%CqDKBp`Gw^_@1)`&{pkWt8ql)=t^)|H84r^Nmmp9K^xOtBzI_3E zF281`$x8YfD=UT3BbE|wG)p?c()j&kGaCq^hsxyi&`)u!nXQwt?Z58)Rxepnb3s;( zE1wi09$#;Z_x{G3zth@z0av{V(%{g8^%(^?uFZtMXo3R+rQ`MBbAs0IX!XH4(qCS9 z^TdqDl6-1*mIf^|{J5Ly^-}4U@iuxq6QWIFrq+(_<~xoatk!ew9VUY%J3w`M$BZl3 zXV_TWz<#O*FD4wVQs6gRx)TSX&fX#5Hh4g^YJ1xORLYx$e$mJQMA9x*;dqnKF~J*l z2KOz5>s-sP9y<(Khh%kcceie!fV=T+Q^H(moefx->*A?D4FE`&A`S!Kz44-`wZ>*< zh53MAz1S`Tbc78BO8PF8-y|EC=9%7jQ$-E6W43mRYzOeIEjmy-L$$Typmm>f113z@ z4`k>j575ye*z&8$5);?`NuQMv&@cljXi-t0=8hBh9(7ZROG#ynpue+D=*o{ji-po- z{ZIzr6KhCh2Nl|muC9C#2O@VvuzO()$X5~iAt&z8`(37CYXVz(024!NR30Wl_bt$g z(8b3Xgz=ZER%J{PckQNncdHD>b$&V*0*Vqg9WFjTaSSzq-iCeijz}i`s9gj zjNSi!m!5kHGW#+02jlKj0nIO<1&_|vNqyx+ceA?av^6?UK0AN!^6WrUG_k21t@vW7Uu-xF=vT!`J6O))*L;)Z5hvO z)Tgi}6rk%WV1_?q>KV=EE2KLNP5d$S6nT|nda@@oeEs}>;&g?8I1pbH4SpzHqry;LNKpu2LsBrz_y`c@1<%iyRQ zr4&QeBW0XieFsFW0Br$sYalEM9uOX=?uKGwp62^q!XaJ@>oN7w<_i?zpBhm0H8p4{ zU+|FN#6wRvw9Jw=cFbfmg&&ui`XMXxePb2pi0iQST4>>Z1_)KsPHvyNgvsJO!V^tc zjn|d~&mL;-=3F;EY2BRYLJGM31neJpbZ9v(6y^fFRP5gU{=5@X>#UVun1OEp+FBA^ z**|wCuY;J+=KRdk5{s!PVz~%&H?7pxvh>^B^0}YiMn>XPcI|LMe{^wi5FoQawLG?E zgwOm>yK`a^{yyzJ#bE2S61ufkBA^r0n^`Gv<^I45#9@*YKGK;YMIAe_kQRDZ%ISPt zA#AR+qy+L7etuITf18>}G6fMSnEKu$%|(%9mx6|9uOhIx%pYpE!=R`QZaOIMLQW+F zqr4l2*>yfR6W{1q`SM3RJyx6 z1f)Bplu|(HPH7MXq?pR@P>-h1wIx6gcJiEGU@=a^%RFW&cizgMaiz_IoL z3~M0E%)k$Ra1~0O>1$6#zL9K(7Hlrsg0Hj6f@Z6#gb!B}5hr?esxSUEEy`vWd`| z*|=w{Y5-y1dK1tm1>Kn%nqTFSBy!A5PqSK2$B4D~UjGh0{D=pW;|K~wlkb{9_#6a>HD_h(`>4>{IGy3<+s?O7R2 zVOqNA3>07Re~vC4fYyP5FVJBE$o?mSq1*-+_w1p#@B&M_JYQ84ln1m6H<4>=Xh`N8 z3~CX8J%VBXv-zs@Xb01vF1-F9#6lt7oO}l#cgc6h zBy3@+BA|brQBEJ=N$h{q-NpL+07zuK`-AgY${0HiuHA6ZIEnAK7jjoJ^!zSSEd}iW zK=|ag-j5BH=R*C12aLl274J=@;+dajOB1}#yh3F37n$?WPzKPE@bK`U%DZWQEK;#8 zY&9O}jv^?$(A?nTuYc#0KeQOB*hZ&n zZ*LD+gX0-g;#KC}Zxmv4K$jzI{RP5Dv)OZU({tvsxDgU*&gWHvTc|Fw`XX`>sMgu&eNzd;~uS`S+4(JskSP1BISE zJ+e*%ba5dNfq(mr0JHulKT!f~cH<%9e#2n>4)+wu_^8$<1~opVlyL{mQi0PCl^yMV zcW-ctF@cu9*nT_6CjbDwr=ZQ5C<1V>H~?J>TH+rvFJRo^?$6apfEeO^`(ZEH z_uP1`jdk3`&CPDAA`@hZfg+y5I;`LHpXX8;*jwev$bVH~yZ=2|N;~NV2ZtLFY$p5y z+-?s~&&L|%Fd=`^!U_({lJ{tY@B)ommb{X*+*;$C6HDm$ss1%6A=g4PmC3?9Wv+X5 zz3ZPQ>?b^2C@>|RomuGt!VL5c5Y?Zyd&+X01j zTU>i)24EBd?`=z<cZF6Uwkzz{~|a1csjV9p-JJcIXOUox9bq6!? z#{w(3+(}*nYenq}0OEe7W_C^eb@2%Ur6HW2ZGF0Q`8YygVc58=Tej$PRD*;BzO1fi2D<8I? zYDOYaz*xgZK|#UJo`eI~i=gWsx%OL_PlWfQjOVtlC^Qsl3wGD6cB1l+iz6e|V1om@ zI%dgB7=66^IrXjo8{_rJ9v`X;*cfmUGmZ?sO*eov1Xt9~V%rta!Gnqhr~J9J^arcV ze*l4dk7u{%@{@qDurRPw0Ja38_|W@Ix}RDDIlza|O=kcA*V-+0b+;_*4}b{*;h!Q% zAS}$m{bMlcj~~}Q>bQ{&H=9D0{-##Z0WL0qM)~E}M}OOjo&!}Q#mZv9qxq)BRq24J z;Nv0zC`+34QtIlBz^VQG`Ew`O<38Q*amkM^0&CtE?H#HYzR5UTF@E9edj|#tWGcRM zECC~c2o(DKUfhpNy{>}x#@50VwX2&RvSQ{)me^-Fcog%Ak_iBe-0RA*{&`>en12zG z8qeAM)&|JlH#3uyLvc+qvIoGr`@!F*KGn5GVot$yzuox=I7HV{z_!%krU{s#0PgxrZZ8imcjbq{c=qQ8yYkP!-R*TqR=0d#ef)~Sc6BHLZsfHT6;;t6D1HuXr7seZwMYRq^3Q;bo4dEH zF#6*El$&>BIb2G;MMg$OK}7{j^B}HUK-Rr~`q+#h{b|6%OYQ1=dq!jml(~H-{Q>7) z#uo-=<$k(V;`S7*r`_H7F*kmJ=eQ-@0Mhe-)&LarEG%f8U10voH&r%)*qo&?TVVq~ zou}f}6@<1UMh(Eb&b!mGhHilD3^Ht$^N28hLHDynT|@}8hL7uqWHr>f<}}Ipysxik zK9CG;s*zK2zxZj9SsQe;yx6{ixmWh8)1*heaD`D68w2A2huH6QDf-Cyg=JiL4SlAG#5 z0Ri_Ct4+}2IkH$pFn$6qf8NZp{;VHO7j?g>w;AMOz4r_-w`&NgHZ}au)8#dV-o}=Fv6V2e5X%XsF-n zNgB<8tO2kYfb3*c{1`^_PgL`LnJ9J?xD$ZEXGQqHkz$CkfslmcF8l5}c(n;ChY4I& zfyjFwS^X&pCuE#9ZC>6spjGyW6LzfsJt`u2&6*Bt;R&f?~3|QuBn>U zE3{|oES>_75C;B!d!fbZ_+sJj(=H^u0La(mrW;4JwKX+>!pH-vnJ5gQ}m zA9S%z19;?aa$rg*E@212&wwrmWawKgCtiTu2oTML;uDQQ7h>-Zg%`m7VY-HWNSo+% z4Yb`CK_8+&s=H7G(JnGKcP}sAjm8PVu4M%~EANf6fLs5scp-YF6V%@PyCzp_zM0m*Oh`B0)vhS2=-9B2;a6 zSm1tYsnKSC-OT>!<2KGg(c-5^6W<3&P&?xv#%fFk0Ahv&X3Sq(P-7ZcP&vTUO!tY_yAN7@2)!TK(*2mRH0LVP9#|b^u2*f8Uf9s zx;hmdU!WVe*8{Zf>;bNMAGENE+j~tm=~V(w2GH_#)YSnQL0|*`zaL;`KywJHvkO56 zh)1dnXiWjC{zzjb-W+cM$fW>UOv^$~ABmHZnF#_9tx3Qdstl4Ch%MuPX8v(>yDicd zu=x7chn6IxqNB4p9RLL#8e`~%Rf#@;2?=b90~$nDAlr6*IBEEPU--gGUti(=B$W1# zBYb_wL;)`zz)Jm3Q#|(e_JHipQoYqP=yNRQ1dt9;*aar=!UV8QKy_DA`w*zuOE^=k z`CIfdq5HleM515U{yGYjV&Sy_u<4<48SRqqL++L9`_E#Gf% zZ-ImpDJki?H2_?YSF$~;ffHz6e8t~#75e%DtP&{S08}iTfRZri?fnVnQ(@Gq;p|)h<$0m%6 zx`p4?p8=4@>u5vvEiw@QCH^z3MTAUmr`Y*`S7q+8E+`Z9Qx^1G*aOpg$@h+4#RgRR z-zPzq)DJx~COwb9&PUXWpG6z{VoI7k4pf_tm#FS6xGl9gu7^PdYX6F{2V(W80a70l z^bz11N;jhzNQj8;cQ80N2Hf0;??l0S2TjCjfVSuCd<^o^ zzzJkAl>v&opcMzq%Rm0KZmvvwFR5S9N4>do>dl%>;N$^aIT0XyH#>_zHUkGU4s*X& z!^0|NPO1|DQhe$3miZ#w`uo7Z>a)}RrD$MlVJ!cUNY1hg&@V5f04K!vqNlh5)Hm5p zlq4o6Co2GN>?JgnQKC0=um(~Bmm1n1i4se+Q`6EeK}QiMLh+Ur;G{rP9-k-+X^_gfXa&5h9_^zuUKc_KT4HJ0>wXjKyEPS zjfFR6V$Q-%5QS;p3gb696)&y5izypZs9YM?uF0%Hcio7qa13F1`uV zP}T;I(-l%jQ1)u{Y7+>LjLpm*1LFmAP{$cMK04{s*uvL>bu`U8l^^GH&IT6Oe{tW^ zt3XMU-wPYryc%=84$yJ;26B#H4)S_0T8aQ-D;d(}v8wYVH)|l>CiO-rf|*(t_L!;O^L*pG5zi z?#ZaWFT3FSc{BoUolOyO^mp`=ibqNJ*vWGCb`=bd$|~*I@@-G{fD1?rxELDcqlV z)siZ*tW|m-T-cni4Gr$y|9HIlTRG(%2+Fls=wqtV%I=)G3YZVbk&N3;ny&28&OG8w zMTQZ$ve3j-<@mmx+}n`UL0qOPuU913Mib8Q)z}fhZ@`nv;gVEgVJ%n!nSu5$F(<;J zrHVQJsp|l!WUysa5V>OHNPrKZ8?A}Cx4ABOdbLus@(JJHkeG!K<^;LHm8`UMI*Z#a z2Lc0lsu`|7OvM;B2p+)bqs2A$LZ!8Faks`xPEN^>08hXHjRgiKJ*Jfn!o%YUicbl@ zuvr<6zS+p~SMRcF2a9+ZLt+uXO8@f%BBIPaBeS}z-@881RcW9I42BgUuJLkhbCciu zG69Dy&nWm-AJlO;Wb+t4gYk2bShQT(*_i_onV>&>PvJV+^yO|s2}qtZJQ%JJh)1a!z&=1FL3Ac}?cpvQ0CwU}7rf%qw91Eo0`JPZwQ@|T0xxLV zV!Kxxl+4kLcm2{WoEtqu_=)Z{0(>-i@dDm=WD$zh@yNlJxt-ZZMDz%KZv zK!^wJ7NA7{Lg5G1(n%1=0-|nw?PF8IcId;2Dz~$YDzFR(;?(p(YvnoMt^i%;{PJ?N z##iPIC|Ce93nXEEL_|8&@gyIKM;sz+fpZ0jxAI*)&`}nPX|)8rV*oY-wMc*nOdq$( zm$y+n0lFY|R)Wp~aQysmgb$Md$qT@}<6uGn2?>zBfBXdkVr0|O%%S<-hb>@Hzn0Kd z1#t%;tRkYI$Vf{&9s7b}kWxS@JS*DoDKO{H3i# zK7QL(njO{#A29zf{MYDTv?Hzo_Z@f{uRI)g$Ifqv4KgR2Qp%h!*9|2|3oqcn+XB}> zv+7|`_B>k9m+edJavYs6$Z((D3|OgA0oQ{X(+Uz9M!oXWUYC~w1GEXv$4ifI9RODj z)O#YO_ep<#19SxJI&RoI6h3}mSG-b{OK4U`f5UajpV$}M49*ZKlHB^w-nhI0w7rAo z5=h`c3rbGxe*!x2?~c10&}i^i%bAbwFOUBD9;$u#Zc`QCUtlegN$dVAHyq$jpvEep z1K1EiKcTmJ93<8oxnxp$QIi>!aE31+4C zxm39!Kgo!)T~I6Br@t~P9qXzR(T)TX&6a7vRbE{50o<$W8X&9-5SB!aNKm^CaE0qb zKsULN3`{61FZX-~0M8v%)i0p!!4_s6f~)BS(5=;+&Q^tjZfr^EiDqVIMQN>|a!6^B z)pnk9V(sMUNVz3&G4IX$+zTLei}Cl5NNDra9`3V;m+E~FzIh!8)N^r8&7kKKTA58% z`Y=8{&B@Fh$KUnhwgrT1fHVKaw|>3S4&}H3EEeKvq0neQPM% zv-CoSzG!|%W-~~?fHcXNkdo3U@Nz`mFe+q5np}V3KeF0h zo0!BcxlZ;K{E(6PLF7K(s&xrfy|{uZDEtjOYJAr}lYMozuh;gbUce<(iHj#b38Zo5 z4W8iPN&2%jYcnWBl0C)7R^|4nXA4?9SBh8AW115a6I`fgv&z}Wz@Oug} zZa^E0W+0X9;{os#EZPU-R4>5uKn@2R<W+T@ev-rY#PH|BM!%jVCb+g#z~e70 zEX>NvdXPlLy}m0?5pjQ!7YED2_zJ^Bj!sV7ThA~sAo`hk3WI|g9CpNa%ph9){HNrm ziMdC_=Frjs~3$Hz*4SPz+}q?e;e}i?rjD zlf{=kK^SR(3?v1HkxeKVFMym8kXccFBP*K>cF7#kgnf4TtXItv6duY-N+8(?^a~QL zMn^|M_Ze&w5=Q$TaD9eqZ@vxqmPnHh=-o!?je)HZ_zo3XjdD56;0EeMK;cvJz1%L~ zK>#}7ggI1hclP~CpR^C4S%db^Q`%6uUCqtWrQ5_0?%*Wy8|Q=5!zYrVU;G znVw}?C5@-iX$l&SFu~o;=GolE!579x^d*ux#=91WI|+yInEnSo?Z0ROnznsMY#uQ^ z45T++ZH&1#wK7BGXTM=|(-m;`@oDjPKOyLKzry>8P5a~yg}vq1ud!bwz2{U$^N-t~ zw`WH(A!Na2U928>l>Z8_Yn5K|scpM)z1sVA3P-?h))DA2j$f=#Fwv^*=6VnLdd>4?x$o|6n*_ ze3<@SdDej4*V)OjW#}aR1&*cOlic_j`NV@5-I3?Pr!t2}h{L zf7kPrF5>(`$gvEi#HD6 zs@i8>{mSe>BvXQJ-%}y9522ai>LLNv$o*+P=Ca%qTX~uyf3IZOWSy)E%@R_UPWHE& z1h!F+Nf~s}Oc=E)u%!(vx@<=jrf*KST_N-b+0H^S@&rcW2g~|&duvsEeiZR=UfM4= z;cQ5nIjEn{c;zvD%Ky|_9pL-`MOXNR!M7mXSPkT$P5V=Jjp)HF>NhqJF_buEK2j99 z2tmT6=}?MzDYIICZK4T|+yhgVoqZZr>gV3Dv^UHjf20aII+%a)L(}#uHpmHs8xV_4 z_9zkf^;vtIwJY6WNFtfx1PLZAxSk!I<}5W+iq~O$Mm!sBs9g|bZRC7`XpcE%-KlRzv+d4%EcPj*l7^ z5eykPXQ!v$gevymvO1jw8wECgwyE$K&m{gu>^4_LIXGD39wpdc^{s@j%d+eZ`cA`l zdyVA@9AWaR?-~tJsfOCVr+Xu+3ok`UJxdX`zsyxqJML{-2OmO2)zIH6J#|z2u=c(% zWiv}g+A@^wW_&-%PjAPQ4JrAdFG}n3N+*FIvfXxSbKN0)6;CUy^D=5Om)NepufBU> zD2Lx0VK_S&WF*(oR@k!MYTf4oW{dg~zk@iQ+SR$%%bDQz5a?v-Ugo8u#d5m@k(PSK~Lp#JD4<&uE0bNzlry}#W;fy+`=E~D=ciz;HCvXqjtlhkY-Y?z#vE7d?Kv47{3VRfVE*>&V$S%X{M7O2 zDZJb-Qe#Gib*$7O?|p^E@0Pv>Nz9ZRfl-FK11ZL8+)^9FL=?57ih1=BlFpS8lJnu$ zpTtAe_@tbpqcN>^Zv-Sl;f17J$qFVbCVdISnUrERUQiJ!=cPySrus*X@@Wwb89pOA zGvxn{u`rq@-A$F|*zFb=7iK3e73Ps!pg}3;|4DD;N31+Xj2^xrw_ixgFCy zTtY%g3KgsaRN5{ONhylZNIAD2D~`{uk-ycY!QazAzRO>u6+!gab;@!_?K zrbssG?YH_6m-PMUT*Ts<5)OeQT^GG~-^3L?aotsJ_SPObu0d{w(RSlF*km;FRf1 z?6r7CJG~Jj7Dn(A8DT|lzu^w=?GiO$u+&nE5>_07oAjeV> z_40QoR%nkFuM!CvOPpW z@XYci^!SK6f%eW?GBZ{e`9u2Ina1x?O?9G*gu@|WN9iwd^Dytb0!W)FzKHw`!hNLH zSjV0AHtBn1)a6>TRAzO(l9{ul?Wd$Qc&aQSy!SNqecsY5o3{G7m%FM?b^X467AS@af{f z&s~{?i1?)|RWmF&X%z+dy|jzirV^3H(F@rb`jME0f<`$zox!SUb6LB*iz=^e-8WCI zP+$#`yZpymkCp|Uy0Id7J5+=D;+B*!8Ira0oMQJ8!YGp48axRW$H}v!#}WM{Y>pOE zwKG2IlC!9-E1B$AYU|Y`l3S9Lc9;L+LC97S^7=9B)O3i#%Y_!otkPz+bRw}9+ihV( zOUdUpRC{=Q#DjFl{h^g-ME8SpYG#EmVeYcdwEh5UtNEy z?_9x)n{I{Ps}Wrd{_(M%T7i+bEZdgH({sqlCPmjn#Y1_0gjJcQ;ky8Z5u18qL%OQU z8@owm7r&a?65KR#6_b%yX8G=}#jkMF1`*5kDtYjburhQ`+ z4mP?;pkjso=V5?4{Rp*HEOPTT>s{n%oyM`}1ELAqHF4liKesxUfE$-&_z&A)KaSpT0nXdu%5 zNB=BPMaPPO3B#*HFLzUjVOGamh=#my&?!8ZAHquW=vmsW?^aoz8x>dJY=%7kuQFFN z@=CgT?~E^JwnT*#!?K?ij zCUORTZ8qUI6|Ugf$gnt3bS7}Tyt!Pv{PD}B*%$Nd(oE5(aF^M20#!E&+sk2<(R^R9 z00Ulj1%JWi$#FsUXf7EaR}Xm)dD#0zA=EHzJ!M&<$4r!GWxFa(_P@;KiV-!AWriPU z=<+%%L?{m`yf?rln9DEtL=>5olO~Q+@!l0>MzR`1`LuVEJK>jl7+;KNp5Yg4RD}XV zg~0Pq_~;e%xXLd`<#$Zzb9?Eu(x$6$^~DxB$W5MQ1nu&ozGuR<=Sj$Yr2jglS?>D- zRJLc?2(SH+OlAYbR?Bczhk}Pgx#y^;RS~2)+Zv;eOzAm~xVhbw)BJj+(>PGfGmMrF zsOfWlPfv?Ke%H(6%1Vpd72V5c{KOCSU&zo|+Kx(n%HgJn%2V<4=nyXX z`ghHIc7FaE1LL`q`JLk0yM~1N)*lP&AH9zGGFqdFqxHRdl`mV{kmMV1Bf8*lx~s%n zjiSfI9q!CIwfJ;Oai0xDQjsO|zb3Bn4qHd&HPsyOuCSt~JmJ-pojH~8ZrvPlOS7`M zrdO}wn(^AQTeYp`S$czV@%8R@||Yj>Ug=5hgRymw6)2+ zW|2*LK!8hJx(DH!ygw^*g7s*C?1Kgz$LMg5hPsqs0=#Zbcn<5yUg9xJwyPBjPHx=z z8M$;evr@Av<1ccPPK4GH!gl%PoB16!vcC&S=CqHp*|pk#Ts=Dwj)wft)$k9|${$5{ z1p_k^WJV2F@nXkBYNESio{qLS__ahp_+kiisHljz7O;VugSMyyoLWX4H^3v@|ht zhJH|ki3I|V`!{JYu|vS|*J}<46UX0Pb3vG(y-&dDHJF(o;P~rAVs^IoXAxtC+@Bno zQH%}3_UD~q9FY6ZLuHka8D&k3EewS0+#y;o!GE)Hu`+P6adELjI9Zt(xR|)OIKdqW zgR_~~Iy-?t@y{ugogH0_oD~cl?|%zq?f<-lu-<`<_&-ho7A6Qd?g!%k^$KA5mn(qf-{16qXa)TDNx;Gi0mq+7 zz`_Or$A5qD|7vIW|1>gx&AES`4y^xvWT5l%KQtZwabIQOgn;A!b~OGM3xefeE(o@N zI|8i#!3FV;BLKRX+&410H#z@)rTi~Ofc0Ol4)%XP0{_9)@n1Lkzu)m#|D^@s`1iN> zFD-x*)S$Wm`wUvcNLv^?LA35i4RUWRl_1RbOBHgzTPi_V?p*)~%l#$}xt}pg5Z3!& z>VP%>mz`yWuDyR+OTq@u2G(|F&`UD|PRxHd%&h;g_+(6M&794ldm)=tj(*ew*7gh zA^OcEry;JhdAA^#hcIP`B30uu{fwW|zjbId_HgD)2=hH&FcRXeMUK8I+wOEzcw_#B24EgL;$7)hL zU6JNEym}^U%{NqKh57d;;k23XKUKAw{2n!_);@puqn}~2{eArh(PA1O*dtE<9ex1} zzJg%E2a(4)Dgn1P1Lw{n&)<8P>1N&Bk5Fi*`5O0i3fv|+!0@+9JJdB+s zxW9_QQ3=65?0iR#7=ZbJc$>%jS;knm09={|mPe6jF&vQ)@0QWRS6?`x=eSSOI9dH^ zT#4!Q#mv`-;nf0Mt4N*wcu${3_2fLxKwS7Cv<2(7D}L|}Avd~<{Givz&-j2;<}G=^ zhnR?AbQ(msn6Q_KJ^>a@4Nfsp2cBR3SOZdHqFz44L#*Ze799|tPtQEh>RPd5a<|?XfL_TisGM(80^IP-~~q1Lu>-K~ZLY&0Ckg~Vch*r7y%MSyVK8rN5x?)m(<_w58 zc-2WmC>N+1ko@^!fXmA#T9aMm0b`sQXz@>U(Ugsrgy6J;4v^8z1c*Atile>ZSPbwx zU%w<;wnp0&fa|1eda$gW^5hDC!-10o-$+l8<(r5*#W%4gm<@>b*Jah=0Q)E3M4NCo zdgKHie-m$dnD(ThGqJkklahv?JszD%Q$`oIJ$7ee74<2FHYz=$`e)35DSLPNI}vile2vfpu_pXw*(&7a?}QbBRv3#9rh0E5Hg=vMPLWzXt#NQ)`Yj5S;g*(!v2{ak)x{|aew8&R^!>#gT1#Wi2H%4i2K6l z2-6P;o-Cp_8uh6)!7antQ*|P6c_Fet_rl#1I!Bx*y5fD+zs%l*uha$T-9R(gjeBJPqT#GF_slM9}Yc# zg~AB&dO}t$|3jUy{h=p@s~|yVaxT#_ZPl~o$|pW3m7P8Tm7ie)Duod`IXJzZavPC+ z*0RS~w)=t6*|^*@9ekjLw)9qy^qSEfX}M)M@Bpzj;(*tk;uN+Oy+iCAwiVx#gfCzU z!>5}x%J1N*JKVCO`{U)J1A>5TQZIBL1iR zct_w9eSmchyKHg(U|H|UEzT|c7mQn?TU<|q!B5#wZvDGz?FpC94k$XE4xR<@e+r$p z`yqagyexmf)_HV*+G%@^V}P}+h2g)Car>q4E>4!e%jOc#c5LYSTj5>i+;PVp_!$X) zI;7un*pA)x+g$23%ihs8Zu_pY-&FF~ZWlGn^7q(W(%6p4JEZ%B%^fSx7iO=p-(WRv z7d6T9Uy!8Vb{K<_><*i;yRSBvB;f76HkVAcW6|K0j~ci2uEF;*P9JyOJ)1jryEPiS z^R3@D1MeEJxqJ;S#4+6`Y3{i8u6p}!Xy%yz4!ryRfP-1zH-VwAfe9!g(=<>UwDfE1 z`W(VGDk!nxKt&!-TKCoOV?xNt#@HBcs{Rb(t~B zQ$lKS6h=QPJ|#4dZ@?hXw0$=Fo=K#e-NT;8gSz3tuU?8`-smrAG3kaaRX$JqySXwx zlZd=?b$iv2{jOodYFWBY41EQ!9!>r|>C4!rVP@}$A%1(bvz)=3FzsNffDogFfSbhp zh4P5Dh$2OXc?R30D9f|lLSiyUYu7S7`Bc_vfg?kb{KddwGCtU$<%~m#WKR5{^hf3d z4VaY&+=gel4WglM*%77zKP51HUO%e1?Yyg5r_Y?_Gs9VAdY*Z^3Q(Exk$i)H!slCv)`JTy!^fn$}&27{cwC(n^Od<>tDC>q&R|AgiAA zRV>427kSZiPZrA|EoxHV{8FRR-(D#J&pX7FB>VzmR!Ni@+uklhy!?tZDQ5Q{nX@$J zsx{`i5({}>N6r2ii+JYPAVM1pA~8xF4{WkbYEszHgSmIl+lK?Klh8qmR559(n{x|5PV_&g3 z`;}_4=B2Z!Dr3*Sax_UX{NP-{;C>*kBcl~7&oSb;)y8?*a!#0=J+d@rx6S`hQsQY? zAVsH(UDw zH`_CkJd8||NRc^3S2k+NDF_v@s8t(*hXZ2yv|a4;>=lNL&pHROkiJfj)gm{Ph$V89Eb2>G~ zFsvcL1u}KA8hormoT`#(64VIKXp^3%Xr=XnWMH&o%B@s1_oz5DyGNe;H7U>2wo~c6 z&;@WB7I z|KJ#LkK*xHCHJHZa{s=Qf`GCh^bgW0B9nRhC!E-!NfD$)ux2nEVNSy>7maTdmR}#Z z94n4c>js~GfRo>UQ)jCeWA;OwEVpP)>_f&oZiYPhgNK?(rYHCcLu&baZ${qHB`gKD ziNGsJt>vz;nJ@eLRlfJ9R_q#%%L-u+j}G&VO6~7 zA!O4DZYaR0|A@m|&$TsICQL$#>B;HpWUXq=)EZgGALp|sUPHu|2S?NY``GJg{hD&k zlN0;#4!z9|IL966x=CMs>Hu|@92}3Khq6Z?hfW#L}-e`Joa6seI3>|A29EUdvYN<9yw-C z1#rA&>fG)~+O)`3tEz0vwIdYkHaNEf)6pmjr(w&@mC(!QOtDHIQNAcw7tx#7f3%m& zUX}F1H}ulI8D@xpC|6hRj~r$CKgSZLpYi9ZB56DO{ZiHd3I^$nR>US-RE`GZ~bD#?|e_hsiM%oR3*5@(D5u;NeB7RtWhZ?{G=?k6ynL zNH^RGNE`{=YJBDInHNTz@WimxJ^VbL+q&Pl-f)XzT^K$&F$o3v88#Z-SCZilJzZNl zS2b#u=e+c|2StVCR2QwpjRV_Nb7eTSedfbEb@-x5B5yIbIGEc?m@tso#JUwOw?=MW z^LbO^eA`tX#zoRsoanJ3dn>j`XYU}5tu=U4lw{fZes(TS#8cd5JjPik#hy@VqdRc(Lc&4_+)*u?&^&WIjXV?sUF)-yvkiQ5jrRN<6u? zYas>tRqehVhh~R%dCJ+@MQB-pS8|!&>86h_h_*juwG& zRXg#OfM(k3iKblS;C7-^4PF|*{1L66J7jA(gv_7RI@PfC^pr0p)JEM+AbGMRNqoLt ziIGig?Wj*unqEwA9DT@i&pwDmu};xWCXP@ce?K)u7~A>Q}YK zYQ%yOGZlt^HRI^G))%J541Di`Ff}#A%S1h_XSVoc&y^9V%18=vhV1Q#vW<@#P za|D}`I1X>=qw5{OUXxalg};fVR$Ew9nB2-lMB%}BmYMlPw)o7bp=tN|CVCXcRL2L~ zuqkzUsmiRE!J zFN-mGKnFMRaJ@Cs(*3GH4qG3!659iIXlM`eX@Hg2kpj-B|a)WVeJ^NgIVVviN8NZ^d9uNc=x>B(eU>5;e0G1HNpsSH!^bj zxZ-<7*SU$dB~ZDg$(?meUG`M9ceU3#>gXUsZOD0O}!RHg&m)49Fim$hG zuuF)@nO^wGJ;{IAivK!HY5676TO39b;)Aufp;$ z5fS&MF8qdFbQ2Gxh%j1)u>;met*3#Oxe-P1#{-T2gQ@6dumS#0d2 z`)ZQSt?pqG#ZX#jZwta_C(bMwyps5&cTqu?$Bd_^OW)s+Xeb0Ybp-3Y$ft^VIZ4DL z7%V{oaruz;ARr?5oxjosJ4Ekm<2V)4k|E<6-CA1&57(ljE8$>mYo1poD`fx8Kq=f~ zEG3bLH9!2fbab~{NQidnKaWo%jgY(KqGS1aj{hum*>U0NV=zf}E!y@wl`S_dsR!LB z(|=~0W$vf#r*BRrj4(HAXju~qfBE{nUbQ!KwsBkQuyj^EGJABXkHnInRg*r;FZd0& zp^jzYckI*MVceSyFBZ1a6qbD$nssy3MHz34sQfo}2ma~|-`tSW5Bgdu=+NjOsKdho z$O{amqOoIRpDbx;T#ItOwCEYs6%8CDt0yp#M>?Y`7VA9L#Yx0{MKn})q>!etdY*o; z+F9I+Fkii;cNd)&BwpxP-|6pD7iDTKQ$KkL{WMO&gZZW$e{Jibn>#Herj=k9y zoS~htsGoCG)!?zs60neRw?Yw?v_#B5J1}`4ebwmIYGm%C?j(qVHH#5?F^+fj>dHG) zvg66p0pV}L-^9Nyf~ZjCiL;m|u43G?&61m*zkYu8Acj8qTr9kcx2vtoI}JrXh@*?D zNoYmIp>1=yAUK{xZYHsnR@BHJOIiwIqTe5uP*0Pt%qKTeQ048wm9dOv$&{i@*R-D? znGrS{;725#BrPlwcy;SZXadg|u+f+5{ebS!a-()T3YPB&$Nuk=vHCgj&B=XfId{CmQ46?*MWuK~$Q*~JtY zH^duo4mytOB75>J>LHN%VBhw?s&B-g! zgj8#nvh0dndv&j($U`9mXRj416mDa<0yXINzA}rU=rkd~C$Dc=-cjDM-`UPR0BVg5m<_a?9Snpx|p|y`a z%|!`KZ)P|XaIkBv!dHY~wk_~hLwcsUmunKspN5y-l&eog;_<4J{F3|lbE@8oxjUAKXTZL4P$z8)5%%UZfoS+|%cNU5|@ z0_{IPA?g*I1o>6Vgd@mh8N?a9U6zNxD2V-3yEUB~mj3D}B0$peXX-70=G8RJyas z7xqq5#ReKins+NK>cbOTD(vRIyc@c8hJNxeZR z+o0ytnxx}?+T@Awhin5;UaDc?$gmVxLtzoy-9{Qr6?NZryE2#B>LJ}n7g$Yty!ry=J`6$97xoxa&=`ycv;Id+2DIo(v#>Bt$qIAK4j`?EgLJa_A)0vLSy-cA)` z#Zk1{5t47{qYxtvd-1@e;@Ri3DQd&6F=?j@0T{hytQ{%Qb9sln4pPN~w93(wxFMgD zx4A5jOs~hdJSc6AhgczSPpK%MN=R%mhvCNxX}iSIvRBl&`#qQyTG?7pr%TH(a)}R~ z(zCMg;XG76o^SCDxeZ;rJsVtd;dku{_b+dW!lJj%@wZ^#h%CyJHFihz zRHv=$sm2Aj@4d2(WnwgKC?`|?N+rQsJc1EK$_Q!Y2APXRBy>qX#iW%_T8=wLJM!;T zDj)w0)m8XZIW#rqTc7m|&it*J6ftn&OkI7ttZSDyBUAtbsWggpuCthOC z*C}$JJ{yU=`t=rt8q(|iC=JV(6Zm&U3?gf&I|Qfl1@c%9%_f0H<)Vm! z6}h-UxFtW7y2uSH`^#KjpAj^^$ztVO_2_MU?qW6>%V3y)7~-G_B3Ls;-t@6}O?@dOYE3*1%|C*NyoXW2_1rWt?aO(mxqXt1Uf z)wEWNDK{P4MSD|ZS%*hEYB_3-pD$-b!T0)*WTN65kERi&sb20`aTW7X@c_@kW)ZAg zCH{+#1c!9jgkO1PV!q7uk|k$$OTtLwA0A3jvr=nkaPp-tfP$hLjo7wmL?mx}=F5^9 zJ)eWcP+Ee@*F?W=*S>2JzaHVrFKlq=Jx7XcPdovw1xmB0$eR#eO`d}`(EMC(T6>?m zrrL>Y+V{5lIlcz;seen+X34LEGFY=0v z+X62YIkt+FI0{^W9%GpX`*phEIQ(DFX2+1$=ZVz^`KTO~wD}{m^4Zu8k4$<`#)rlE zhmPOW+zIh};$~FoQv$0H&p*?VL zAiEo*Lm5>eK0t|V;C-H4i&l;bTCAT6MA4#gBhze#H!Ra3>9CfX8rvN~P`14P1%bMfsrBye~Th#pHIA@HjiP(NQ1w(OF8_CxigJL=MBj1U!l2jk2@RUr#*H)nk zqOIj6exFVLGezm6dRkK6jtG&Chx1JB8o(f zaGY_Z+{t^CiQh*3$(WNSN`f(>^R-;}R z-_jEwcl2~PK6PRCDCxHEO{lM$-RatBSfL0L^Bk8xzm%MaRcYOGdxsI;U?H;bSp$p9 z#V49BDT(rWvT2F{1^GNCM+c)IIj=)=tj$;T*o8YFVf}W)g_&WNf#_AoTlkOBOnT0y zy8+IR7U8`Qs=05~e%VCLY0v4GUI(2DFALxBKeQ=ipNp~i=CIb3Bt1~yD23ls(X`;& z$P>JQoEjHL&kI?o^pNk9q7qMU zU6N%$`E9sZP9E0|amF&OyhH9~HnVJ?@~4(V?3~|@rZ(y!uYc1%+ER8Io|}ueO&Rw* zjBd=)B}c1fF>i_9tWF?B-E9|1dCu5p_{Q&p$jcwD&8xw9i`NP?-N-8>INqBrTbm;% zYxtOyy+xZ?V!r_K~0M5V})OoBt3~Hpd%q*&IDf3M=WQ*#NcD*5E|}I0E3_ zb}(V{WBz?6pQ;0I*rio1xk?jWvY}v_BKq4SqfNTw#NgIIHLHWi#$XP74y)^+#S*R1 zQ?Gor_}cQ^G6IcFsv7y1M&&)HC>jh_A!_{^7|Kr!ZJK8Z{B>|}>N|btj_WTAKM(AQ zT428$V7^X5a4?V}-jnbxGU2=FuA~qR=BS#CDRV#O3^BDw@7!^O~1DlB9;0T4ihYN^ToNxrTwON3Vxo@DT*z^o*;*gUuiWavhWr) zSs_7|`IY0)Z&=d2%pIo<5K5A(=0wN-xirf4D|_a8w+QT&ww?H@7RT^(j+R>8hsx>H z(sX9E8#N=wOgy!t6^0H~4*!&Eq$9gOS2t<-X_eM2|9IHSCbKg@s_nDSHrI93wQFAn zhRU)*#zIBRTC?EiO103>JGvxFjd((P@Q|QP3{v7MP*GdU%isO#weG84jF8n?{}Z`E zN!-W3-Jb4_Cc`XKaV%=Jjah-1>u)k-ABeYNQ7Jv!G462obud-uyukzf2JiW?P+#i0 zJv5fqol;S{MUV!e@c3ABqtDcnXz#tusVJuB&3clancFbX!Vfr`phs=Q+Vbi}Y@lPv z&S!QBdu%-ES-%&BW05|-l)c?$MB%n!bj|S-bmo=zxS#tM1L9w1rAr8Y_p691l{kTGVO1wvawZl zP&G@QNp7Tyf=Y%ua_-?a&|m91cDo`NK;FBkiW4ExJpK zqP8ucB0X_0zsu|MD-Wu!T|f3Ql5wdDx%>8p0|KiqFUqd8i^PYqy7BOg{sLX=FH*ZA zcEV=i+1w<#MdcRcSLLDDR=LxKxEimu;=yAC-4tOzTga1AiB$(vQv*t2)EO+C4rt_I ztHze13$x8dcdo-i2;EnOR9JC5-ZJma2$kxyD^`k$o0UJmZTB#iNhz7+T6#fTM_Bkg zpbmUgPocNJS`3wKMSZxN0&}O2cKyb_aRAR<=`!ui> zeZjL0DL_86Jv2{!DKEa|!c^pQOOfZ#-xaABr1uNO6gdA@JLG!0#+5 zWlNI3J5&j1a4&K$sujF;ks+f+;6$uIQ^sLb$1UC`$v)5_TYEsEXLDceQZ>p(hn$BQ z)NzMQ5iUIHs>)VTM!=B@{BTtVw*fuG^iiYRdmYXh9J{#biEUw!?PL)gJ0SG<3QHt0 za7`twm0z86ntf`cn2vXHjWm5m+MzMD*~Cymh*`W0Z7AKz-PDB^=jo-mU9#41rpdX{ z>1jA$JJ)wH{~)C#5!jpaZZ&^OT;8U%*l6$P`C*p8qEPV7u1-YZs-Jif*5l9@pGfS` zQt#KP?=;=z8!%wtG<{jHKwIekD`Q~o)7pE}ZLU3YQwHD2+HiZ7z+Jdy2-}M09^Ewz zeOcO}$6W231nB!hrD3ci;w&aI`XPp#&*=5%mbrpL4Na4Ae>b&&;>h1A8{muY(^vkAP zuHEeo%wr#YoM57n0mf4%@+P9?rM4#JM<*?tdTI@SEHAF_%{5?3?&oT*C%03jAz}50 z_f7rus$uD8S>o+~3DP{>*(X;y2^ zk!;IR?>*Aa@`n+>(^Pvz#c~QmF)7tvSBCCX%UQeoteO&$w>^Fjx<935Q4J4CmcT45 z)5z!I#wMz@u#Z(D##zO&4s+kz8t!|lU zk^E6Myw@CcfdY3Fx9XfFyqi-9U0Rx9?Shn^}X;Op2T7 zbmiG0c#GCZXlb-6{3+n7(9DPKV)lYW&(T?xwtKliVSX^AV z_U3Y#w&~4x9Fpwgd5(%8+QAv@nwOTcr3Tgbzkj9mMGF|8C$Ph>^+s@4j#8rIFARoD zx2za|cB%z%S`V#*KD)d&O4x~JMnYc&nX@5@B^Km)mV-y1l?$UOT`zZ(Y;VoU6A!v&3EsT$k!)9fE?3le=JPZC7GX%x~VwRl<6tE0``95BiO*nchgT8-j z0l{|v4!};)XElb^J{{sDk|pmxC{oNwfvxMsI+?MZ@MRMxo>voGhsl$# zvBZvQi;S^QV_dnkIn!3_iH1b7QAT;pnNL5{@rT!fmEvSpv|dy1*D2pAM|@KT zSHv-<6D$D{{ zo+4gz@N@qFInKIvH|F^PqicmG{AeXJvGX{o!@zp{%pQK47d=9MbO;a^LT2aFty?}? z=SW15Kwl_2DWoB{zQqFS7O=yi3vIb+dlcBjZIk#-1@5HmhqUY-I$ujlFHLr7 z-NQ8@bY16@JHoc;9a>7e9d_on`Aj~s@&DOK9^Z7kKu&&&A*SlR5Cwb`O=F8l7hT#F zYLu#`Bnx_|$d+$*#Eia*1SdSMe%=Ww;zfQ*8Ug!(=93NKIs9M?1aI(Bb zN93=!9FrGQcOPBy3!hx|(U0?Aa?Iuw_#D(r7p%R*u$?+~b}f_`c!}m@TTun54s*@1 z#UlKA4}KMCj6O(av(EGA)*uUABh<_>a8@?8lvhB-s8u|2KG6s9HIOOM0LR_k)J2;| zt4#=GKmIZf<8*KTFoQL1gDm)ml*l<$U(vDo=eZ{}?>U8HT?g6JBW116bq;E~nU57Z zuj9w6$1cUq!sI5sg3sO`dN&l+N_0uyi3I+vqJz~t=Bcl(RFuACEW627l9DQ&;O>EK z4({X63Y%WD!Tc47crNR;o7?q)u1fpcSmeLA)@sfm7^iCbtE!consnQx@Mk@360DVM zD0`Y!I&?b-;VDElMbIGG{r0B<)|o`WpCuY7=!@g&ye(aI5G+F_>!|8~z@L8KIiZ!o zYA$X~S;=0$eLl*6JSBD!MlCrC#G?-nc&<5mu@@SU%_A|{=Cuz{t(91oL9LYIBg;#s z=vkntO>Z^}#`vhhdt(6;WCyK#{FOy9toZefk?^%1ZloPlWGgy5UozZX3`v!HN84Hl zQE}A*2Hr$r1znL?RN7X`SE>{rOe|oE!oh4RJJ*3%={J8GVYvT|kT}JW%v3!A`oY1` zg6WVPuhGFMZxu7Ie()1#r>g3=;ypQ&@}CM75N(nem@$jlX{osczvoE#C({!rs}%7U ztSMuXcnKT7aK0pq(T-_1^JH;QrI<6U=R{?Y9ZEKWnqP-#==G^K;T+|KDg0Xa68i^- zy`f*{WJj+5N$1kiKZ!E)*Q<_Q1H>qtIi~qg!ytpxeZjaN6O;?*bj)esla9c^%tXGy zT%uNhC;_8B1-;_E&-P08h&GQ5GW)aaj+uZX z{J5L!WKNUOSI}AXO3b0O+ZSo2$fAz?ECGw(2e=stD{BTyRswv5UxCAnDqpIJvX|;? z&%rm3T&6Ef@nZcBzd2M%*LR%HbKG*8M#wm~FpzVQPZ;S@WK~ydu;N;T7$#g`Q<7pk zdqDQT@AmhoYUK%;v#`G7#f2Nzawg7Ow=pm2PE{7rGWGm<@OA8qSx9AvP1CAL$REvA z=Cafwg6nC#4he_0d*!%mE1z3ya!~2P@%6sEda|ptXy-%qZ-90wlLGEsYDou5Dq459 z1YTln7aGYf9Hw>Z>N;iF7MxT)Y$&z-*5iD@=W8UM-Igt|6K2azR2((JW#s2{n&1B2 zv()LBm~Q8ovTO@MpCQ(jQ$I>d7tc1doVk!Jks>eJI{GKxNPjQhIze)oOYg9lcd>ic((9Fs45_%|XS=1S{W$wLFOj9h z$&F`QOZzbe8UZqMg`XY@HB zJj3h#bcwg|{oyyp_O>2QbSB=qf1boiF!}EORun5a;y>kD+`;O&$mKsR*Rz_|OVHEf zr+$vG_5#`i=c{Npjo|anr-kOaZ(R-pl}4JT` z{rUCiMTDWT;SnE5QRwCSyzTuP+HCeHh0TvfeY6_~kMgH-teo%j*@yw)o92^%JXQ;vtl=9ObyZIF9M&yM*zKzwIvk|!izmTI$(&&e-4R#gmwoG+ zic=`Wr!Bg)il(`|M~3p`%%M)abWHSd(nUN51uOa3tos|=1>5`QeBa@7TNws71f-TY!KYLSnPo7k!S zDM3s5W^NH9Y+PzJ&@7JguxjTg2PGppy}Bt520 zw5>X@7_Tvf$vf`0%)fjn1n6Y;a$4JR-^Xhh^Y1tc-mr2de>3-*DTA6HVB%aQzV8^t z28?3cd~3?eVY4Yek%hH-UZJO3j5|_v5LTT@ICvm`Qw@Qn(U3U5L&^eAUn1Qs-7tY_9?-#9YjLkF2P1&sf8mt=~ zcK#mgy>+_p!wH)NDW#gLnby4M?X*^HLtH-A#}T4};h%W5P!#!ec7E}WN#Rnv|I|3a zBDaVk@D}_bQk)(cXO76L03p&=M;Rw^z_|Af78|y3G8h7?EY5Euh=hIY3O$RjJ&BkGl2@LC$wvDKiL0e_GhR+@*Lju za8}YIt@_@n7y{z;wz9?GmTHr)UKlSv=*@1&+b~GA)iei430Nvm58L`0sX*FVX_Oh1! z1PdD?S^VJ7b31#5&^gtU4|;_;^$~O~lHJ`*C9*xw*Q4QJ@rWmbBKB6~c$DsFm1YHx@P^bM|#kXDBUQGsuov$RmiW-YiI z>zk-8Gm)|xdd~Ypzb0i@ie`}%?{j7>s>TYJ4^MAEF9X;gmGmSy*U3XSnrWxtMz}^C zBW3{F`zvQWdpzffy(TU{iGM{R)m@&P3tp&ultP>jqP(Byk}qlK68E&^+t9S+?mjG~ zytb6C0C`?MkL~Ymt%+PEpX>;Dj7KeRF9Ag*L)dD8*-ZYLu1ng}HK$BnZ=PQT?8pBY-L`$vNxlDrc9ugrm52h)Vs7F1EBz(gX=%?zC*ofesIn)ko|G;ZiB zRM%2}@4sZ%RJjDpn-A7UlyH9oX0DET3*h6B>nWR zq$2)GsYx?v_{h)H`GP%+98mAm_d_mfS-9TR-Hz$nF^BCm+CUF*|NTgNJ~8{xh%B}t z#v}7rQKlgeywS_W;6iG?#7f1aM%kU>%3_ThS|o?6DO;A6n@|B>10$-`v68Ua8%>ky ziEX1Q`jgv-P)OP8%%>6`Kia9O4Tf1xb2v^!wyCy#-Kd)#{K-li(-g7x_y~p2l89=@Y z@z&(4$X$FdgpkU>k_VMTrJ zFUkBRIDVzoQ>S7GsM@3qA`Vgs0j^Aj2O(Rb)rhB4LX%7por<MM?Dtp7R zpj=gM1=-!g7Zbo*MS?QF1#*pNbWYLz*ax_cKfU*9@9^JpME;m+4}L3;b}FH~zJjfP z3DkLwu=|?+nqeb%6SSJ%<-4dIJ}$6q$uOXiFFsJLg;;aIfrmw!Z+xMhlm93FE)&DAh`1ED%s6w7fgI^{JQb}AskQES8+twWwUMxkH;Ir(F@#fIB9E*g zZ$JWEH?EhbUbrHVhYBUU%2G>88%CuzM75UU^e*aT-nUdi0MFt5(Hk|?(&Y@dN zREp%Qk)vNaB(Z3hZ5z8DI}-a%#dxSuW;)uTVxL)UUl_-UtuxwlVjM9mq6_CH{uf8? zADn}cJ8aOGEU~TRd?UKS`h0HDi-uPB%XvuU#8t3$7Dy&^dn5dG1{+EQ4Akzr(DSO` zn)oeACjM7GT>Q;1jxiSk&$tQ|VnDZK)J4x8>0t?EmN;%n>PU1Kt#gXb<#a|=e!cb) zV&WnDb&g3oG;+4=C%7%d zdv$i~-QmtK5rrqkP2LZO({u4Wi@PH&zMWi$YyCnb)u~FqA)rkCV_%A}aIok6T5Vjn zzc^@<$o*qI21PiE*q@|DcSL83U?fLFJU~B2X1dO@4U3lQ9VsraAy#h@6`qJH zoza;kyaSWJOZq3uJ3VrMyIg&pddjS>Ny|zXjD0@br;}$(?X~bHZ=*XGN>zEV=S!W} z7&P>;n0)f%+4XQMq#k>Z^U&)plMqXTUCA)E*`Bv9qGBD1ZKsZkB zvLB700kB{&-!|~kIPqp^qI}Ds>HH&Cl+ZC2aP64@m4M@z@FMFGG9@Y;c&Nf>()V}>$+6MZ zBa%6Y&jk;4$B12Tr*|_U4TVPq@Naf1!IZV>4|PK%b`*@4+oo)Oi-|y6AjS0&FGHi0?QzM!`b&IUNdxL7fpx{nET2EM(V<{ej+Ok6P zpiw*#V8^hbd$>78y5XPgIEzdxGw?iCaA(#&TGwipV+qki2_Aw-f5Rv^J$lpg6?ghj zv?|^jE=mdX4H*hgn6murISYUl+7X_JVk|#KBdjvHmYd?)D`Y+IdxFyXkZ@O@<%qOX zi+)~>N_-d=Ce8~@Khesic4KXX1J z_riHzKXEab6cSok-|%Q`kxxuc1wL`e`s5+8yBUiKl4>r}=p=%E4IPv^rI(Woj0s$6 zIn{|jLHUi6lk>|J>(f{Hb2fh*hD>k*SSa%fqZ&FX7Cis1J~U>aI7{Ytr9+m{caqDn z9l7C=+}w%hX~kjV+w2t5&7-jXfT9?Uq0p-A&-EmhkA#am!;S%u`#O)G{Pw8*R=JW? zX;ig+*+Q+SMoP~M8-45M>rO?KSyg@?F7c6-n3ncEp^iKz&{y0Rg;_|}UF0$!UTcq>u4m|%1=EWhk$;<#`ZX<~eWpdcZCL+CtfD=YLHcqL0` zXJX}am@#yR;4f~9(4WE>7=Pyn<4VbCbfRx0Eyc_#P?rxn1lf&+h8?jgBEzsIT2Xy* zV{0c08|mBLp2QmnQp{5Y_W@Gx2){9i+UYJhOQ|u^Z#Quko3oj}lXVibg_40q6LNDS z;g1^e=W~Qm7`rL@>Y;>fBUmOd#z^6a0OSlMf>rYQ>mBfdy6@bBWsr2nD?cUtX(I+c z*9k`2-aa$qQ2bZ)Eauc;UK~9Rl*0wBhf#L{3UOCg8z-3M@PGNy10jxeSlH~2aw{&1i${n&z<9NvAZ%zBycKA(hR&4nf-%eXNDOJ;BapNu zK5n|Xr3YS8<#2jA$G{Uz>*`M$mk zIbiz3T!E*Db>)&zzQUM~m(>V)V(nhxCW}|F#^M&}p?c1oL8y+oyR< z)LivlEDi|Xt=7f9hmW;&(4Ap+KAy0Mq0_UPI>CPQ*#wm9)LvuB@PEmKg56Gg#z^jk zZExD9c80@yQU}8}{@zI)9J7;1EW3l|eV~Wd8vCdrcuOT!$r_9f%qstUtk_)#47-;( zjmjC-eJ%)sDOmK2+z!B0j_E$5O9IqJA(`s4Jo-n@eykqfwKo`cALTpt2(FgJ^&|w- zH-(L9m#|v7ucX2Ix`WWXQ}2J;L_67oV_LWAdEz6O6v{kc1*Qskh>ny95^kyEN1o6} z_Ftp+UEW#rN0!7!sGRlT8FyNV#vM2~gJTlE1n)y}Vew}4)(4^))kVo7J+XY|%JcC| z1vr|M^P}va(_=NQS;z989!U=jS>^A_x9rr zHuHOo-#1($il=h6N4|cdxDH(W5Ca<#{8me#WO5tafzC4pz2v+xy3@Nc!V=AW(t$-R`+YZr;iuT<9Fpe+~cn zET+iHh^{E@&0j`4(ybK(Yk(lXBj~P@TJtd_5lQQ=6nj>ad<%l{CkXA!9(GG#Dnh8F z|Ih9_4Vfke(3fV$x84D` zQ#X71+n!Bl%x0zmyc7KmLp=9YMhvHN?AaCc#!Npi)Qn8zoFy0yq0=$UomYY&|-ARo7R zV=l*Va@D>*SltHT1V%VNQ*9N)diY}<-4h^zN8#QzB3|8;Y4<-a&vnFLFR@09Grq{h z!q;yGb*oa;e7*)4Vj7CIRxrQAr<>?Ft+hBZ6{r#1Ga4<~(Wk#9F9On*%VSD2j_CAq zteDP(?XUZJKYbTE*cz;LdaD$gi->|UBVXMN#b7b(EzWT~im8zJ>3@F1H6({UZIC{2 z(|MRBV$#=}+}kWGGBfOHBMh9buT!dAa|ch8a^UbU_v~IScE;MbHDQy#TwtS6>nBYKIDWcc z-z=>vfHr5RvFqi4jbl&R*dj8Ro#L?bI@{cyl}pOyghQlraYAPQ$X?{IQk>82?f14Z zR-B((t(|1F5B?g9eOl7atlA*GEV!>nI^T%yAp@GX&4F`yUq$%2shnCKP=V+u9g#0;qarge@Yvh zEF{L;=fe+vnE)$43|BdHXu4U!3JjE~6l<@VaL zIQF+9?#tm={ce489SaEYk$2@0PE_5dTFhK@2PHsDFrv?U3LWz zf7O0D*!V@}&#~eztAO@fKlyo)dEheXE|H=K_bEmMF&=hp(YchGiB_2=PIMFMuHr@z z|I<#+x_DWbGA>#}5eT^?QJs`MC-yU9q(iU4dJumTsFy9cqAmCflxQoWo#O!4Q$Obn zSxx99P7CSO;P2INg!2O#DNmD%9ZZ2yoN-cf%05-2j-^4%Lz`c#KI}>zed^lR#Xm9r ze5Jjwgd1Pm%v+Ey&Rq?r4NuBd17rTBpX^iLKjDXV_qunmnUf1ac23bpY7B(dYfGo5GFTxs$rT zAhV-ZKm!73h8nvj2g^}x)U+Eq6fDQ!9Z;qh4_}byu>rrl&w=wt>taF-{_TRPyWGV6 z?=b$+Om=eD>vSGKR#oXK3l}L8tmXS4yp~g-9gpr3I7uXPie8)FYMn-AkNrzZV zdBQP9c>Wb8?%`DYO@D?4ZPGldPk6}$qRHekuAwRa3?XFWo&TmkLyGk7SoVRSes)#BY{f~G*Et$;Uc*ROQ#(I(|zpDMwze4Hg z^ITJY?2SJ-xI-WMG#?{+;!YGEcmj6Ec*z6vi&un7PC+FCT}1a+K)#i}dAnVzd_!H*o7;>`dIM`PTb8NbR-ApV*a=x**pmKwFV=uyRw?L8n_`{H&#&`4 z(lRh?T3qFeEZd~Es4mlulFK%4ShJw$Qobjxt8g&>j2c*kQ8F16hcJO0p|i#rK`hB5 z3{}bu*Ek*Pt<=A9Wb&cSIGdu(ag{Agk0&E*ara&<gmcWW$Qjqb-^o5U;arTc%tPV~H4!Avx zb3L~oSGCl6sZ>MB8z=eCp3u4Uv^e*OwFWqrW9#v%z5@}xC5FJV^s@+tL(C-qR<~)> z_KwLwg6e_<>glE@WRn~B9N}15alIuF`SKQvuKhZWWZE5U+~WfYKG@~SxhRMC$`yOD z9AW5`&gL2vySx~13sVQA%8>m`ORDc|d*o#;PZ7q+ONY#6pMSv(apjNB6eub6kE#|C zQoC2BEJR5xz9>CkUI#`TY?GO(2nZp%M`m{BjJ@j@O$D}ol&rMQZEIGVonL=lNs%FE z*gV=!^2zxiJ&Q5Fco5zp-s$-j7y%V?+3T}C9ASOCjR7c}uJZiA3k(j_`PhFid#``b zdXIV!muGOgHM$U(sAq{k6=g*8)qCF3XiaeTpzd?F4jD1gvy?0eB^j?r6B1RYLNlw}nI(B9##x)s5vwlUZYh3OBXV$7 z3PdW-VPPaILncSn<5X87!lIq5zECzrC#UpTL@o35-6Rsbs2Q1qG1wM0b~S*GsxQ_{ zUMZN`65mPZPv#3oxn%TOSPmI!D(+V^!MA0s#=C|uWCgutf>1Kzplm4fRW&fz`r?1^ zLH`FqcLAyxL?BAlYxCryU)8*p!X|Q)tF+iyux5dRf||K(U3@O(g6u4xj^cRB-jAW{ z5q&P^%*C{DAxx}Kco!M)vC_>Q)y~-F;eJDP>3?gOiHiRIGp`=t{h-#NbYVDH)W1sLF*utZEVO}Ms^-pJr~P4znVFIc?Lv{Olvo+i_o85_F$Lnxzw=fu|AU zaBuER(X$jXMy7_uxkmcM1o74+2@HHmjI6dy>=SYv+!pj?axb;$jCV<#PA3X_M7oX} zr+mXk_1*TSyqgGC2JVN(HTg*=(k4*Aa9=1LyN;;W^UqtlOpJ^Q#0zr*mD)-zYo-_wp_U@ zk3kk98rpR5^myk#Qx){Pl!Un)9GW>w_9vs$3}G6d5zRtv&yh)ZhmFVvSgVz z<&b{$EZcd-@1eRYePPSnR)rXrk2HDQmb`n_TkWKUfDVe)G34v+N#bSg9TfPglPV%T zb=h|ZTTX-4&(jGu+RS$+tPk();%HqNe8KrL#n7j=qPkJI;F`29$+-?l>j%&PxOMc4 zxj+z749ahR`B!fLbRh6=64qa|+y6nr`pf;2uy8YTwQ+WLa{VVAQqjc0f`nPr)yBl0 zQOwESTtWRa-`>RP6O;wVEb3B)?(>gqH6ORnq02g2I{l@Ts#;jtd`^H5361C{@Y8}8 zj#&v=ci&h***z|Y`i3TpFSIzSXj7uSU;cUBKf53akH^8v2ty;uT$WT zY=DRq5_bnWhEIwjVt+-O?N9?Ww)G#rtUx$Y*#-WT-Y3P)lx#If3QB*tRt63DJwtAbxyzI$gB3#|7KC+!5|&;MvL*9+Y6zf<*I>w8=Pli zeMs&Q99J^&V-owr%Oa>96Sy|kUFMJ6T=UKJESg&FCZ@&792t+Q@%Qi&5s^yNtQXr^SC7;wKi6;~zZ9&k0v|(r~o- zEMh_OkIDWYy8!23j_JR4fq!%SI9Yjk{(m@r>?|Cd|Ho=L>w?Wi*SHt)RS2}*p=2OVm^GimmD^`-$v81k+)%A z7Ga{al=Ao;6fda-T|!@{NlPgz6mo^JpHwi4_O6u;3%LBQ7bFc%d`Z>WaEo#tlnMl_ zR5mRj4MX#3#YSzjge>+BdJrr9!Kb{w-3V3;fLet$;S^!D8*%tgeUr@Zd9L_;+50~K zZFN~b+uLdTbUW;2I{cP-BCFN<2hVUjX3-M(PvR_gi#`d*5*F0^gt>ctL6@o2KXt^N zh((0pJ3dow%M(V47m-VSWgd;M8$N1>LhWxW%RhTyNSg>;Hf%ewU`NSnu<3T9M9s## z!phMqBuS!2(Vs_30-y2O8v`LI=dP$bQ}CkbOX08YA^LwJ6B>}6l_`lk782~SyrJ_T zp~ogEJxZ-61T>T;LF&xWnoBOZ^Cu@EsEfiWV^)fAmV!31+Dda3@-={afC$Fqj)HO^ z^9Hvo6Df1gu#bl5i*$`5EI6iV_B=m+;K| z_|87#C=w{Lse)aI`JKR;@+4a*%9mvg-2;3LUIXMjj&A-#L?iZIR50k?q7m;7!WZ-e z5-7HSZ;e>>B`^W)JMv7xcjlQGWzLy*k&k$&Liivg32ZRJP}@1`nIRTe>KV%K#4~*W zvce2DK8QPLUtBy8cN)CZcO*nJcb;|}0E|2AOp>+pvmQtE>?}aF&}=3V=)!@82&p>` z_+yPT!^a`;hFB#{9uyDmOJEQz1tv@s2elS74APZ63u|rv?DQRV5iBo~3ECHPrf!x( z9od}?5855B9Soq(A@qisJq&PP0C9(EXY)sxl!)t{Hg)I9hH*z~hl@9gqXO*;pKY^t zeU@7YEeFYqCmealiviIiLY|0NX-tmUajOaCh2l zc%alms!((~YdgUtbUPR$h%b6O*Bfp-E+d35d`V03>0Ci^nl2BY`mLmMQ zfhX$Ynv_uLddK5n}1;Z{BJ|G3-mOwW{FTmTgX02x4L<%I4LHv;fVcg+Mrb{A% z93_##6^f;U9KoMS*W$TA97OShn~O*0hzkh;*T8~VMJcZ$>Y(N#>fj40CD6?QfMFvn zK&X-TP3RfX7YYC$+Z~w?*-k774Q#Q7pUIfH6$y-JF5ec1Rz?F{&Nc%JX2xURK^>r< z;cR7lVhkl~MU2GxgSz8A!TiBLX%Z++pl{@Bh(MGQr(!{oZLyc2?zn)I0O&4opaYP} z7Zgx16C<)M{xa`W^nm-u?h6Zm26%}GOF##`ht2jBZ-c+VbRhuEfDynP085GVO!cui z03C=oqcnReB5Vev@dXDQ0Z3+;XNZFXqPFBePzlX|^gyi7HM4#k0&oHl7H+fn5_G`> z^?-)Yh(JPLVgRhvNBlbi&<_YY6Ih5GoNo?<1}+0n0T|CPfCPY9p)jaF;#({dxL{m7 zh+v2isBikLCs5~EBUMZ~xP10Vo)>=M&V0um08R%49~ZF6e{ew03tMEq(+&WY+*saHjEtXA!;htL z%88$t2Z6}%!u>$6zx97!rz~$hn@S&-L%_hJiVx;b++X>JoqXV*59rKz6cZm@h{y@j ziDrR97D2^nlI($C=3LZ!65+4l{qv*K88d8!!7z>J&6T*vWMa{%`O&n=v;|=k`j2@^-G*CN3&{{l5V$k>xyqEdfpxy+rJfbj_J21XY zn45z>q234!faV2Z>xt%1?y#UdauE89-i)$3$W*?GZ3LOGxW=RUodO0K-R%BK&#*Hg zn;Y~Knvfs`RDIvS(!b(zl(6f&Fk7#id`<9xHopE71l`dV0cx}4hA5z@1a3DF?9qmF z(hJ^BH25M*a3KWgALZ{2yG(p>9BJ2_MiKp^d3nS^&~{AF_#yaBd?RIQY`0{t~T@2+RcOS^%{lHMU-cCwXw%!+B?H zlTr@55EE-9qF9B*vSC=bw`skBe3!aU^9JuiT)Txu+Hn;iSWZSd zz`KFrMn3bRZf(ZjxkUh6zU*EQ@AGWQs=G$|f-g? zUMoBbzTzG$Q6)l;RczEfO}?(rNm$>d1+963M88JnwQ>_h)%DI_qjkb<#}W5JU*|mH z97_);>KyPp@+}X(h4;V+l{`JYPWFG<^}N=uV)7ul(>xh*e*k{@sU`;!a~aO+1EJfD z@BRq>NFY^U3QE5MRR9yeSN{n0xDk2To3N|k&F&ah(HSK?WVCyEjr@p!sZW+n5|u3W zI5;ZcO8CU-6G`xGI_CiYhW+RdTpQ1FNcG`Kn_Z!1b!*erYM*~U^rQG!yyv!#pNcCa z_GtN-hG>eBRqp6KLQc8E`L>YeUIRE#h1hVt{Rt5KJg7BmWFkOn z(W&h|I-miF*C6)Zc%c>5PF5={^SAs?$hr}whIZkE2T|s(gq{#SJBq=RjW8eycGB)u zTe3WTl~h5J~(%nUN7U}l8fvG;syDI+69IemXM9%A^f9Q zcWA;b_AUCO-IMeq^AmH}b^mGqQ8B|5s#dha-ga63T-Y3pP3Z#3CgpkRRujiJ_je=| ze=SE#Y~o!_XYe*cfTC*O%NX$(v1mSZ;n;>USn?OH-9>X+M@q?lvU=v@n1~|uudu+o zadU89$!AybYZL*zNs7(bjwq&g+!giP9`TVU|Cwgt{ygj`y6&W})K%7>P&BywC%+%` z#7BnG#I6zbgTm48{o^Y!2`LqAs3ed*yUZ9T%Bg-Zg43M4W!BKRk%?c28=wxnaRQ*6 zO%N{P1NY`4$p=KDeO(sHr^y1L+`Ev@9{j!8gc0rCAq~MYUoosDp?7WTO8~=l$+%zH z#|CO6uX2h!G+JTYzQJ#P!*9LY^Ev>(;zqh=d(QMjvJH$Bm`41g1XFV5J`+^7L&;I5 zRX8L@_`#JQ&Z8d_?PGhC;k@}oW8b$8(nuR&cn_M~R1~nG%(DkR)`oCk%0M#c`?!J3 z(-#6U2}0OIpnR6_U4uY;ZHA*S9Ml74&qyf_Z2N@v=h}SluQq6bd9S`eZ7{D5i2FmP zM%eA_cF@;y7VD{zM>Z1_UJ8USUR09@;B477{DEJKT4L&v8D^J_?@-&7S7NfC9{Qwf zWa~h4PN4$ZP;5OhAG4*4(zg52nRf3>q8C^i7zHD9;LimS-goDZ!5BiMx$rxu`~kAE zBIsp2u`Xymi056P3Zx}-@U66!xHHIJqRbS9Ek7V%+v1$|oDKt_E{`2&vY`8Ne9$_R zYvmtQ_M-K$CkmE19!w!NcYdNQitr@@#XX(UMclSwYEaAC>0)G+CqRgTAGB8eSI| zxHvHs$VicrYgesF9=+SFB$~vsL{_iL!*v#&P+vLVuqB|L%aJ1~T+GakU1$1_C&BTd zd(WF`T|cxxXkCvKt#fKXszEYS-P#Ghc!r7<&HV9hez_cJ>>k=c3dR-7$ z?pEQ@J^)y8;PMMsY0|g+a!;_Y?eZHDH|<7D^>nDE}Qx; z-1JH-VYlkQ9484^*6w52vI|*Iu}%qY$d_U66&wsUlJMj3l^mU2deHO@T0)18T1O@1 zmZ~6jB!!S)6*cL3AXAKx+5AP2&r5ej%Cx@C7lLcX-x>mVKKLy3XXb5|hHz(n9SuOY zBFjXqV|6AyqtSOxqe4`tlq}_I+2b=Tn4YiWm_KH?g##|@XrWlnZ$mrw{_8ZqGkE@m zqW_w6*Gn%apa;6Azz^ApMPiA6|@CNH6nZ zp;ERR=RHdPJ9UdJR^k^=2x%zFyJ0y5U1sT$k6lTJV{{;0Gq0CUdG?sl_3gt;eoLU? z-GU_&9m1i{#$5%Z z$a}1K*5)l76#G}fSC!+l4I2~?1Gn2kZF6Nev)jRD;7zqDs^C&*PN#&SZ9f0cS&ZCf zVE%f@n5f-JQC<1IP#*sfAnWjOY#l`lAwd?R#bg+G66oje>fI@n-bqIkGkj7mqSt&U zYU?g<7Pte`ZmowG@6eV>srd1+%ZMeG`=h^NglQ`dG9b zy@=l$Cj7^$B16qrXD_g#KW7ZnNI&0X9dPQ+ux@drQr03}qYGzhqc^(c6htoIVpZc0u8{d36ZMWA%V-(<)XfcG?qD6)%(q6rDSpBd4Cn zsEmiTLP59m2};)wICwubcSr3wdRC}pC65wP`1XWIs@x9bgU2K)jQ-wf`3yg34i_{rL7U_uLB2-i7RnD|2)#)fh ziD&bUECpQ1`BGVyw=QF{A2&A2FBIM1RPPfs0`-(I*z=J!*SxK79}itf5@!D|09`<$ zzhpjraHbxxYYWx0J3vkDXEnjhI86edU@Fz62n9KS$=Ida$gnuuVzzC*G&XQDl%QWQ zx;ZV8xx0ixhWv^mM;BO;CUkw(A}JQ6xP7)c7SjZ6ji zDK?Sf#t5T5BLMtiGqHIzT#M+i1(Oos+0=CHJ-eyYv72JJ98g`>JM?bBfw5>k6d}c|FQMZ=(XOIo zQZw}%8ye%#6OLwQbEK*n6uv>HOJ63{HUh3i^vIwH8|sNc*n>_OO!w;HMn*wvF)aw! zvwtPYIq_``Qt`PX?B6wUqp*eDl{pc~5oQsI{R5^co+RGhaFRA2j~d790t^)GJfV0n zbZ-KrDoC#eEgF+C8^-m6>7_w)z>Le_NWEzQK;E|%w0DEJ`yo5CN8Mit*)@?0Oqa2bY{wPL%izpl=+&&17t@r`l1^MFosp|IX zVfxAHq3zYE26+7}kZxV0j;Ny;2nJ(wHp1;cn-I_$6yf*NEZvn{3%O3%1CLYCuadXM z>mYPW|I|`gTq(4re@YaVbf{EB8A381BS8?AZ><&!#}Oo1s%5)%xs_PK$S2&Iz0&$I z=J;xY6PlwE`_-nWeQ~HvoYqEfk2h4aO6l-vuLgo0&Z;Ww z(Rpv$mV~_4zcxUoTLQsg8(E*Q`}{7S&+iMm?fyWwxN{%b0KGQ_sboV!;R1d?hl4&} zaTz^c0LQzK4cm*A&_1#r#bH#sk@YQw&-D=Lz8m)Ka7$|h2JYI*%g53FZ#aJPxPA%< zsyW_%oVJy<82D^+S9OUm)em&*>g&HaF$!072*(RhMWkB+?py*~c@c0Lu@@jO?=HX& z8Mr(Pa2@l@3UK!*kWQst3Q*S=5F1ttutxx*E6xJsl7OIi<`0|93fvIfR#wo4r))2F zT44h%_4&FKD}JnU7<#&*rlz8zTtC_!{?QJv>{-zr!d@{}Sb_^hx64z}y=RZg5)M~j z{BO=(_sF{D9lKWEx(!$LuOD~O0Qho+_niF%fBwjQaAFml=tB<Z(SrA$7n*@(K4z+vHA zg18kCycQEYQ>2nc`yM(S8xj@V0n(aaauhgNbxw>{cVWWg{Nabxw{Y(zsga}+q((=> z3~4E~W28GJi>|lfiWaoNW`S+OA#Jc-i2!XP9LGK9cz6waT>B|H)F9F|pkmO+Eyym> z?yP~Q;S%Dg?A5bZg($(ttz&%n-aifZ>ZSEGfjMrs);(}`8qF`{Ev(IRi)Fl<}V2JT85L)$1n4_(l#+Yvs zc3CE4?Y06Nu|4O^)S61fFKUkMRlu7ks_8hsXA|9SN?lEB@=WSud^0)-c4RWG$qpGn^jWbD zk4ThYu9^@m<7y-m4t9{(Tk10$O+eS6WoRQjd86{^{m@G%8%`e8p=N+r$C>)-hW=8y zl0-~Bb1GNm2cc3GAXY9>D(%^`*Up0@F7IB|lRJ2@>GqPL{)tyWZTjIhGLy^!B)@?5 zi+?Ve%aNgYC{!edNI;kih5Y>7J7|v_ZP33!x!CSSRguvQ7I45$K>^hy8Dq1 zxNXM{xL^-7bQQFbL%rBteS|it+GxmD#BYQ$8+q22Qw>Znpz1Bzif5|5=itGE%u1!d zBvl}DoY7;u5tsgWyQ_+{r9VzYTvhjRm~b1otsLPNBJ6@I2({EQcMOqZAd8!KfUDAS zJv^&g2lO-KYL(C>-oS7UgUEqySg|Q#Zi*wD*QVfCB;Vu=3VB#)Zafi zCU3lZynj@1mNZM5lsDTw%ikDWOs*3bD%aariT6wE^jCc!lJ~^-l)u;m*(&wZ(#!+`!B{j6n3h_{d_;}43U`Vi>V%m^ktI_U8AW&2qP5{a+)m{On%)pU4wSMD zO^nTS1#W0U4G>Eu6C>(c#fV=I0U$x>th|suf;{kb!q*Pp-t-T{7d*k>HqF(>mAB5; zG(G^#_Sw7uk`b?oQ!&?_)WCS006bu0N=x!|YGE9DNvu#3$Ig0Zf83!al$Yjpb7vQ^msJp z5Jjm6z*hx1)7tNyG5391zJR~s!X*XIU;NqxXhStPA-Axst3OACa<^lUg}gEL{3wlLgA_ClRxuQyVlI|zvsKvl}$r4=ea zh{~ye#cL=%(4DF<$v#kZIthDV!fJOA^EpQniZhRl4ZG+udhhLUYYG^OLdJTj9b~=z zubxJ=nm&&{jXf-JabKaYxL0^l+zSE4t08HyTCa|=%~B`Zu6JIacbjvc^Yg&x!4m=X zMP*kW3Cp@g6kiJkT%l0F5()rPS^^}bQj9kiZ^R;&dRRX$JMLEQ}59{I!=@Uo-MYX`z3SU!Sd)K1|+%ONc zmJY2Jlq8LW!8EtdCaOzg+Uv?_ucOLQ0bNS%v^!eT3k0es^$cT$%s3ieBltq1#7k#; z5pVJ1>%ZIdzzsJ&gm>rt^wvA4E_wQ;$Hs@ZZ0T1$Y5$D}KA$@4R}VGk9s1zwEp^ZA zdt&v(ZXk)Z=`VN>NManH%CQoP-kA=FRVJ>&4(HM?pL%W?;IIK+oLgoF-S zOjCV+aHJwSRl_(-T&xodDI-oaf1fGe<6*IcC5)e?sJ%2#NTp9z~W*=UpV_TqNaOB+V~j zwxa~261{{#t55Et*O#pA>}$ilxBK70dvI@X1NJABtYui+sSV$g5w19kYE1Ay8E?qi zfcB$Qjle&mvSx@{R=lo3O$D_My*!zC1FS)>ENcoFl`x4?1kp)tYr(yZspI`Latf`Z4TAMod-fz?RX5Ry=k~b}R)b$8iv~U4Fzx>Wu1G3reb})PW$AkN-f&1#L z0z2_;LaC_Y3OiSEe13j4y+u6;B9uwE)Pz!{E+0{)CQ7Q*!VqjbS21f@pN*Sy{!l!) zQ{}B9r$JoOeHV3Ikjk5;G+t5B-LRz)px_Eeg*)cp9GI+YzlA*ftCwGHP4&PNp5%6( zz4Xb{qk!D^w$B1Upk8lOcna*Q#5|HbQ%0O7lc#1z+i5a+YGz2C!0e`qZh+u!grQe8 z+Ko75lf!Oz$VrW?V(0mANV8!i`M?EXE;M5pU{do(0goy&G^70hfE>lRN+&bZc1DK; z7UwtTugiNn?|15Z>R*BuYo5>6F~H@?Zf9QJYc{*fmglnBHNd$<9({Dewh`h@n?2#i znQH8^^Y|T#fnW?14q73{1pOL)nSPhf>;Ex^`51=zAd1j^#AjldZ*9c65BETJd@q#j zz1_CsUtw9n`B-)ynl;cU5AciiK?5L71Azb0RhBMs0mKUB8q8K}SD~x22ka!raE&5c z6NESQSw{<@kd|iye}i`$2+QmUH`TJ8v4ya{2{%aTs^@;!mC$Ou6TH`Wmw9=wo+$vm!C=)^>-ErEc|Ekw-ZoOy63>QChONw%x8sK4 zWCjyDEGt~QsRPzp8i_@sZKiawJRU$+eQ*cHf~=J>nbNeNtB}c*OA89jWCn$EGS%IX zCM=bdvZzUvsC9Hw_bXP29C|NmE3qp_*0?h*zD|Q@)%F{E73sHcT5J1tZ{G4r>gdC_ z9ozCzd#~Yl4x9JHV>ev?3_sd7v+K~V7k>NKNsXx=-)=sBBOZd6;LX3?^wQan8lI_d zd*uGDTVa$Yg1z(zPeb3|&axA>0~+SxAF=ROFe((7x)RJ=Rc$`U5jrfxnODn^fZa0R z`ZqKjq;dk`YG88>UIww9-c~iY2VG=^pD&4(_7Zun{uYkwEblZ{u=+`A;h84 zpf!Hb8ZU~WuH@x&def?+V7Lo4V-Vkvv0b`2qhV1f3p=$iHTWz^adIciQN-;uLq}D| zZU!WjVJGcA&P?BNW+^VKa$J#HrN!Osj&7!M?sK__^AjD^1|4T_aL%X=4|h z)0yY#bvQ?_!=_&EtPRh9(Tc78oMak`=ai1;l#b`1KzzPE5djpiV`SIu#NLMQZtd0mAh&$mX?zP?iVA>jHU|90xWY*qf zoo8oN1M5m7Wu1kA!t{~tp-2EgV0$D|PB)z+;Ikju)*-@B!LU0G^O{f-#APkeb6prL z1cRcpjKP9a6Qc|k#2i>)S#VrZ(!)&Qo31i~BYCbIG{}VpJag{sFJ9dL^{hFo?ns^b z;DgkuyRTX~Yx=FXO`W#7&)~JAS8UpH)3T?zV2Ar>Zv61@#;Nyp=yYK9zBIV``|tWK z9y9%xnQ*qI+AhcatgbY02bLFdZyk;_x{-#g(!!&2SI5aWt)C8wN%dnX*{J6mfzQCqtMY^|vU z#ikY%n_5sj-;vb0hqvy24v(v>vEklfqPLY_*Sv>k(OvgjF|a{CfrcZ z3?Q%A3*PEZV+#${EJ-WgF6pAvsUr^q|xPi0AwZ4#}CR4s~vjaQzP>HJ7csODMa zRv;vZQZ+C4R{99#d<{<`Jmw#@n-#4-c@zRMIx#|nv36skQ_oZ#>90~VjOH~3cPa9D z4JglTLUz*RU}oCHY>zp40_~cIALaY-BJ0WNtX-vohQ#ZGVAx54WwAt&U^df4*i2J7%|T;2%LHG(&)MGG zEA-1W3NB03D=GucbVK@pye+b$#^2pNF{=uPPshJe&31lE1s z%MXHZA7m(wd(eM;-?Ke9d^XL!PFAEQw%{6E-IAJ0`)wR}V5;yAAZ#Ie-jD}CmmpaZ zSP~>x1*QbaEOnxdj8n(hNKe}U8wvU?5|8v!hXZLHTsREavNaKl7DlTJX$&MeZej5x4kX3U)PW;5PY0;=_PHf46InyL0thnMA|;SV)Hn^cFcYY0UW z1r{@Th?&~b)@5=$7z|Xep1r8ro=ffUR9b9AqH=@(jKiL8MSFWcaozm&zTN&GUwY2)nFeNF}(=Q*Q=bv&?vS+irHRrgH!}BJelcW*(Y_>*KU&vf?+JIOnCMwDcnQKp)2Z?GP z#ODr*vYF%Ym=h9a_^+6$CRsM~NhV{pnbk0lNXC&}wb*9YS$gIB)(rC#v#NwToAu03 zWImt3Xt~~1pJthEZPZtDYxP%!m&N`130<)W^|+Rd(5EX&{U7Q-w13#Fyvl35jZocmVR_O;0*bW?6 zB^X-}-yun5^pIqDzNuxSX8`xvgkF)qsGMY)nvQQ}C&TcqxzXWJiq^aK3&2L=^}Dug|!2jP9G z0c0FrxBI#~ZU?ZLn*LH)2zs86%h_D_Br-D}0F8wjBAs74mY6`f2m@c5|)TAG9~o(fohpJ8aH;M}9unQ7m(G3`Ghq)@ogsyKDW^g<1JGIB$2Z z=N_=F4{gFvkWG$1+47JJ1$37l;OQjs_OdGGbVbUlbUQRJm={*LV3@b+CH6~ENd&y3 zK!KNJ=Xn|97 z4ici|dBKECf0xUy>na~?rO=(w?BMHIpoizFeA4})~e*06#s674aU z?yQu?aF<5ph(_dq##>2NpUwQRY-Sm(5jLk7$xJAoV(uwpGLwm?Tba61#%j$T5si69 znawRWsC}=<^r#6(o;;eFI)X2B6@Ym)HI;$|EaZ;af`E~g8BJsXHDu8> zIp=iIH3e*ChVgxjFFN}O7eD(a?iOLsmQ>AiDQyew8wddSTcK~P=pEKKg{*Jxl5n2^z9|^@+8<0_k)GvBN?mPb9_Qp{ovp_x6^LkxqBr0_Q*Xz$Wga zv!9b>`v}_lK3m$SLQP+U4p;$g=kN%Y@g-*CIFlh#rj;Bp{j`i}_&MvRBa?@sf@-9K zIbgCy&wyFdGDS1|&RW{1gia^7^uB;iE4Nfs8r#lYjcr*6V;d_rw)tUW>kAmu&>c0s zG9s)Mwh9~<0WG@=ZA3}Lm!kw4fexb+NN`5r;9A59MtYwPfG;yJ-GHXg`67|KGC_+L%uLBwD z$X1L!VR&hn@LX6x7V5>ek*9Y^B-`VhDOX%puDJhL&rX>F^^+-3A{D4?Q>xpIS&Ifk zt*8hg&Qu{*^?0W4QTMu+$lFl=e=se%A0g2WEzmhbQY;-6W3UM@=jHt^(3woiEjG=; zj63u)Fan*8FQc65q^AYD%2^R67OP@I7Auhzk+x6KX`2*i(@t7S(Gi`($+Y|@v*l-7 z&s$wXvraYp_v>%Ixu5#0@whQA$XsnxAhCfJ8RZz|85J0{fG3iOQI0Up?O6xiF8t%&@vDpn#09z zi)aojezN=|n=!Act~MIekRxR%lhxhz zFVq&X!~CjMOPN~*8;E7H?o-`wkP4t=NxuhP z_0j%McU;`QKv zp{53!C_r?)GzDBN!Ddk{#GY}q=*K{cDE4@J_QFv|%zfBj4k{>YgKU9k?{)>zI%?&O57zAd7bOk-=cQuc zs|B|yPUf5`R?g3yGmgty{e`04d8gY&m~YlgM-|Is_Iy19K-KfPsFp1R?~YQPaV=|hwEw&A%rBigf3Ed0&Cf8s$rzH% zaG2g*d$qAlEV#|4GPlNNqi&7wU%NHkyUNi^yJp5}&2OJdPSNQZld&c3Jq+tjP6 z)%b>ek2GA??UvMS!XBG*%Fa1^Q|;}~ad^$L@i)6Qnw5AIBJV9Q0zOnoma!3tIu#ps z_6&_Hm};3*009GodqyQji@=>=(#)2bQARZx#blgq=}%jnflAn(XelhMbkP0$(n>wE zwP&_){?9G>CB}IuuV=ROd}1&##kNaBmqtb_<3n>o^Q?<(i|x0{tL^t`o9%7(W415t zI_OTsVRtzkc86WHI)fw{@W`T*u1phrR;$Mw@Q1xGr1$5n;M|{Z)8X=ZQM8cBmCt9l z+brSpgzNmtjf}SMs129c9um!!uc9dlBAq1l(}s&8?IN)uQZ%<{c@bAs=p(`kUF(Y0-{=&J5_1*NZyyc9>`;YoEi_eVL9+;HH<1|lLRnFF-8OzXw?5g0LKa}zO z60#*>ud?fX9L_!z*KrfG0=D$WiGaV#QRuI7!q=7vRq2H;_!hv|oiPIO`rvk}-wU9U zP-gr62;0F3;6es68F@CM?W&AOXBG^3J>I++*M)#Y$Cz}psgLNRr1`)b*T448(6X_Y zrBA*z_Ug+!M~8fZAH8+mu=^fQbrtpue`WDQ@8uU44ZAkgguC6crne%sU&~eWT72^wD$m!26xzsUrE=~uwYY3XBGF;R1PC5I2? z@IjLY@79+Q2x2nWU=n4ulekIzd~N~H7nkm9GBGAsMqz^~HklHWDW!41Aj*|#B}Jr&D=qG6uZ#^S9#}pu zQX3mvJX@Km&9Y5(P4O*OuGg-&FV(LtnqRzME~;TQz6!OnpM)uFop>yLX- zXO!)Oz0Jr!@y3tmh^_ zttF@f?m*4F%|^y{pzUEQ+#%3CYEINdO(ck#bDGdcxWq}rGJ2KML;z+0q8$FYOG3`1_!_bAZI>cy4DLF}d3Y45C(lD^~G?CqOPRDWX4%7JHE*!+2 zgPzVtGQP9o2{Y^C;mo`OsH-uR6DAdgVwRQ^m9j}pw&E|7w{g3?9^T9JSp?6aWc)5| z!YfO!d1my8@qJUXN6wgbe)S!f zUo?Nfz-ck>#CWgAr(E;f$ur(qVY~g#6;}+esF+pOcgMnO56xfj6^+cgf)}xeW{ZMvwq?udf6%^r6#VBx=sOqgYrJh$Vz1-tEU#L4 z4^Ydz%#Hw~-KSx;kO&`=$G;#}|SxbaF>ocd*=1NwI7Y|)B{!mi6%hLCD3VY6O`zUqx@jJ2h6*v6s_7`_t^%8q` z2U)=j8$?&LLdZoWSm_$>(HNh%KuJ*7Vm| zt7kEJ2x48D_Cn^qUzi7RQD&_pF&Q~vPOQ*knfVu7WaiF*$w`eQoHR?vJb4)jR*Qg% zQ2x0_h5Y_*!AVa6%9u7+>9@G;T72@h1Al2mShV;~lGj z|G3Y1&nh#EK_@YcVB2*rpx%z`AcTM4Zgpb1vAAf4$Xr7Lp*NK7IdU9(=a>Fc2Mg5b zg0o+)f@OfcQ$QBhsZ<(i9zBXHjBvUFlYZ^5yp5N3DJblW*Sy^R5=7DOFQ2<;5#NDj z<;0BKsicv~og!q0RRtyo{IneK%ZNgD-b)20TQpZ1v#YUrP{4k98M!>0BbTRhEa*8I zwVN|*CTOew18DE6wOIRbd|zu@`pXulw-N^T%Y+RW-VcPM#7g4~UzDEubD}RWd>IgD z3E#oeQ7*Uf)A4k1y7IBe3p~e(7Rf4#R*|#HDqxE>A}cOgRzyy;a@0Zc(4$<0U=S=U zs)~pKYO&Hr{0XZpTR8&qZEGXGgjKbUO32G)BDdik2~APd2;xQ!CwDRN+L55|-?>cZ zKcO(gpk|E0ry27=d^5sShsXt$T&TaUG zBnG!*MWk-NJX--^v{<2uOd#1>Y-WPaNu`7IZGZh6933(6qAPLe)An6t4mUJ4XvvcK zYw^~zE$zPoOiX{0ngOQjZ-_%3G8y9<`feuj^ZonfEG1wGT)LQnK7<1+SHN#h&A90% za4;`TALB#(g{Tbm;tJV4I$1SqN52;6*g@;qu}bUd?iK9Qad5{5t)b&gZAQn&uFcxY z4(mM+1~zN%GIPqVl)c|bxu^WklpRQ9&}qcY0?4-Qio&p{1~(|K;jwg)wB z!zowbE%3!Vb*!x7t2zzlFX>cksgF;!%!n^kSE;Y6KWjh79la`TnAgjTD!tvKF5iR> z*K{BqLgls^+g-K|wzN&yVB2c@&c@mHnhLY4)~06OEdJVj*Z5?@Mc?zXv9(w>k*?LU zm1MNp=3~0Lqt<2%ao#raOpDJjFf<13B+D0#_1)_Vg(Q@13mRA|cMow&hl%<`1ZF-r zSNT(pj-Sn>S(I8NGQlm57EyDb2}-^(%zY70Wx0qhcckkli)faB_9rlZrCt$mtina6 z4^-4fu1MHQ6ZGAfNJ-a{ttCPg%{ox;7=o4e3}!D#ZYJkb(yfXuF$>2kyH@S5A{(o4 zm6xtZr#JUn%zUi3*jHF?zJgJ1`s3w>RZKW)%ZpwV4~e8etPzRmGHtLc`xb|BpDwkc zjfMYAS4AI-``OA+k>!Cz8_NN(^>AXh-r3|2bugL?KRq7T!ECViIFDz&50)E>fBrf3 zIF5oF54%T=H{!AvHyKe-Rd!Jd(?&YcjhceH5EqZDs;xsC*O{h{LZvd-o$;LF^Lj%r z<4qnZ`zB8fTZ72fy3<$0sGrWf_+ISOqq5Xk?QtPtZoS9tc6q$95{@qWFcxV+A+CDz z?wMQnT|EDi9AU*P+g3j_LbrMg_l3My9k^zE_c=4BKUR`|^VmVp z-a2f>FqcgW6cx)?cfO#$$=7uIki^7GyDU0!=GF^(QpnT$FdVB*GRC|%oLl`IsH3i86QczGBst8>anp?28K5?DY2G*9Z~UL-A1O!|_#;BOz1-DRsIe!6%j_eB zsltc(Kk%n@Rd?HXk)U8ml(6g$*%TjW!?`qpFDD}OnKmp@SnDf#Q^C5DP#Trx3SYop zhEtf%D!$C@&M7lvc7o}GV!i~e(3SU8bQBgmQc+SC0Ayx_&|wJS&RRzWa+;}NUNcj{ zOw;H-=x_yRN;sE!+sI$b6%(=_L&UogC-Di)7vLH^9CMfk9aL#CU3Q#L)eAG}#>`X4 zPAc7)NjIi*HB_xwQ4g&$_R;!c7kw)BhcE7Ro>NT)cV6{Sy*=~F5QMIJ`}qn%B_94c zs+a>vO;FQ35a?Dc>o&KsyinoAAX{E2O2$u-#H-BUCI%7=k!P5=brdTs$KHPM^*3KW z2)1NI`WSZ{>_&i0G~O)prcao@jBG9~vYL$DWOS3ELzL_FR@#=?v7N%_2s9V$8Se}! zk}t$7*yffjw67)B*AiRHD(SSZC8qTU-+h@SK=cC*-RYODRJE$OAk;svzjt)rXm4X) zqxV7bAh%w7LVqHlS~R~rlg!{|3fHQ0wdLAV>JIBpd55Zc)RpRIgtHY+uwP?eX6Nh} z%s`@~E1NBDglert8_^MT0zwhHT|wvS7=o&^7u!uSw`axNUTZJ1S(v>k3?eqCbuz~` ze48zXij;T(_&OL|YFpe$btN+Lj1!q&!#xcYj=&)%X9*@`moU)^Fwq(ua+~1oHbvW= z0q98x#T%lu#(dyA`g zJ)E6)lCF}SXRfyg=+qmI!atT#0fDX0zS>RKyg0!^IC&qFSa5%x40;tQyEY?d%?o=2 zq>{a3pG}=m0p_Z=<$w45hp8XueRbQGzZPuuFB`Y|nI~?Uc_+TryXz3n$MSQStl0W! zaMtYKz4P8n)Z-Zhl6x4C(g8@B$B=S~On9wWtJDT)LJwDu(B))|JjyjXG>uFardTJr z8bkXF-WC3o_mTheyw6?VdH?4BoFSs8pdcQgFgheaF;(gU5nmTiAJRh`LI!GsT!TZG z%eC4x?Q`)<&uM(preik*m%1I0Qjr`8pb~6OKlwbU%&yP#RbaIDoX3xf9rp83)&4KV zt*F*stm|(&uNHhmFdF!<>(H znDfq#y=LtISQj`g*;o3^_x}tj+ga-@lFTeHoeiOq*SGdX>5z0-N=rPIzTpxlg_#O7 z$3O}js?8*lIcHLUNu)nqIU)xqX(Ep08?w;I4py@qAK+#6(M&3We$N3VonsAd<0wdi z>&*eA*pRFkNU2D611W1NoK-AO5$!=uJlJ?c+5k6k?n?%}ryN-Jr)y`vdvoKu@|O0< zbJs3>a?=fq9$op!nlq1Yz+Cgle#CZq5OKco+HYU}@Qnl1HV*;Y90sg(gT#55#CZ!) z$PMvPgV10dt4!f$3D;PsC>FQzD>$srk0wS@Ek?o;HHPe&eX*Sy{l9-1WLJR$p9eWOlvoezd&3GE@zP+c{x z*!~0?Y8^1=-aNoD`jZ|f{?9+@(NgP8XyB5v{E=q9E~`-|n~s=9Z)z>=SeewY7AT-= zaf(YS>2?=&I}31uXRqlH@2vGyWbJ`&W?giPX{YrfDN)q1(v%ld%rY>Qh}Y8P8d(tv zF%dFAEyRR}z1BuW=zLS#5NFdrN8uQV)2XK1Boy3FTg;7txPc#|b_N#BGk8_MI3it>i0 z9EdY!j$KlerN?lTy$UCCSMKTb?e4Eq-(lBZ|AcM$>@j)!t&`TYe@I5Ey=!kX-WTnKkui5SP&?v%(rNqY7fcSP2#RRo)eM0!G&GvJY%qS)#fGmbIT%4 zK=2wP1@Vrzm`5DB2h-H<{+4dNE7|Xi#6ty@YZ3M*Ccn!ON-9{2h8;XNpdPGK3DiGb{w)09B9Ud@2wc>H*S zkrSXlH&I1@cclMf2n`*gRT3=_)#z4d5IID95JME-am5N82MC!L+<|0I9!(r~Zk^4E zvYpM)$;L|Xctv+(l}4;b1ziXZ*a3!$+9@}Et$O>04S9i^7hX0#*t`3v0f!E8>(?~R zsvLB=^I>^V<5g?UveoYwrABgJ15VKQi;Q@_QBed}C#BeRnKIBNTJ!z+os<$+r&yKJ z({-sb$W<%VDbtnH@(*rXmsqFL3u70SURJuc)5cCx&uGsMHJt`2gQ5dFjERovFhiOY zoz$VR)ACLqmL7|K8~d)*;q{2_HnOd?ER-iPPe+fSuFTI_&IB4lU9vQx3!#u*9#|Ms zWskd}xPtx;NbYZce4n!b-F#uKs8%la`QG$m-J9?>dY60oPB4mOY$s-gyvz!DvsTE< ztPp(*l^y-sutKyHeJeF%g}laUE?~f5p3cFj)0tdIVOm=^~(}E~9 zPVr&qkfkXz!=&fhCuX1+;+&#yY#+_ML3Gqem^XoA1l|xRsfR--FC;Ke9(r6YWWO%~ zy)L@*${2R!8BwX>)&oWXf`G_*y&kU-XO6X6;|pIu@YK>Jo3>oPXj5HaWO4V&<9a1;$JHO*kMWxOm!F;a z)1gJravk5=|Kc0Jd--=1PgWts9b+>huNuF+7)IV|hB^WoTxEoEBOu z#GC72jKB~P2494Qqr==6kMQOC*iG@wVocypo-b9I7t*SYppYgu8IIXRn^bHQ)gaa^ zfMAFwB3Ga|{aK~pPDMsCCjfGFZJjO9w;hZi(OimZ{2GZP=3wF?x*e-pZ`{A|`5~>> z&Khw?HH3rT-_!8KL+umDqpNNhedp5ly?|P)K_IH>>R==h*;pSeXV<2h>7neqA;9$W zXVTPXa}s9fcp-=9O}@33C}x~)GNQ>yz+`XQo)cZ2vHRc%%LOJv{f#!Lck~S zgtLm=-t_*=9Xi%>H)13TA}@>@8^&3;(q=FPY@sB--JD$H}VW*ET0uM zo{1VS(<<=HX!54fFaVJQmb2ATlv2oI&{X(mz?F_o4x8P#O8jC)yJ%L~OqU%odqHl|EEZ^8d2QM>&W&Kw(t4v9<@od(e z&;IC8=4Xf!p<2-h0mWKzoRza{{}4`zoK>Y_E}CoSWRtO)3`b`m*xI|X+;uW>ijh1v zm35-USxTq2PPD?-DX;@kb|7&J91(e5;Kg3ni$NU3&T^f69e1t#A@`XmJtg9pSRxf$ zs>I&b8f~~%&)17}QoVI4zgT#{`m*>o|DJeM{7U*!{Mq7m%Cf+5JP}37YPGm$1+Qx%kWx%7 zP)spa)XYnAN-@f+Pgd+RI+C!}l46X(*RDas0jWX#6Wy3OV)BWMml+sR&@?HSAC?C~ zEM0~Cs`knM)!w&;$5C8~R(1FEbNV^&ck3~u$Hc8KBSZG*{l5Esw`Z#ARCU#-)Ax?xLmE)bE zl&sE&THL{u92Z)K1?U0s6Yos!#HU`LeE4?H$v;1XM<@4Q+RmgtGf7Tb{Tz&+&2)Fo z!Hm(;UaGpY6ELA={^O zY2f*EPs(%H^M;381J-*UHs#sv8SzYcIA{`?VI3xkV4}=Y0A@#r5k8IHBd29gb4>p| z%`qj4I3|ZUow=XrPW(6TSc&01goybzL;0tCprbWRf^h_=FW5H zr8h&rvpp|+-nW^MXqQRhm@TnvSu)NC$P7!sd|5PN$Y;~|-t8Hn9&;vUOnV1ZfUeYnvq-&*SUfFzFhB<*ZkB9R@r)hO#cX3GV45#mn z;TX*+R>&zvbBd9zNhZlDMp^h6m7T{(uSzEsF)zt8mS3NZK~~2R(^!_zq%7Y(m$}`u zzq2fj&mv5g6_^wvois~3>BPr6Y05;PpgVK;b6y5=G3TdK2#5SNr{6A5PvBd|FJ~&8 z1tvNVEn0Tk>>P|Z?Z32|G9816h(~}6Tt&2YOnMq;OMZgk_4_h@uNlLZ8puyD@)EMY z$Rg%sLykgMiFqXejL7kRMUYrN3E)^i?@VkPh^BM?Jq%Dq$q+sBg-%GQFr|2E@^Hgr zJNMq7y6w#0KQUg`y=eDeAKSS7%7d+3=Ig7k+qUuKk>i&tn7`}4uJ!AWUb>$dyXBU( z-~8&OU*~79Z^3&V#BWh4i_gRIKIS{dgz;PU-+b?}@B4U;@CT(pxBCtJfN?f_E<6?H zY|*dzgBHwQF&|WARr6{yrm$Mko39n7u<=fhO6IWP_rlEX@I&Fz@aZrYW|_u7 zFi(5IJT(UMd{>b6(C;5JO?Q*vCr(}E%cibo(bSc5`{UC&>+-4a>JU9XrEocu*^6{K zJL5*yIbVfpYy#a~n4ZrDc~g=_S&&)Y$e6qq!@6v_WLJHVNKmpwgd(YO5QvNQSd^qZ zd09z;oZR*KB3e51$e!1>JiOMBk5%8eV(8mk=KdqgcCTvq?4=>*^Sf?pzwhUlo`FGX z>D1d?1yGBMB6y0>%kcm`#neZ1U#LWg^gz7?iqIRDAV<8*`4wU(-z8qp_laVY(Q35@ z=Y*FT9acwhS-9KNEv+*)TbqOH!Z&$tlC~Q+SvLi@hxg%t#Cz0h*bSZy@-@W0bC52} zw&>foX4|%H+wR%3ZQHhO+qP|6vu)d&t=ns#d)C_To*g${ynkNA7hh!Ms2n*)R@R7$ zs?71*@@`&UpnCQ=l+Q$xJ|XyEGPL>3N5S_IcrteUGhv`SjaqO(iX3f=dcqmg;h3(Y zSmN6;HqN0uu^B4jx4==wy{Sy6ON{PMQ!6Nt6-W)&4ah^X^n*Cx%eRR;4u#Yrz2jyD z?i%3ET)5q0PCKf4FQ1)+lCr^ti*C)0$ekKzT;O-1s-e8Mp8cN{o0^WrKx45m*KMB5 zj@0RVZnldowW;v42e~ht$JahT!K3Gy7lg5R1Kl3 zx}?0MI@()I8<$e9W~I)#b(0O`b_VCQ&!VrU8;dy|(wVmzvYAyS=i0~#%++4(>ZKRt zmiZOKciC4j{dsxmDA?h!bTGU~3#fTQCJ0JJVfi>9fgvuULlYy*Q4Y5VZbAoE5-P4^ zN`#)nlY_C{PC+|w@1HBb&q^&v4`}Af>~HCxSQw)gphI72$Fw9SML4UN1#>F>;#527 z!;$GCF~ZTVb*fzjlBRSk^TW}~4yW|Eh3@lnUE@effMr73JEm!8r%j8;LFc7u#D^Nv zfwbW8a&%2lL>VaMi5lba2K)i}c-qSP4I?0qW(%sGH*bO(xSl)h&WkDq?%#JJRJ9%t%fP!?UguJ(ExR6myq!ewdG8*gO}|5x8V?!bdBBwp^V_`(NwR!E zB^Z?t+^4}A_oUcBH;Ql)K9k}}x~F@})HNR{ZqKi{Z~yrfQ$yBF!V&Ko=CkS^;WP4f ztyd6E@n{T8Gl_kTGFj4@k;;3tytN(ZgXKwf_w!;VGMZxvFN(^4_-!9MR#MzTn5h(W zO5QLP^@FG$pvpjK=2YY1N0yZ0oKO6GgsjMyyTC(@(p=AXiPNaCbe2av8=uE5c6?33 zu{^RGKEo})?cD&dO}<3!vySCxf*I33DNB&!^0U-dC%4~=;6%DHYpGxO&c3djYKac< z^ceIH8k%P&FZNw;W==eKiD_rKFohdA(-?3@wc>!LswSU7Qd{w#&k7&<*Q;JS8;`3a zG1?^0>*TzV=!?z!sxe;C%pS~T{oTB=86M~75UG{xo|nA_KDX1P9E9#8*}&9eKTc_B zxudD6ntQ!~0V7SMmOzb}%bj2jZAKA^MCBZcvQU&dK`vlosif!dU(`)rD@?DsD4dV|fJg?7CXstuT1yvFcJTzGA*c-qBcn+mM8lK9v&GI~3U z7kD(X!S7AgAqAF!Xe*}a9;4pI4|x_gAd~f``WzEQ{8_7RbDrB9y03X8YnvQkt1 z9=dC$2}sckksCn4&n$@?u1@h{`ZcG!Dd9k-%l5vQhqnD2SBs4J186 zJ^)52fFLE<;LIFhw$U+QFy07^Kv-!w1WukScvgieFd?Q4`sz#B2eMRQZhYHlK^l~# zo+Px8o}~L9>IZvGl9b^EhjE#78;kt$Y_mhBwFU{+gn~WGh;7XpLsDZKgG<{Bq_@? znwc}Lzc-nPVy1%SS1UyKPhZ4#^ETh3>nf81P!Ish#tN=kKcinXPB?MOpEVM;Up}?r z#ZwT!t|4BUXOYO7tP4(GEJ|&ULcjX zpXsXIRfT7iWz)v>$9lO8+A%w6iD>OSI-oSf8{zuM3^P*?nACcfnUBOOQw-Lcp#GBJ zbCqhWN2jDw>e5fb9!NropEPMhm&AZ%q{7#^SKImJ$f%yh<9egJyRWa7A1n%|MGm5C zVjoT~OP(g3|C{4?&(AR70zZ($FQA3--UE#vDLJP)ab=}ON6b@JpDWY6FL6`Hju_2W z(mm(Dfm<8UqfqSIT zQbU(uRkOFczkZG@I}cSYhb%kQSkOk0dD^=fy!lAUf9BB1itce>(A_}_o zSin=aTo6cGr7UjJsajX+Nd@^?S|7G0*YBsXr};)3@=K5i4c1ur{psaqJq#v z7kLBMA9+V+PL#v^Afx7fpzIEIHrd~|(2>Be=!rC0Nz)RUi6+>EK>ItiyAzJP*;gd_ z5s%8h@#nr%usazB=PqkOf3?c@=@FJ5J@}(O7h0Vd=V#`XwU6KUk4E6e9l}my36-02 zMwl!uf%~OQ%xC5EzmuY<)=9>e7|tfEmN`FwP%%1AQ44zjw|fsaRJEE-WfB~9OYQ5Vb-kBAK70C^y`HG#`jgKU08qxJ;fh7Ho8sxuJqbOG zt;4733MA@GMn){8uNcCc)g?QP5)rB$FzBqP|B~I}mD6f=4I$Xnb=8jsFHrnW&Q#EB z-YhOawMC2=;g@HQt$EST7!0`X)q7Im&zxu zyYMFT)W}Udv=q1!<{z zop{4RMi|>+@5nrS#@dB^@#Zeb`a!~rvU`1-veb#g%$n%El?0BN(2!ez!~{#y5UC`e zFB8FOwEQ@!3_7dmV7koh3*2IjUusMm#@X`1&3SF>>cusCu(5_SL|(s#JaD}XUD9fP z?0@mBehu88Dzm?Zl#sgErAfJH^403m-GfRd8IJ5j=1NZ7hnV=*Lm^8Pa_~_r&MIs+ zi5@4h-BC$r`_qCd<;pn^D=PW}Q$=Jj$mKgjJVHi9`H&h-)vl-Sn zK#rL?&$ks>cmLuR(mgMp>k2~uIp?is#~DnIBQz~F80#QhuEEsMNItwSLbVfAKqJk? z*G3tXZf3o>9I>bjW&1hH95I=3x^rSlyswouA@yJ&kG;t!hrjT|$tH`pfPEOd(8dXr z#&MP+gGxj<8A4wJ+*EGpLFv%6JP1SPP<%mK!M^)(r7|`td5?K-oxoysOvQNx&e+PW8}BD0nZ%6o{j!ichbxZKX3w?eVBbJ-@Xj`L zA4OtLc!HnzH{IY+YW(cDf_f=xgE~?=QDgXhQ_+PzFIgobS0c$Ddxs*YsP5@@g%w(D zo6BQ9BA5udTe8Rf-#&ME5=r4|VU$ZyRf;vWXYcp&4NY?Ioi6|$Jj z`|lE$B^y-lHAO9LEss78w0C%tc0ssG`$f%tTpD0FPpOh_o7NM$EA9p%>G#|*g9 zFUWMQ@d9Qq>*Dgu%Ihn;!>z0oNF)*PX3T! z>ZL9h13Hv|o&l$z>@ldStNgMl&7^p`FYpe#^UEYA&waD`4v!(v!;4EapX>BW>kSnl$EM)zs5TeHDHVzhqe+ZkrE9P%FV#^ui`2RN7?dxR&aTkX>X|d?a0(w^TyThg}V`#Bv zi_J(y#)-z`5ri2n9;;LqcU5km8yQLHs|AO+buC96u%I?q%iG*1kN^3p-A+RWJYh>X zQgbMFGPfXQpFXuUoLKEw+|$o}WAGdio)`f@+W(SecMHTb=Q!C12g~ zBUbzyGz%8e$pk$JN?V4r&>w~x)YuYldYc@q{)>K)@8`V!tdQvUI@`uVk@2B>6Lq7G zlYVTKoV*S3X{n4Dda)bZ`*FsHecaw?=3oeed1+?j6{yO6E>b+tdyS^s^oN%k(w^|1 zhqa2TglqaF*Smnj#|SLG^zS_0Vx9FC_Dp%-i&ZOD_<*KF(vC|9;j-1W4O(j9X?tGM zz#VCQY(rRh3@u(e%yDl}_s~!qd5bN?N!i_$LF=EiMSnxC)-*t2#hjql+;nFatxHZ@ zbR6K6O^E751nWeK!hG{j$#C=y_T9113pYddXp%lbe`ceJrI>kH_7P797(^_=Y0#6gTw+C5MpP`orXGuVhc!)8EWPF$8t& zl`IvOqiAYeZPMvCMMNFx&E7sIt;mEvW1Gl2wTZ`hmqq7=`gLN8A9$^6r)&tS{#x|V z1u%UgKaw_KND1&`!T|5U@X-B_yQx*^xmr6vL4G&1Vja-BUough&>`fz1MGPMc-Yxj z0XfdHv>EOhjyGDXo@f_2?jNoW5t?fo`2uXWhPgwIF;3@%_wpbcZBkz%-0rN-%!0BD zQ)3@Lv{H=L(i6p8exp-iTYVba!w6^Vkm2FeP<3tc^%(bs$EMwqC$N2-G+CNazO5T1 zd|Vzrf^%k&*7$6cQpaqTlC_RY!C!H>>e4yvi}CT)w_5PHNm1sRctdU>!hXedlNfT{ z!D}@?S*aT5I;kT~&Ik|p!%jmIe5ED;^hU%hC)|m(B>^ZiBq?Ui`D+|d-IS!tg{g{L zL|S+Ht>Rn9|Hk}i4LSYcBH6O1cl+~H>P7aJ_7vDN&a;FdpklCck?@o5R`nNt*Dxf} z>|pN>NgO;vuuK@0Tt;M|#fc*_hzwVbx9iJp75GGiAltB*^a=K(@Wz z9OG&M2uMRcziQKza(FXzGY+c=*8Hv#x062j!-Hhj$b)ryUjG|RX5V6jhF@0FA*}1{x09V(+QhZ%OUykAd^L5)%Sy)>}c| z5=vLb;okre2l8oh=i6~)o1nuJanj?*0p3u?N9g3efcoo@Yx?3@_RWx3)u84KSe&LQE*;nXd1iHWlF_gK9z}8%Nkq8y9RjNep0SZ8jCl>Jc zmjHeDkI)(2KL+3fXfJPlQ31(hi)V))2@8V0kt%Er)hBro0TqZtR*Q#z$s01&R3Ls) z0rKc2gI<#*0OA)3E_Vo)E=;HwOBR;}%n^tO^v3f) zmL#hej@anJ7pn#Af%~?oCJYAlG(F{oC45_oSsa-Te#noaMj-J4bW~=}NCXO;T6hc| zG*%2*j}_bjx5-u@I$g9D_-EFhsux7KA!a(HcfelAR=6RVX?n=>owv*q^Bk3FIOIaZ zuN656e$pDOZvd3A1oC4)C5x1~C!h{F|93-FiU7z4 zZ7Bp80^_veGW7VOkX%KQFbD~-z}OeO8}PhGf6#aNLtAyqYIK-f2!F*8@=ty!fjIp*c^D|v{1@O+yc^K>Sm{_# z!SKR+b^G4Pv|^R4W=KCkn!-4Ugo9AD)?xWwe{3RO_UL$W+@c3uN+J0|L+ z?l^gTWJMtY@^nqvc{6YRcnC0{CKaQ=UfRxXv5M{{)xk81|2R@aW8C2e>Q(PxEh_nJ-MHS`ljzBbCa|P{@@m*JuhuQ2WhF z8V>H4@*=|rnM13R2cDf#kqLUamCpm{d zN?qevV7-c83U&V3Y|Fh7vr`JS>X$#hs{NGE{SnJ#Mv7@R8VoB48-M*#eDF)>>V(Nm zw#=e>ph!Z+93rrn>%qVbdZ16Xo726BfON$9CzMtOJQAWQp4}}$W0)Hd4u0@U+jX8m z=oiS#dLNI(yuHwgIlYaq8bC3U^dhVVs4-RQ;~>0U4x!n-Ywtzyjm+TnDe*Qq@H3fd z$i7&NZ4Ze~6-DB$GHx*Q_D&A|_L=Wo1?VIHMvuz^FN`f)VTFqxMGlxQu2=sMtW4MG zo+jkceeYrw=(Cb8C%znBYeXM*Kc9e3FJGEF$W=fDFZe4S;jV6S`xTUF0@toLRv{Jm z*D*k}Act#oXCVoF0D+7*%{?)~5e9lQy6cF;$-R7Y>@j?=4ZZ0f4wZOHo9k_-E@dY{^!VQtC-@A3a z61n#K(Z@E-(2Qe;quS`9oz@TgH5IVop&YVkCxzZoUhNH%vab8l-B#LYCjlZfkNc@9 zja1N%!uMPeUY%=!fo%poAs84&5D(RkVvtE`4C!l>QcHHfr1jR~Cu7K|6|IArXQR-{ zrjz2#4AH}5iiRnw(YN6%b~|u0>XLUpXAZFnZOruo*2@OKU?XUg?|t)ZFJaBP+(&ba z>c6Sj+L5%i8S`7ovjhL~=L@XA26ll9So0~@fi|8yHdr$ldaAL|vvmRN30SC2feJ!I zq5*pCbuodIY5V3PsnK--gZZv3*Ul-p3r?UG{AtJ>!sDa=I&|H$e^=J9GDQr@K*FiW z`i?B!Lny1dki!b7+wpxnqWuc|%QFBimMuKM7VjdkEqrgs?v^eAU59*tJ365ydgXn$ zvF=ZC4sjkAAx*41k}6@_hg_`9R;oT1;K29}kK9b5AosZDlLDvHuZY7{f%So4fQ_25@evwsk`;d;AbczF=(LwKjO!#!GWq^o@y<9?qOoI1}v zWyvi(&!czUXtvD#-jcOir%~XomKg}a4{Y4N>Q~CF25*xyErVBt%Ts^KxKMZkzo4L( zt0P;zp2}?$Ncnm1$O_co(lQe}J#(!=>o{!wGhPeUnF-rEmi0-~J>(?`a6kt*SPLBR zuzE)qp6!E{&%g~rF6J4|#(GB=Dmu%&%JWsj^2OC=lV4$*{rRUK&w%q+@1qxw^Gxs6 zM*wk@%BcAb;z4F60NLc9G=u+~#J&w7Zs?008a^=}ck7wG7X zXwO#X*XMrWtsH`xfTN4Jm@7;x3l<4bm+PD>7T2pyT`se@q>ruo0bWKra@W;)Tdz;@ zHZ_|b3(Z@X>mDuZAF`!gT`r|2wKi;J_)`WR*EherKl9YrVjkvLbwH8lBu))WZ>Tf; z+#x@7KH*wWiyXFQ&i$tUoF+8tNo$Ij86hYhoYtMy|5`Zxx_-hu`?_ZM)H!9i>qHP# zLOD2h!t05)Zf(%gvlxw`2%-=RpQ>N#?JZh4W8jTT*QFX^+Fe{VS)p`>bjKOxh?aX0Qq@uz zYsVO5wbn%|3QM#_5te8uRRwIxdVnPYrG#tTrmn%!i1-LP=@)z*ATw03o*NtSi2D9v zTJS*0FF3tqKx;cLNtrC;+f;Mb#)(Pfd)gaSildlG&|^3UJxwMoxRx5jPZS(L2Pl|{ zcdGX-!!6+!repDpfK9M(zm#;n0gtrkxgFrVZF;YrbUB=kSd_twVJDq*;Q}~7zePaz zm@8oSbb)R~tbXgg^piclR`fl7<{w~|S#Bt~s%ffurajme)@H8ZK&zZ+;ze5c$PVAw zA^N`e`xS5%egzEId42`Ch9Y`sQ$wkd`3ArDego(~ib#_-BbSzEc~9;~B+O7?#fZ9C zx|Z}7eU^X?STOLjQ~+K6qP-i?M+Ec*x}oInDB|}}g&e>~$GX}AkGl4{zx{utH5kNB zf!s&bP3|ds#J-9hkZ$}Yu$9CeFaVbWKSgogJ=t&GznH5bioQBuOq`lXc&+?{2Eet}0XyVlig;&DOPFu9DYmt zUqzqKK4s$ODXAT49^%VW8|UrMkzN2=Y~H%m_m1T}zSm+BaOChUxiGTd>Be9czOa$e z!qx-#CSCfh&?8&~8NH~L5;((H;?G>q0$yGhxo#oBdRzA8O1zEaY+b1z83R3^UC)YM zw90apWI_?{q>X_B9OjD^a>8e%yuM(f+!3rj9jKkK?4nC}v2?QA8Dwo9IN7RkfOKT# zswONYs{lNu_SY5L2zuSPmr#3Hn|i}oLJB#u%R>kaacVK4G*C*?l1T^-ewj}%sj|uK zVA-?uvjs-=W9n7U;x9sw2ug}WF!a%>=M%)sv5n`G-w~2A5+Z&aJTy?JO~1KOiV@Dk zM6yF+!PIHBfd+_xwMHr6t@k-r>O^vh%01^sTRok;ollU~dM*_!$gS#gn>*!3!$yc5 z8*z~amN^wntwt;8U9w=s=zF@L1x7RKr1qK)3`25@_+LdvsY{K%cCK{ZQ!(uQ+EzUHdyIJZt!&N1-S#_Yoy+ZI8&>!v7*8N$YtJjblAt=m7mim|5g~iNP^oi zLV|3IEz8wR9R7AZ4EUB9vdFBnk$BD(oAfpsE{RUVy|FWM7!vSYXdfo%VvpTq9)T>Y z*v_Bm1SZOXlwEKyk~Uvq&n`4Ra)F#Ze2-ZYTg)tR`jp(sI>lh{=_mX z%gpF`wV<|)1s~w5x_@QZK~v`|k~Lex`hnvw98rbr}keIRHdFt>y-H|iRMd`|s6CPW=HQs7{T z78%sLzTd20mdjwpKmi3>6R2QXO@&a5*N2rY$m-I7G{^HN(+CsmL5rsnxBcMze1C4G zRY679%f=mPBMydCM&nAqSn1`DsntVTZ1PwbPU!s=SEpYJP01eE;7T4dK;!&5(5ohV zmdQ5Yp*d<5p||X$C>WpTnSe|?|7%q+0#>Q9k)vS~Yn{cJRs&qA8(9PXirUu1ZymrI zSR`s3tUWvIOcyceOVa)LFxX*@5TQYeET1i_J5(Z z|BW2}{}md}{EY|yrd2bs|39JOth7w@>?|DrS7@GNtW$jlD`?;-$x7_^xv@dzaZiNV7C7$(c`nQGkv%Gz6}4y@cu{s z57+zelGcBMlQaFhIZTY-ef^u_Z+`i|;m7ImSy@?WIXD=<8Ry@W@4p%5|6czOX8iwj z^xNRSq3G=Y4MhJ-&)>B0|E&F=+JAKa)Av8pzxw<8Nb9?Z|IMcVr%SePUOUS-o&KMi ze@cIk(0`Wx?I`2lrN1=&bM&`6|4mN+NA3@6suV#Py`_EZ_)&K327Cr|9KF9ZE zpr`-77yb`cI`g-e{~MS6eTO(2*?-^VmU@mx!bX4LwV~+#i=mCr#K^|Wi|^oQZ=`1h z<(jD#FY^~GJ?NP?DCLw82&OPBFjjG1ocd3}JTAZmfe7U=qha5r#k(ot5@IB;2d?*k zw0vTTq6-rI)+Ihwy6d``kr{UNPehxOc{5bVYEF)-gYEhnSm?~w^pUVXiY>qsjMD+| zE}XK?M;Qf}nC`lL87hWcUb`7J`SzMxQLlN~4}(I<$C?V~-4BWx%k5;iuB*+;SDhJ0 zRSO$Tye2}LuF*T9aN(j#QuR&U2or)W_SspR;}~X-*Piey3**;oe=b&xLh>LS=RTpQGun2-w47UeSfCLUzfkPnEnHdR35qUc)kr)G*m@3&^VJ54 z6Mle}5DJUBx;u4g8;CN4#3lxyeYrhBwLXiDsv-8vhZL0Dvd!5D{p5$UOYJtq4uKpV z{oW_s0R2%oNk9^RTu=YAT$4d={js;OKrq1pAPkYs z6*xZ45V_EgR{(?29Io(i^kD@AdO%kYay%gEJbGP*0Yv1n53Hnoa$Sr8dt#uUxxcPF zl*15x%@RQ-0lY)X<)LcvD8VX?SMZV!;0gd?EaWM4X(++5Azo<8g;0DSOA+OP-oao6 z&3gODfmeEMA~&UEq@=J0!&0KS5TbNhS^FrtNo9CUJTPl$UVVKQdvd&5o+HjYoEgA-;c ze5YW@3U=FO(|^E|^lVx$AQa->7Lg6?e3=`%yyLUKaiNCvCsH8|kqRbXfb z906!YOapep-3T=zPl0L%9|6*WzXMe99|Khzy7HvMy8^4ndf;t_sspO#-2;3Rtb8p1 zwuRX8M0_nUwj!rzx+1Iv&;Yi^Z&)3F>|CDgZE&5y1-s-=09@<4vbA$Rv$lh40lLx+ zyv^=ycsIgnLB5a$`-rLnZpBnjcLm|pZ<%>gYZ?&37#p^4qzk3 z4gMO?3&UFa_p-D8o17DgULhDh5xK)`p`1MD-Wd#Uzve^dJfA!qUmeDGC?41smL1te zzihyFFdpa^nt=gRlPk3coHfuF9(TB#?UUCHrW1&Pf|D9wzT8b;J|NyGZ$UbM&q!^s z_n=*d2T5yi&gojD4_Nw$r-SAK?15}fttrR$KVK=FT_-)9AOH3H@{{fP?;?5D=NAc| z*XWmg3H(=$?3Ym1)*qd$PaVDwc&9&4Uj>ew0?Z@>aZcO<*l9yIf*8Zx&$XFC+-%O3 zgUwUN*YOU&hUr#GC{CI$Y9v8p4BrRCkiJu_QHOw4#f#am(Z`{v?=*2UUlflPJgBrE zzwL9WIk}0uGk>YGeO?x%v_$&6)dr7HzM4PHkH<;!UiERj^8Li}akTrifpPmqN|Ia) zi@Cl}5_O5~(|C9}WZ589!jCzGPK*V51Um4Ou{K!Dqcgd-c41IQ51P^IkEsSA>W*RtLq}>XMjF!#4P@_q>kjP# zM6MXV^fzy>D;v3kKdA6uJ$AAcn9yq(#3~>ktSgP;v(Z^ECwO0n9!&?IFE$wRP^Qh6 zQ547+cOFT-cpDP%4C363&UUENZWAvXB?b@?3;HOmd3DUY4rRnkd(Uku+0wsmzsJmyr%l#XY7BEL;V1Nq&9<^>z{8EnwF(a|$E z`sX>nMxgk0^OF?md^@7s-L1Rl6YZ~tmc<{d674l&u@{5Aj|k@)>7xpQ~zitS6A9rP8U;m@6eI2qR4)tX;k&!sX zD5ik-ZMw)PH%~J81N4z&+v#SGe-P!|VRAn)(cPSk%je2t(%XF0vR zg!fr4o9<%ad2M8RWbPgme>i>p4gHFeJi-}=@ywe;a7^+#!{E7(;g5!IKHTqVN7$@$ zfB3`xnOz4Y`+?shG6AM20?6@So`NPLC!dxkv|?L91H;I?ugmDJ+x@mMxN+Np#7%g6 z`78){k$p)oPB)t*p;aUNRODvdfP@oG2ydOR3X3kYm>^$Y8ar8^2t$T`q7e$HI?-1n z50tP7S>2!vtLBOmB(F6)>PW4T8ZkBgtu3h0T`2lDUADu*vapX+gHq0687NA+CvCoGpwls#n%KyF{5S_cd*I8{F*X)PuptLK{u! z`jsAY7Oi10#9R&&yXmC8EY!iSdhoJ$p*cXwCypmxu!Fqo_^d0?ye}pAJYbrEDLXAU z-WX>aS({m09Bedfc&%T|p=K$)+H}!-0)~WaaUPi-E%!OA0UUUl9x%cIXabWhP=qy) zI}1HAydc*ZbB2iLUH;gu}6XHLh6Lz5ux2^9$V+q!B-pj zgf^X?)c8SMc!w5d`=%P=2_s(nvt0Ei4et}Il^3s0CtxBH369&~=2K`fz&ebkh-YH4&;xUshZ zjQ|;}0P_b~(v=^*?=FDsiy(IQe1Efe1fRNkM7Z^`o&7u7l zjSUG){vLD26idRlHsWVYzU=MUHWG^|>v8Xlsl(sLYxX`tFA?)CP~9bfz3Y(I2)|12?v<+v~gU;5T-mDP24r z94XUL09$+f;hE&H*MPk;1`0@-ZTObOO&h4z zc+a48Hx%8GcztrabVqb?1Q=v36goWCe7rRd>c?4GK2yntA%-(!)sws_USw|)vI*;H zZ^#ce7@7u1oY2*`_N`y%_`yB!FZ&9u!!ZQ*Z&0S6JdvOwDl4F>7bcDtzUR1rs=T;t zyJ|PQSTlaNI{wT1GB0MG(0m~}eI7R%FGTM&eYTGzH`Ra?=u*agJR1_f6Ik!Q*Tu)@ zaKuU3p=gq*j>!0RsEyMEytPHWg}x<{btcgr&+MSx(~YsO!mL)+cNlgU(M@zGLf5Y++pjCOo^P&lK0!`#Is4zbZ24@_z-BnV|!+#U=2kP!WM%4=mc){#H}a4 ziU&Uw&=>I6hf;EOiPg8}rn6UXggAhW3p?Os1my`N$R-}}U7+33COQ{~c0uz&(h1oX ziP+`(F}I61i_Z+P40yRESjC^Ge+BvJG$@VaqRAR_VlVYNV-)Ct^svJ(-P*Go)(RX$ z$ckQtX-@PK69(Ff`FeU=f@IUf*OKm|-N zjq8%JMS3T|mIDd5ro3Xo_iY>OjoI9NK8XzmG;sNB_V{|MRjsIE_JAAd3p;bYy9tLe zj$3^-2Q`N?CEhw$=%!QWvoa^L58S^JzF;T}$rXX6`sM@&JdJmB47tU#byu!jv8vDu)f{GNhz^Jqm>ec$OsmIL5gQFsEk z@MGfNTJhCHweitnS5JT+0G|=bcI{00dNOq)rvbk7nOO(eo`ES}cU#XLZ2DS;;;765$b=Yc~jrqUMyweO^LCgz}|UlMlS6+FIX#vEE%D|x@0R9DiWdEB99?N%kp-IDg0RN zB(dm%Ltv?jA8(XRQ`ZXgBsBoiF+HBmpr!RTfx0{-XB~d#WGi-;EN&t}`>88yWJ1Bf zg0E>~A;LB8hZT_VzXlWRenaEIsbX{wmntg*?CBxEL4rA_aS=@ilz@cRG3nSnhGr>* zb{w%-&Vp?Rq@C=btduQsOZ^lxcsg~7nwRx{;y>j9vmzEQ_K7sL^$P_za|{TbpfuXe zkoglc-uPA4l55O)AEUd}9+GY@pwdaC8u~^*&vx2^*_gcEMnHuRDm@kK) zuY)pMNh)#?aT}Z!LRxJslK#ONCic9JWql(F!6qxWwO1MlEaG`?Z$lBnX#j3)*B_ea zUvHm7a=(IAv^4j3=&d7OV>c2Z@_c-x4;`3+=xvF!$RKUpwb-Qsevm!UI=r?qb|tq; zVC&G@#*eZP!Q%Yb+aXPnS_9jyw=mTmN`>6j)#&2dV0H>MDFCfv|Ja+7 zrP#UXDq(L@pg#h4F4&SMH+ABHX6ksZLp+z28j!ojRgWctEUrWVn{{^g%%G6$q&&B77QQdUzfGUoQoXHhh7Mx zy-J&BCU2&}=q}ie%fGOZ5v!bTX-=eclC7oXQE70RO`_$|4xfVvCcD*-ZDo<6c=5>u z!FoU20N$v#j(3rrw$1k*d2=&|LJ$zU|J__Pskw(E&N+5tO__lryi=^`+G7PC15`moti%AcOoefqAjLj;t zw;OUD2tuMVY4+!uI2E9}zyJgNA5vQ!GoNQx$UG8Dx*5!0UhZ6?l`^YK!E+DJ@is_z zI>hyK@x5+YThqtS;#ys9rb2DDG5xG5pV#;631)nC(no`RWCFlY!aqy@8Pw zFe?ke16C=)bWqlT0c+FHI+IXTYe2agxvJ}qatq-ofUY6C?+YU`qeL)1SiA{@Zw6!= zzk>R4*yHA82u*W{IB6OQJ?R zy+u7QUOlJ3V|C8;XGl-=wABSY^SrY4C_P2K+Yf#3j(_#L18x%8O!l$ZMiFXbs$K6Fre788>zT6d95!Lkq6 z`FTH*C{bE2ugV)QpA*U#0d^wphsidMa`~$R^n_yH%umR?4F*ci9^0-Ax$#mWGIKmG zg)_bcQp{Y;@pm@qyF8cRNu|hRQ&!W1lJ-wC7|a3zgBxmG9C+J~XemZV7|<6ji2ax` z$~zQS14-l*kktf;UDyNCM!h7)65{caF^JYiYF=25_Bfiw^5Kj3Zl#V-FO)5_KuDlZ6ek4KzkfucW;Z zwv15DPM&9;J$o@$6sr9IWqI0h9D%xxm{Bl1i>nbb9`_{eGO~3CJ_3U057L_MRNS~x zFS?+8#+a=d__QMmFI*(bK87?}59Ncq-oN}n4xQ96>`a9U}srIK5Nm3qkc-u z^L@B;1n;wcXXin1c>{|*J#&lO;(0!9Y6C;_!it2Ua3z~&4(eH`CDK=R9-F)^+fx$; z`f=!JNQ89Drc3HcKg(21jqGJ%Fo+PLQne6e#|scCkEBSjSwToHoPk2u5(6b6_z|^J z1sMTr4w6dSZ~B*bbaEp|D&|a_e`|P(dUVD4PaQKYg{(P@5JN&SM2tY}paNuq0d#cp zN)s5@o#uk{s^#JxGnt)5ECH~p->GK`xX0I!a3RB>cI4n5){vR^{W2+u?P=elb6=HN zp(IB?4!ubkgZLo3&`)eWmMug+HgAu2l;e=- z8f;0EQ5=c&HHWX*NqJlFe#r=g(3N-Ei)XMorWa{s&|p3!&|3nDL!8ljb7Ik{%a@$^ zabEdLOmgyCeXcgtp|Ops+51YrxXf$BTO^U<=pbmY3@>WM?>9vs-XY2!q|+IFP?8}>DUS(04n=)+j5KuW#EZ75h3 zCkPre^kjcNhkR_DwObtDRX@jZb9N9s0T>wrVy2Be;LFDx+q=yuLJI6{4q#fp@d&B)N z09!z$zyCXNq(rt8;c^)M&Ge}D+?ShTw$S$6m#8B5g;Wej$t_#UcbC6a&QDhAB1qJ0 zW11pW0wfAbIuROlyde@FsFr~cKPah72XdS`IMAjOx8n%Xk%uI8WT3&7aeb^9n0kgh zjMBIoUzwM1;YjBp(4`|fj(iGQk5b}LeFsp%&V-z986{$|l2Dkp>hxMYksAe*U=}O_ zFPB9VDv;G8jVR%m7_tK0ACt_ugr@?mj6&|;R z-OyiLJL!sL6Z^XyMy)+o`8KYwWbT=L&Y%B0t7c(kki58X(TwNj+}U~K(#JpDbit@w zOY1{|!)Vu-apmWU_x7yaa>Me?l9U8JJQJ_rXLDMlLvGY>lOlrK$xo8o8Zl^`E-ydQ zgyGL%DmB%cIFr*;Fj39Tt+imGQ0a)yADAr(u?x?$AlIwLmmi-?d5*i8VvjO;igFtL zWZ$xz&35{M>oJ1m+{xdB5}?MPl#*3OkQaAds$cO*rjuQ#rW%V!nMT=KTrH_l#Xlts zNt8&WN-!bCYN4GxAlY=Qboc4V0Ug%GjXIrR^s0@faGdVai(+L$6yphRIFV9utVu4f zByu@Nyed-cG_xj~ZJfzwGn>3llQHC>O~d@izr?@V&+YSLf86c&gB1w5U9MCj;d8qz zZnw*1H2O%f1+F3z4ns_iurFyS@t2U25|y(!CA!R_%Sl|@@dT8@b&@3^x+R0E9vQI# zjLAXwVK?t?$EhdFh-fSpP1|uDGUj$|Hmd85?YUi&0DTQcjEp0V-x_m9-Uxj+mkyol zXlE?`189h3@(5^{e6jNg7_{0B@E)k@X=V;Ytx&sER+7A2*uAvGkz9KDZU<5dodaRN z0}J0Zx0W8+-Lv6;RAomigxXsA$s2#Jpsos>P>I6@mcV^>a9o(6s@I>yt04U(md(maR&xNZu2;D|%mYLsWigWN~z1^8Dge>Q$DNkyTOU zSYf8HSiL}4U|e8YU{;(G7!f=e;DkTz2v2k6C26Ej837}@(Hp#uv? z_t$o9nL6}EQYMR9V-}Oqgr&F`N7dnCoHE6WQA8saV^nZmsB&v<#;vWb&G3pE!#(6) zVWV{JCbT(N(XWb`EAU_|SP6<4wNm;L;hq;By!w(+4^Hj8p4MN$@s^PThunN&b~Aot z^hI?|_pZ#oIVMl;t(V-{QhN8~F)OE0l9Q^iXHLJ7*B-YGo6}#qs162Uaqa+rD*rgD zMhB#eiY>Sl)uWM!li94carT*(8MfIa3oHw53mjYQ>VBT8vQuoQRGn!*Gc(72cIH~o z9i{5Zaznr!!iZDqZT5Z@fw0e@L!3zy-jXy$`)OA4zG$)^$CIQ=FDj=5MbS0DEgH)G z<)!8I<$Srb|I!{r7|}tkPiH3`e&%E5N1vG=YJnIHs3ihBgod|i&KTYnf#_}<^5nkW zWVE2|xv!Bo_w`ort~?G~!6|IQ&8-L|J#Rj&%r7W7UJ5yVLla^)gGrl$8k<-Nm&v3} z(89f!*S1DGk&Rn)^VD&YI5_6P!j`$~M;WaqTk`bRW}i8E*yQCE*M7cqAMdZBB>9)$ z<#3M~)RgoWpVrbiVeQk|uO_!xZAN?Pq~@@D*!nf&*I$OYm7u@x1=+g*WX}t#PAdg( zR4>;oGc7kSw_I;s$5A9K9!32lq4b=4A@`@7>L1DlJfa*0H{rnvv>#Y zkCokSe)9=o08(^-5HO(r80yw!M?tUktT0(f2NG(l-k>vR4H^S47o)LgQ8XUqbrJLe}CS+1UZGMbNhW8|< z0(Z}OqGV*;d)~Fvugccamb-BIoNdj{$l%EJqqBPpLNTGbWzLA%i>~~B;$SKjE1sKt z`)LE4Mx{;$d6)q7CY_~*+P%Q>S)pEQ}gnvlnz35UHNP9+CBv)SOQr&}py zaMsJm5wMCDmpy4VdtK=g%HX6tnaOxdV#O#SBuFADir!*>JDw}mx(F6E;fUzUfamN( zNaG?JWk@u5@VB0vhj<2YB2wW|s&%S;s)MS-Dw!%HiY2I6C?>`2U=eN6XatO=>U49d z>08rb>S|P-GT%|4Tt{au7_cMMk_pYN9iZ9@+6?NoVCLu_XfN=$k2deG?Jg8F8mlIg zT|2tlLExIPF<1~HV;3E|sbpkgmB|E8^eMF9vE({B?8m24inKBv#x0~RoeyE=KLZsU zB$M?sJC@yY!dhhy(3aP-!&}&%Zz#3^mF@#7EdnZ~(Rb41DKczOX_JEBRR!I?Oeo}a zR~8$}{AHvpnNE9)!HiTkfAWwpRe@uhBaexh>yNd<}jgPyB z4t(e3y@}AvU(l(4n*>0EbASf(fd&ouc}Z*flWjxkX4}qEKJQp+bjgB0=?XAEQSf4K zGU)XNf?ijuf;FL1TpF(|Ev=~ZrfLV%Cc#h-A$5JSp}u}_gSR&Cb!z0vg43CIIW@L; z!Q)Iu*?9~_xF{JZDvCzD$(jspYJfQL1G)w{mSqh3uWw6xSB!E&-TTkiDPytA?Bt_6z`CD8Cg?w|^82nXBU+47d&bOFw zXFp<0lBRCx&y3$l@dBUA>HnFwq+7cBIQATtbOB4iTIwnF)yXQgWtK8)y{F!Hnyf)9StRRl&q(h`pH*dGoTIH0 zv|0n`38$acJypo#@guJ@Z#gxfC-RolVWRbzwaRFU1%SA3%}=i!}|mJ0sr7tM^Vfh^NH0bdB%Gl z_HFa+NBi-9@0a)suWo`5W3ACNcq{@BWGgLb*%+DcqyB^+{E4{PU@)1zT0fIY0fk0| zNGL9bLQ&D{FJ*G6si>@~sK``#OEof9S61>$rHuD#+}8Zb9N6ISJBTB0aX73Nue+ou zuPTzGk|Y_AC6h%lZ%KP@rR4Eq6!3VxK1?i_qOTeuhzl&xgxZN$()gmH-|zEzydtLc zQ#>Abbw9#cMK>uaja7-Ir5cTvH;Y=O7^|-K`h4DgRlb;n_F{jmB{o0yL~LhF7L#J} zbWAd346#+QeX)bF!_d}FK9;OrKW@Qf72ZpK^nmwxctUva$1av^<^acAc;86#Uh@I- zw`Sh#?EiehIFFz5?s5U2)tq$Qc7Y#yLE438NL@;YzTTe|0t8}n7 z;4d1VLSVX72?44M0@bAB_q9Un|4y~QVaX&g<$0~ms1=9tuOz-(BVhb{O2HT=_fE+^ zBizM={%;gd%20eA*Wv!JGlkGdF}ug-cKPoz;TCeBFB^BJ$o}5Cfcp}-8XQOdO5o}g zo-aW#h*ch^hrC3v2Fu-UY;*G(BjYlC+@#kV!GVh=^V|dmBc3WMN~XL~HP5;zDmjIM z=fGT9SRMR0yWIk=T*OD~pc?i2S9Mw zQ{TFYB{BZTO6k`Ig~d|AF#dgB=oQ!kOYmfF=Ph^TX-u(^8Hta`+`Fg=z*USVc>D2z zeKHlFb1$6GVFYakYM%+z4x?gpSaR?#-mUN!><<5BR>J+9JXQ2m0l z&qN5JX=XbjZOHWg;4{&RCsU5#34IP^PCU)LbhC^j4| zWC|c0YU}ImfvNc7@efa`7(Qyixa`kZ+kF4G#rcrxDS!Fz&^uAO6!e6wK|GP74Im)N@o4#8@ooQGfdk^(#ovlXFq`E={f)tkQrG%dq}KTV>|dXHIq*vGv!u?qBli!mqNjd~K;u9*P9wcJ19XD@X>{$gtS353(eIYz5v@WzSbU4I^sM#|U$Z%+hg z^(k|E=Zl(K4>ccZ7MO?6=Eay)vOFS$w3OH#wY{@P|0&_C(eO4?A-l23uMKR^9ib1l zZb@o0Hh+8WhfV1~d3)~5LWToXH$lV<@fpO?zbBUkMzPuKU8IyGh;^0 ztsZkbXz6Xa17Hpx2WR;cDKW6}RQJfr=E@6g*V&f3mbRGZ=*#DQh7l zD@)8a0aw@rHW~tCrL!H+e^L;P zK5#CfCOCVpEuIA+Q%`sfc$A)hMXC2gb4f>-Gjj;Uget*4q3y2% z-Cr?sS9p7(KvsXieBmD{evo~bjt=)Y9lhSJaQ5$%xABG94ZFl}@YG;q;mkWqAjq7#GJ;ad8>)CXDKQJRDc)bZV8?7!T9>Nn&M)GKV)_2Kp&1 z#^Vmrq!vv^;*IjEP!PQB`9K?DKqFBL;*hJt>GCO+BULS``KraLRVtavS>D4(XlBbF zDAzU@7DDuN4*pkRC6J)CnJJfQoF8x)@$OVZm%GPi+p02sY(Cfd^8vGh_%RX+_9uxim0}8{ zaFn4_9j7FxcyAK+d4G2NoK!!I9`=%?LnT0T!jQD*zSyEN4jzl4u$30HmV6dMsI&@# z#p=~sZJ`8h0wb_MBuEs*DdIkn7sYr|6cb5rD2X&I{ot6dz;yM-d*V;#bq)(u9Jo5amH0Z9RjakC@_5|Fec7{4BiATU{{f(W z5og{grwh6yht)xBcA1>Vyt2q;k&6K>QALO~o;R^nwba6}+HK^yDVSWR8xd0#wn&LW_~Zhf=#eXHp$LAh}-US`n|rQxV?&0*~;yWq|r9W-h|Jz zO|UPsKWu-6ylnfxZYgq5jzSD&jME?*<{76!LC2C*Mq!kIg^WcI%oeZCVhzSO@K+spqR4Td5tCjHq z7wuy4ws^5O$nx%@p zPV9GLrZ^64P*dhut zjASEat7Lm+yzCj+8%IO&7`V6@`KjFwVB&9_!XXHylbx-UeI1`Uh0a!&qa(kTp!pE& zbqL>}Zv9xu*nk*ybh5BoN#}iKAVJ-Q6BEI3zFw2Lzcso0#|YIvInE?xp$yr;+# z;j zliL2rg2(q zXsEBQt`CPxN@5Mv$v4#xk_jTlGObqT^=fT4FQ&~#gRE3m54_bPlgV5|E5tCgZjH_I z!Z*?V>X9IK^SzwcIb;VG*<_hDZ+o31jyOOeI{~Q$c8)mYFm&|2yXOU{}K`kv)^O}YJ>;TTgp zY~e7rg(G46#b!8|)!}%$-PHRO26!=5&(2es`%W_J?e#{3(Nk}fSt$tCdTLN5Gc*Mq zu(N@J;4oP7=Z9?tY@dRyQ4i5!*OEAtPciph%+RNy3L5%kn19tk?!c?^k?r>suggA| zedIb;KjL!7}zIz)AyvOPY$3 zlJW{~vI2F5!@;sD4}fC;eY%(5BqFp=Wh@zv#Uf#EA{+`~A!J0HQ&kZ*my5}W zm`nu3gezz=vH1^hY?n8_ELSnaz2&4z0cq8$=DLLLQL!gwHO7pxEVQ&j>6P_EBdXl z_y3-k)^-OEPX7nlRTZ@MIfXOu09<)`H{VncAv>g-Z=NP4-K-MB@Au5Izl{)=1zrK` zDD}UX!=|aKsn#jB1?pDK0-L;@`+|I7;FJVD20v#v6p>P{n$&Y6xy9Uth6{w{WEp43 zdjT5NxPsBo&v_*v{>qbCFc8kj%Y1qrF+uo+l?Ex0F-TtcI6Y~D$kS|M*qM(T<|7`t z+(uD5D1h-uJRdK{hcS0rRavzoI;nZ=UOsIEQWgk+C;@s^nB}r|+b2Wr z`;A0j-Iam>?Xi`kOKXMp+$Wn0+o$aMdcqm}wRug@91Lb~CTQ)7=d9QoH0A?mE_?i4 z@@VH9bVicA-8qh2Lr3=#?it08EOr}y;qk#L9HnK1$-rzUcMJbHGNMLFG-~wUBUGV* zsP%iW6-td-P?`{qs04MHdX$<|J54hm={Z?b-*?uvXVhuzo^W}UDVT%#lp252FFWZK z$-ZO@Kf!IP&32NT*)`Njfxg!uXiO?~1lQB$Mul%b-u3N$zgu=x96mDl96pK-V3}2VKm$U35=tGcavNULa6~&E8`vF~r09r9)l3 z!-;HPVI?Xz;i-MMJ$mrn0n0`%Su$;7Kqc7K`ssI%x^L40%Ed3#TyyeMXPtK8dGmHm zzxd8O=3nxpL0C3)R)4j_WKAZ?q@l*KO2RSHK(6?_V^Z>l`RI^j|Z;vpduXE zNP~_Il13*{%$*#XMf!K(b^Y!tXR4CgPU&pfPVPTJKuUS zd-VC;*~2eBNNoaNM|HvRm+$-g-|vGD$ohJq&Tx>-1UkGmsMZ+jt?juVq!bihvVIhO zKX%Z6F!)vU%a|f!joF3-Mnp%%#s-?B6Jv7>bDXoI%bi*qT@=31Y-uu&vz`;375l*@ zle?UP)fE@wrl@O$aF=ka;}+M0)(4?)STq?8PK%qZ!gG4;`P?X4W(>v^n$5i2^JjZ7 ztkKsfo7Va9YX2@j@w-x%ph$_lPQ(V$FRm6j(V5)cgU%prY&jkn3A#eIgNj^l>a0q46sIr24fvPji*4D|NxOvC(?>stf&*@gd zXrFoi%X_lNux8J5oX$g~WvCtpw!FInYu!R0*1;(yaG`Iu;`gVN%=44_?*Gl5n!uZhie=S?G2o~iK{2ifk z@cW6j^0MJ=wt^6B)+E%EvGAi?S$)BKx7_;Pd$->59{>5Vc~rOj<>iYHUU<=gOJ2qw z2n^f7tfvBa>er zWY!A~q3r0D?`02Q!^^K@^?2voYuD~~;d}0XsjkxCG#Z79@!0*!Q=mEiedWpxkKI5$ z!gnEhmNjDHQdF>^2#fJ zcLf?03XfxSJ$pkL(c0xlm13qxJLgl}^CZP5AG`6wrIl8PMQOh6>~k-~%bB9pb)MAa zZIf-39~aNL+orUcOm@ybcj)50-$l^n*(>-ffHPyL68og`p_T;}@=@@u=-0tR(PP0Q z5&1dsdBxL9r&nI0yDZ*Xd3}6I?+qUe9}e?jXF4&p7qc>LQ9DAQD>SJCSbvDB)cUS9=KcF9i5^_M1G#fYkSlj& zQ$h(b_D`F9O4JUul(LL&;@V2uSZpgjF)3JJbn3a_O!x8(i$YJr1#;Ob>u0DIA(^zP zvZANz;I7QuzKCPNq!Db<-*=~67_%*X`|)GP9)El3o*QoX+uv@uVGnuvPNp%ojTxMp zTm+7>1D|?wV$ktz7;oK*QFi#vufDeS=GR^WSr`klFb`y*8lNW>-{CqIAUw9>8S?Yx ztMScb9e#kc;mt(-p!^}l7TH$Ci;DLY2V4r5(r9OT+hFlqh-H$)VzE0y#&{`ncv6$f zQmN9iP+U;w^}P=3Cb5Z@kdXIZHPJ~0|Fyb;*29_7@=T_pJXDS8a%w(aR0QO%M!Z5$ zD^&sK0S5*l zTCm0G9liKOj3;z5D%IBi(9tKi1!Jcir3;m0 z#`oXPjz0c<4^0KW4AuEN;m+0qpJzz>HWUX!+I01Cx?bF(Wm{>aNmGB8`5`meoyG}E zB3cqpq>D2BBlXdN@%r=}%bc)gmKlf5Rc4a3jEuh@eLwwm^y~Do=&`hNKy*NQPGnAI zy=8q^9?68mD6hyg-CE2;*?tT1W51t%saB}>vxlO<_w-K+`~9JC$P-4zl}ujB${N#U zWtHhraXMqvuoLM^)q1@~9Wv4-c@RV7*W)?vU<>j>Zi_i3()N?$@k!BmT#SZN(MU8B z31rfiOeP(+m`&yY3R@5gBXcHVk%e)n#^bTpxaDF^sX)aCW(c8~V|LIdey+E}@MFdqqRR#sBiRCJ1 z)ed|QT9Tgx=zf-mN+n(Uex#$2vFgh5vn85^HBAYiPrv-u zS&`q`i`jOQrKld|6Q+2n?DE}9^@YWEe>~6j`+2XveLdN5ls@#G&i#;A1vEp`3cVuGYgD1vPn)C8bfEh= z8Je{1Ucz<4vUlgxg5CMFU!`-O?h!7%fM+I|xag?pOwG3A`=+u5CWmQjP4+f?L3Txt z;OQ5fq5{O8Z~P|P)SYfy2okjeB+3F3! zg{(~3Zy=M;0|W4Y#<~Fm2G)i8Sq-$w7ck*brhTS^ro$#4nFNz$;!KTtlgXeDS)+bt zDp5!Xkx-*A6!QB*(WPcr|4Hz6^&ZeI(@)yll+-7+Y%eG9T&a6Kun}{afwL8<8`Ps zP+vz=IjC-D-QGH`&UsSeaYv7=0Thz8-J9-3@`XjyT^VFkfAqgt?cUsHnQISoDyLeQ znbW>zwP05RMRA8yt>tB!Xq=Dvu}tn%+x@smmhfYT*5%JX!$%)dzLGtn+zbZSU68av z^j{`?gLwETav#8VeE{bBtuF5iw=(6TpjY6kW6ur2mR`vw*yevApxJC?IVBdyoiNd1 zW}8o#=5SwI-B(DzIA`vlX~F7+1J0~Ei9HW>*J+g{vj#P?;>hyi)W8PT{0Uoe$%@>x zu?vSbHV&;hbzoo})7nuhV-_>6qzggXvgJ{P!rJaBn6UMlr_TmH6^ z?3V9VlKYjLp|UbpnbCQPRh?(`6d-u3beza_6@v{JW-08?NpAt`CENf43%gfUgA( z(I7h>CRLkkyv<^_aj)Q4G;fm+Wq((^t&yLjm~A98$xME>a<+PoZmw~rd6r#i4RVH{ ziqohR+8|=j**WXkR&QrpNoUQpAuOOWGzHwhcCu7*n1XVNK7}VipZW5g^1bqd^22hO zyd8hC*#Ro3%X0_g*3sGAN}cAeUoq+RAn6WdgD}gIJF-Qv=q>i`xlh32ezIBTGx|-^+D|Y^3UX-s+CSI#a*hnp1Xs4jFa0uOk|yOJ4cYQm zN@IGtmq{8FDlJ$etc#Z#YOJ0b;8cBSP@|3q@mgMi{54Uz7&Iuc(p8y4`hd^i&Cj>< zUS~zm^fPnqx{}WwwJe1GtqA&$7ufbp5EW_5=UZ`ut4N{2oc=d)~VJj{W=ZxNSc-?T#}iE!unD z)@<&ntUSNW6a0!A<`B(Zvv=R>HT(9`d>qj3QJ`HImEu#kp=9odO@{t)%6!#^{u|I= z+#90Y>8Qmu1D)%d6I_Tcb6rq!HM+rdUCABd-KpD39uXf)Jyc?RAdK&duMez`bNTo| z-!l=C*UcL1%LTQZSHq`MHQW^(AXlu|QDdTxyuLW-QLAWbIUS>eeiGW;(WqBpm7JJ|rijwGoHK^c7za)UIo=rr~eWGJc8 zTiB0X$`m?mMi#xGjznuvQm(ESz!*X-Mnf{U+MqbBAPQG8vIHWA@ThP;g>^VA4?9zx zH#&Me2>uyeYB(YvICZcIVpI1o!eC?n|8!yd9~wcRoUuT;t!9hfX7Y4-Pz9;$xu#n2 zdnrgl9=Lz#@GG5WwcZ>~JNw-VSXSIw^s{)hP;+dFk14*tq~ zDE-CY{W3WNpjx$@h z09_h_Zr0IF37qHYhl`s19l- z7etONJi__RFiv&|ork*DyHgsoCmQl=-TU`g?Oym5AXEM~fU5fqHU&IUbJSjE^`jbh ze?RUQ05A=Ps;%DPM|MZuzyaP`@MT;zwblMAKe7xmGFO^9R(U8a5n?`07xlN)Skh|G z)49))9i(>%h;5yvA4u=!kge8pBD2Yse&iP`RfCOHLD*4a0jQ=H*CAM;1~7!0*dZ1$ zszWRqL%oNd2S$c=dWt$0779H~ELiv7`k4r;#cu1dhTkIZv4)@S%dg^(iIKvu6mgg3 zqggt$Rek!>8&0cfEW7TBAyZpkf9a*gN~?~o;&Sa*{W3S+&O(tpFVy1dHcTlbeGsY!N1si=*48fQC#Ld z58c;U<*TVb*4R>A%~tov2aofo&TqoqR*YN1k+;>*C*@QrFDn=R&iuOhC+2@P-!L1F z6hBdXy7&jhR}0@OEO5(weXa{cqG{DBOOjCzP>aLlw3b+`Hix0KsA8J_t!nkgLLp;} zQc_UlFD-ODB~8 z*R`XEcVAuOP%IvW{nz2=F5raoGrTdxZhms#`o}HZtC&)1Em8d2{$^CD=1g37fY;-L zP>=0mHwnW?Tx6DBcL@;}Et5-3I06?{%SA;dIZ&c~N-QjI(LW`I{oKEjglOn~77F=U zAWU5)4(5-Mu-Wa2`Mll|*%Y&s6gd21A!CHNUHlouRAI3)`I?a$`77qg;#bUZZWK}f zVQ!|CJ~iiyUJi4^t!kz!A8grz7s)m|U$4t9S$)J-;LvJbI}PpnX?U49;q-IC&5&*G z*ZMazoB|QftA1>oHMhOF84ypr_SR$SF6~WFf6F_sVl&*t$B4(yZfqMByx170b{_nZ zMrv(0!sdq6eVesS@qib#J?FWQD>wse*I1WOu z*lnth2JbKeu;h#YfZ$6LTu_|~Q7lTeA}TGoL_xr8wP}}Fs0$y>dr8XIAGp9*z3RXP z2m&U7YA;3WJ=$B*mid>WR)JDxvpV1@(-9;9wT4(7&Vy7lmQEjxwma?6*y=#+fm+3h4sAbfz&u)g>qz`cB|A!>c zwxd4&xs(1EPf)(gY~;_Foy^}AYP0?qy!KnQm?LDL`Sis-_+kv#zBx%(FQZksG7*jQ zuLiqCCAW0httRaWG55A??cAL7EokeA*rH}5uCV(F@fFwKyQhU2*G0EX1dDLoHRc+3 z{n+)s>rNwYpzSKtA?wNe|7zq{?`3R;S<*%-PSv&{#$cX|E=28{|ns6BsUF5oA-Y~ ztsD+f5@I1WB!0xHbD?)b;&A9hNZ^J5LMZe+S^)%fD}W1X#eOvM5xFhEc9VG1M90w} z02tI{dLHKn26Te}=(kIkR--jQfR%bqqcyW z*GHhgUFWYd>2)>TW`O9L=9#aZpMSjKas96OTFNfmVr}ZU0oVeJ0mo5iN1(t04G(qYqy}@vu?G(j2Q%O zH6R!+(_fQ{ymRUg`}WOW`#*+BH;4|pK)EVQ?&|2S^B!HNI1 z;lLdq3HI$fe1|>G-I#gS1G%>ruSeukS+d-|DWYk=Q53^D!+_j_O}=43jwe3VKQrBb zp<;gW>!H(Az0+d{`5W#J_>FUf3QKO?pn2!;0l{(W_riDc&*RhZRQeq_k87dJBs|1p z^8})b-(5%RtlJgU{fYg*1BE7gvwdrzpY~fHwLcno%KlVf#(LR48@L+yMW8s~F_kpz z4x&r.SXZnXqigxYFt)>^wZgnJdGdVcIK4|q>_srUJS*Bc0w2ZDSG^@WR7HF%@! z*5^Hd(p4*Fu}k9P@Qr9JC8nc{TeeCoq= zFWq@qpQUecRNeahSMk;jEm)}$dYVmfny{;F7bdiBrnro^pP`AiTNmH!0`3*wnKRCP zS^8vtHR;@MpY#r2S6cf4{h2@M9r~-g@S+R-eC?UVGUOi?#j!66PcHIX0rmnM2lyU9 z8^8;C*rCN~fZqd9rPEV7=5b~K#sGE!SOAs*>;UKi___3sutCpHe38Cq0agOM3h+3< z34mV!{3XC{fXlkv6@W_sPJlsxZ|Lz(=y9(Bd=ub7fEd79J>F?-g?-}J$QJS}DS)xw zLaO1xnTY>x*h?hbRV&v{a6KYI@8D3MPP;N1eIGy|k$!lnl5ISi9;{?d>ExkG_CVLj zP$J#cUCHhY+nnr9YZ4H*O5inyd-Dlp(tqeQB`)dbIxUc5>1R4E5>g@1Jr#= zrwhmuX;&`aR1xpjX-W#km`)4CD6ZCNkucGr(^8&{ffR|dP8X13;ZJ(9Jc_i1r$r7TZ3o&$+K_hS$vaWcW~5zt{8Eg&9_ezFS%LJ@JQ-ge z9YXmfNUuP;80nQr^O~n}UjF60w2JchMY*yhNE(h&GDJp57eGJF((j9WZ@oU!0-PfN zz2HlMF9nhhlV6cR@Fyj&bdS_5HAx%5T{j=vg`r2uF4Q*!arv74X~6js$pzYOhw!ig z@-kthmei1Y$QqzpNk7OlvJIqoK1M+MFmg6xykT^C-Um>k3PKW~XAtmC;PpZL5t2b) z5^xfvkAT~Yk_s^+Yz9s@ge1u$gs%w6Qy7A@b7?&QDI5j;qo9j{?iA=9AU#0$06h$0 z>G`zSd4(L)aDvRlE|4_qEP3i-^;my6fM0G4I& zGxKu*>w}R7@ONW<_F#H!Q5iKoDZQi&QyGQO9xN~S9RS^rVC!+tD7I!2b&t%q$ri{H zublymH-z;Y!}v**NJ6`IV{P}M%k&)OWEt`^z~S{bJl~49%fZ8WUmAdz8B!&FSDX+p zi&p?<#98sR1wAdT_tjiKOY!~Xr~(=e0{?gUeQ;xHG(C_^wRkQ!q5 zR;{bumKsWp934)s*F_k}u*kN7o^&dcIxtePGubyf*p%0KrFX(7k;)In>JIJkWJCH9EouQ+)$H ztS2>mG|l5MuD)g!Th7s%O186WaJZjs?i%Vz^&A53)>Qux+dSHv;VHHD4`kS2zMccA zG;0{>9vtZD8f1EkAd`YbSq93`lVrSDk94JzY;>p>N;JaDv89zgFwm16$|PeflT5PY z!`;c=-efNu)VQoSndwOn4D$kF8okMpu7SZ!6`q!(*qpqxv|xAJ0nNm>e%yn+%zPu? z3*CAhoE(c!?)8hbFkKIW3*|QKKxqiib5DSs|Qihi#| z$frTvb8zu}G?^u>b8m`oPVQc%P6JwxXsS3=dxGOa1@WY5Rehpbe3J|Vj00Q)kjQ>; zkLw(f_`t0P;M_3`KPO%yS%5bI-UZ;CS>Vh9XBIfKz^NCf2^HTEe>fTPLDCneN<+0b z6J_EQnFA2SZ-^&}A9O#Y|}{c=Kzr~i|yhb=*B*=O~-r1J(IP*D~V2VH>e&*_ng?uSLs1_Kf2q|J&vKrkxn6< zLb@L5dY$HOb)M@(w}iXmPH`6u9X|0(;#R~v#7$%w;O*e&xJBH8c$?US_yOR105^l2 z4e(aD59aM9PJ zr)dZ;Ud`q&<2gw@B+X%fK2MO5VcUK=SIN7 zc2R=fT`?7p*CJkZuZEW_)o@W+ZAl_6RzNjXkQV?%$Z`c_xdMus^Z5V-=sIC?1>hRM z`vAPc!%!JvsEjZaFbwg-C{=)RHv#4VMCe3e(7#Z|fU$i5)p=StHv*gp_#zM|0DkHN}cf%Zn@PdbgE|J;(JZota4ex zB1oizDD+S0o<}#0u8OW(E$dKjbSQ6iD9?8&r#qCk4yC0-xxYiH?og&_x9W~6zlGE~R@X6=M1k-;_s&Gk}IK`oH4) zjelCAlfJL|r)5BYrTHGzP>eHw=&SMf`6@Neat($2mnG0ZcGK60kw(=@c!idO6=@a)wY^`SnxfI&N?0aoQ#%dg@d=aUH4m z)Z6Z}uDieSE>5TJ=FPeCb>?=##v$dRH zmCf3(l1g_dv1pK59Z07jf`rmtf^?UFgaXpA=x(G#Km?>y1O#c2lopUikh6UE{`UKd z`+V2=@2rc9^*r}8Gk45AGqBcgev_TCp9ArB*bWKrK6#Ojp(m5~`?%H1cEQw~#gxKw zd)@0yKcoNdJFhd;HwC4UWB=Z+tu8~hlnKwRkGoqSrbgHVQX;~}$|ePw&v~1x?zIjA z_uZ}Og5-wBsRmIq2CFeCn!_%%W_r4l1nG}QPT%2VthPQ7F5Um@hx5(Nkv4tOSyfKr z?b~;u!W>k|S=eszKc;W%#xMM+Ky;s{clTRxNE)yP4If#nRIn6Z+s#CWpl>qaSkRN+ z`TC=FLn6J~$R{6ap4raTMHSzYaO)b7AJPgSs$c=_cG||aa%s?f!QH# z8p02#77Dil_Ox1}lOlV(M`<8QN8~m!GUjpi&)8<(minaM!X1Fdej&bRz885M&OLl> z)J&GA42T^#=K!X{k|1748hvw4S~+c3^iG;0%wHW~TFIs;|NjrCd4nGJC5`ZDWKnMuH z4@aN`;79}v0LKur!(f<02LK=-7{iv2f&)>%pC9mx9s8eb*}rJ^|IMHNx4(a$AMh(I zznvd&)%pLA#|WUn05~SDKokNF|C1md`L~1r8~-;14Erbh_kRfDQ``ET$&GHXOGw_k zX~|A=p<+oY{x5>~kN(r+C(-J!Im9z8=03D9Rg@^9H~0v@3;?XEO19&mP!a@Nu-@8K z5g;^aD^RcJz08+2fb*i~E&fBa)l0x2J)xMcbB(!iaR7tB0ac)#Y|Q#7y0p1(%Hi3_ z*-KB=_`OW-#N4q*o|XqsM<@xKto7t+ceZL=li!C8%2U1)k+WyRlh3imNs`s$>3OSz z+dpVaeVyl2kjbG(p!CExO!-T_^G6eXcOgI5Oi1AY6^m2AhbN>85**z7R8B*^BX|u| z4LFrll~fISUk3!rYTY6ueM2efde6B+hF09&RuRWfYHK1Y-XiZ+o`#Kq!ZOXVPHAAV z9Jt*TA_BFBrlKD`wj#AcQb4wfKW$G=Kg6z6iIhb$9h4+z7-Z5G{rGcm{acDljr&rPKb{KcC$Ie-sw{?84=5jZeGVS<#GvdpSrqgF5h-2TuBB3{FLWkuI z4|vJ0Rj>sE1`Sf9KRfqs|G3tJR4mof)>V0HxR2s`cnP~T`>-y*mYVM&0U4)>kJaoM ziP>WrE9Q;UYYk{#9gWh{EFQ+~95<{ruJYG5c0o^oSnQ4AN8exPhx68T9n)eX=kP0L zrXRjHZ*RY_d{^<>=9+9#tB%g)-aC8}lb^OVgElRJQCe+~Yq56X&%E1{BZ%KJZ&s-s zn`8(jYj0T5B5B3K4}D*pMwS%K4&9mI^S&095ZX}HHLc=RpGm*J|24b0GHJe50|3J@43C1ut-D z%1d!D!Zu|TilRe-8`Zhl_pWCz${qL3C$Uch0}kB%7~FSsoSkFJBH!SZ#9hNO!kkr1 zrf@@gQxw7+xWi7(9yNOXAdP$&hf^AoNX~C4QR7by3d|vvBr}U5-wqa&;GX!*%t9nd z-p)b<@;6}*EEW@|l4g~43VY7op&2Y27C_hGz_7%kbiqVn$dHY_NKW0c({l4>aLBy4 z^K*YBQ))0JK;?oarX>hT-o?i0l!`++Y6rlLA)Ac~OY8#?a~2s$3FQLJ{ceLORmqhD zpdEboR{+mza)u8eQmQ0_J|5X;#QFtIHuyEf=7(1&Zw8A1QypBEX0|NuPaI% zVD?1a=Uzrqe*aAQ5T_tVmk2_39~m!sJ%133)R>-%^`q=L*4Gxr4o7auR6>qm>W87o z$R+Q@p!#clWVCJ8hfbOu4xkSzKa6h1v87*kB2SPEI-^g$xlhJxBx+2}C$8JI$EO)w z&p^ZWxSgWIz(M%-$A^&;#Hk^ggy>*inaf!4)*VT_SD0I&qyicr%mSL8L@hIAICziK>`? zcmDS-f6Rp>JMtIc1AM86{PirgF z$ZRWj(7HqR4t3PRxN&=kaGLzMH7%I5g`@)?C5m&G{K7urOla$+Uhp#p<`?hCnV-)F zN4ALsN47QvQZvosSb7Ynv|F?@MxL3T+n$m(0DxuT@q3)CHh$fNe+;EeVR^7nq@WXksE z6hHk>s2iW3xVfu6BT;fZzcnX$jyLz1w7qUO;*8H5e}~nFbcf~VwH>yfH+*HzLzb?2 z`yp@mN~te!S6?P9ItMv5#5#Ght~!t3P`ZqFI;-nhrzBTHcLX#NTh?3 zSQqMoZuP+Ax0_2UC9#)IXQ4JReL#nfhVqSU!AR1?Oo?nKnH5#N9j!Ie}Wp4EeX zWP!m?JEcoR!6hZ~0=Rn6o;pH`QSkxwkDGJBj`c5>))7gEDa544gr%UPr=7m(BK&LbEkLz;C zziyTM>T*a*c>)TC+5*ZJ_((O(jCHUsE13ea{Z@MUjK4fW)z z_kd6ZClJrgJ!?Oq@>W;I%N_?|_^KLfl;p`WMA{!$c7VbhrMw?1A#j*Cz z=z0s?z(y~A$9cV;2ghvKrxgQr_P9Qw>5xT^SbGYYu2^~YaMLK=DnCB<{+>IZB;YZx zdOzpBno+c66aDn6$s>=O#}o3m;Th%FKeuN-+ppMd=3YFX>@WpAYE*B$ z-)P`1AuQli4%sXl(<^@`f1LGAN@UIKV*L#F4DZ73z~|yNUTeir#V7mcM%4?(?E&tI zj`Chn8l;&SJET8l(E@TxzCprxJ285a$fiiXOt;wE^1)=p#X&l~_ZuAR{lBU)7iC7b zed+bAVqy*S>XBa#!Y{gKz-7BQAL#{ghl?9UdDY!f&`J(Xh? zmLtkPav~i7M-S55jEK+gYrA48Mh&EbZNExXZvDoK@vy_(#9V#-#bsUyk zR{BmZf_-O=qe4nI&kNlsHDj7yc72Jo<2Y!tP2rX-Gt-3)#M6qoEO6DRY?p|SYkXnD zH@(3KZu5LPNUpb_BJx~Ymjh}jh;Ke<^nk!Dn_gM-N8qzvx=H><*%|xy_0OTP zo1bHzTb*dXzdyt4yy@8Kuu&ag7yGW~l@;>^g|gKkfdx?+Yh4JaUcfiJxQ>g zbDJKzcjA(kSY_SCAbqx|>9G2~`_XT|ww3p2)Ef&(2(HAKCdyG7!T6!vXZF|HrDw1w z6>ML~FF$ZVe3#0of7~d2j@JU&593Jpr!QDl&Vaip%q^#Gm5hKPpGH(?d17O@I3LjM zC^+AV2t09cs00nGM3XNVWw}n$7{5t;AlsWczHmTskKX}3#@(EID-RoVOas5smilQNI63K{s^g)Hq?0tDoj^w)dmT zVuig!r?>w7#uOSQg~&8bNuCf}?#JG_vOIg}GP^atBA%|ZhJk!mjp*^Xc!F6@NT_+7 zw@TTVEd?yV{<$n#aWfyFRjJXeso@YJ*!Ac`!#pKt-00X38om-fo(LzQ;!mp2atlAc zX~Qo|5=}`-5hu6nDiHim?+#I5yG^27QZZD}A%YMzxbM1E>NSS4+^)sx*Bb-z7&|Unhc*nrGFD>w}2X?!? zrC^k2B36Nx#FPMghia`P#ozp-h*h&sBXVSD4MOwTxo<>Mh<9h?L6n}t>bT#?w~b3{ zQw1A)9YrW#y89<^LY(iIWgQm$qUcWpLj@i7xyD1f2K$bVkH6CZFY33-@t=UtaZkTssQm>hr z(ro!H`s{%GEclz25bjn*qI7=(-{uxHyoXn2Zhec-g(oi!miETyu#H+k#?|Fpf!pvq zA)WhHFU&{FkM!tQd1oI71v~+a0JV8OY`I346222L-CQ(7|1i5|wi(mMr0_&#;KS>0 zdx;uv4J2N#6vgFLN#}DbK6mtgJ}1Rt%Ut&b+n!~R+5>BR^Bl)L85$>>`BC`|RO=~s z2x7U_L@v!>)KOS!j5S|gdnzc|#j!=ZjUj2};JPYmS8=<&F#CzTnZ59?%wu%^b{JNC zo_j5ayRn7EndRm3CX0J8ABXRS9IeQ{*xP2h=D_Y30+kP}N0N4@0>|;UK4rAhhFv%O z{!N)C&8GiSJ2d*_np=&CgP(}O-Exb;$Q_~*aFfLext#U#(fND_4x>KO2m8Z%{<2X_ zgdH(n@;J88u=1zln}%TE!gVZAjDGibo*TJ^=g-eQzW1JoKKJGp*ZO&L zp+*tI(3{~WZolZG8WdcuU0T#aQnSDG`&HQOyI%gLrkK1c8oRtQO z0gOq8!Fvn^&GKl3v8B}4H=fi@rzy{*eC_43A1RbYwKo+>{-mIOVBU+_4${X}9J%;p z20NRKcz9`*l4pNz&rwUss2W%v05Pp?Ya3^~7ei*y7&$ ze9vH;+4yugD}r44CeiRJ{M_=;q)F|VfO~hw=ib9F#}iUpsA>jw7TgSS0?8VKi`;SR zLHgD18A+-S3l0klOZjqfeL{ecN`LIdSn8K-5}6DB;*2+q)TGJ@RbpD@V{Z=2Z^F<;$d_Wdr5REmneVR_h)t?juMeRknGPlH9P^=m%CFdiJKdC%{xLdKaORPUX8I z0>#m)Ig{trJ=fC$TiImL-;5Rlm}0eV^coP$J$!g=ujLk+0QZ~s?YO}P_m zbLH@j?}Xx_B|dhq#6GCPwa|n+1fhcR*ndQ(th=R<5;LJjVTO&5#}W4Ur59OoM%b#^BL|k;W+IheG+3XNgwo|aL?KJLI>iL!5Xi@p@7bbN(8=u9-P&s>rk1As1 zgq`$c*dg}zVn~N@Iy0{bDT!cH-h7ILD3y#{TUnX{Rpd+3Gr-eb#-MeG@ezKTYZ zoxQN0WNq0ur1&i-Z0KI?vjB*nCvFdPY8)=buVm|TVF;USM zQqIFbix{nsD$Y!^T8pSf^x}g>exU#rc6ckt`P@O)`qS95VfUh4or`_{iBb!%0<*1ckFbmy3`+iSP)Ley3`PGY7e&+yU#z-nm3(2YmHhw zn6E13q{h}Q`k8-AYlm&iqB&*Tpk8+JZ21-WP31PSu}WM|g%*nz!`BjRop)C5pFS!u zlRVV+cj}Ah@8#^^pbJ!uY1#qZ@dY8%0!0rurk#MVr+beB7_oVa_A6Vb9d;f?lEOpH z=muQv+ep(pD7sbmG-}Pri)|V#$zvHgjDu`k18w~iZJp$nLr&poVO;kHCBt?dtP2W5 z=fvT%1`jjVflET+^~|E+u4UPv4K-XWXv+#M}A&rDE7H5L?-^BN(5Q82)$&O z0$)cu<9(Bh(RF&#u*4Z_IK z4i~aMT8SIsfJwKzugeXbM<4^!ZUQ1h^;y$QBaeNiTVGizjCom*z&DthvTD!M*xup2 zpMdRzJjZU^avC9|jjCpza=h4jYS86CwY2w@@1UAk$@3$GAmMg-LK!U7^J%V2!a>bR z(Mdq2a(3?`Rm}bV9$80RP~b$NVLn`^#j8s}-j1YxFrJ9+L^h?ALYT#o08@qIuHMON@#Q33K9$4%-!<_PW%uyk%zMYNgO|`^d7>}?E@x9v9aOX8hJ;PX3 zaOW#!9ZM1Xp<-SXl7tgKm&ypN1-}_3JWU^KoE2OC$|9(tQ9eL2a{kH-oI{m$GP`a0 z%GMz6uCG#8Ty;iLgQBA6QsW_|8&|W?gjjvtHuv_%>VeR#ZE#R&dK{`2U3*x|Uz;Ln zOY&}d?Y5i!43`lnK-!P)c3`sFHqEmzDd4oy#D!^v+_xLsYyo7lOP=k#;WT35o0YDK z%vla=HAvv%?uR9{Vauw$TRDaYBTqe-@(-$r^QNACU+c~Jeoaa#qbC*jsHlg>*ElE9 z(C~RHJRGQ@@2Z&|Wn+))O6@3|wR^y+Y`!Hk-eC}X+}4&J_-#L%Gk4j*H{hA0W5_1f zRDJl`N9IPu=@#tLXa&~k-Y9BBsJx;7w8%;pC2psx)pt!A%`%`hO#jK-S6g5a>51r8 zDjp^1gX`?*~)i(nvvD_Uqtws{ci+ zwkI_x_ghPgE68#_D;Y7SFNe51;nXPzAne?C5MHp4wWy>>vOLlhj@D5W%IUNYhsq|Y zeo!m%lm{=Wv|MAyY71tcFhxz1`4inXCI-=)w%(bPlvL!*(FfmDpp&g*klYpQP`6}% zb|4fCkVH5ZdP8%>avH*!$=;{{hM(fMWesGM+K02$^(?aRWRUi!cYl2T*2Ba59uiPH zG@!=0%8~z7ar2uNnGKhnh>-nQXvziwp2i$+H*(O5jEmUYyPL5sN$l~-R81ZA(GDNX zJm;Xg9O-*%;uoF&Lgn<#XmrVndg5sm37_l|-DZMe?)sYJ3nS?6*h zET0@a&!6QFxdSI9yENZZ%O*z%6rA?whLreFjb7|LT`_HYI;UN&@i5Y;sM=eq+ep8p@@~b&ze1N)|xvTrI~$KS6JoGd%=vu=;4b` z8+D}Pb{12Ze_>5Z#PAlE{159@PLtoaL5KaB2u!p?)#yzwmRgd?O1Q%MB5&Dp5O9sP zb=e*N5ZNsz#0})9<(k*3BS{QqX z9l-&IA5=~$k(^e>?6pxnHQz1Ox-@-h6#I$Coa9!XF3ErDpd(6S&*v9N1$CY6X9C4E z2bs|sqB9CYAML3q)eJqfdg(UB82ileHX(8=7Nm7C;jIk)9nOUr8lqiiuMG9ID)ixZ z4ECMkIfWc>v~=6|(~Y|3g}K4An6op*_`sD0hGD`}>YK{XT7SIX&(Y~?#_k&FQ+L-s zhW^msd9V4?(tYFoNb>~A>bbE{g`J}8^y}`)*tz~WwmlT}6n3o}9(rjX>vM}wEy5Kc~4Aq)Lw&&2i^%iO46Ag zKHnb&?}WnnBgawqHSwkdWBs}|-jnp;D4s1{Px6EichBE1>=})Q<7CT70_pb)-|yppDY^8cj3R;oIkWC>?uhn5r|wpEFr>N zz13A(SchPN?=ugsK=qZK#m9WyURF^p`||W$st(oXW;$s3Z}CeU#bfE%&I$cH}-ZNKwGe48#o)~eN&Ff(Y>pLWbdsh^v_C&JYDuA)`o=hpAR z4Shz8Rw3&j z^i%)^6CRp-T+S2IQ2%9l#e|Fm8*{a)q zj!FuDW;|!PypsIZw_yLfzU_k9`^43`veiNyPpE0}?t!bK<LL_YQ&@-#uQ)wI=iP36~2 zGQN2b?m~S(-gA2DwoWp-@!*4EdJc}GcCwBTywQ%St80?g4B-g0t%}wi%k4^O9^-LEY zyN<%)Z}4B<(mD%k0Db@@U|G0zB{RloXv`|@#?#o zTCI6-KCzli&hQHQvQ6LkgOW?mMqm22kvZbgSa)U9OS`ZPUjqJ$z@v&+3@_d7hio_6 z-B|Gt4>y(=lSr4msIHUF&O%_*O9k(|R)YDCwm`tcbp88J#=c74oy9#~dUkC`aF>RK z(m{02Vu{~yPfuhV_(M;`Vqb2jF-VKHYIP=*ugt5jrl9w=Ncc#Ng*m)>dQzwA`TAY2 z>U>MjKFefLA1t`wNZLfVAaaTfvMbQy1({=oH&-KA^?A*SEIM5ey1L9JNro7oRATpU z&+E-BfQ($%yf3`5FS3E8O%n4Y5h|fIvy5IO1A1$vSKcQLWXyzvS`0$%` zgc#g25>&t5YoAV1-Rfa$`I+=;{{Btr%JK!t?U-)mBVlNLr%**FfvgzMntakGH#Ej_ zh^y+W<6bkaT_soEz#d)v<9dS3p&y`NpP0HyN#09)GJLsv9_QZ1@C6ki)a)X> zbutC&-Ybav!SG{vBcAEymj&8kE3eRuxz$QknKNJ8M@AQGdnhWII{ou<$II@m!gk4i z)p*n$YO$wg>1{emD=k(`&T)q34xt%Q_>4^5)Dc@yedsIdXG0FjIRnw(<_Geu1|EDm zi~qnxD#U4Q64HpK=%#<1^Eq++ur}*yUDnfttW7K_jjXJv4OzV7L$JvqwB=eK(D^N~ z9wm|9-V1vk^_V=eUe+Xb`A_$=r8%P7CI!`Jwir>mg4HkeO}QPl@`;L$VAnY)WH`SE z-CU{h-cwZlc2^UBg_r6J;+39{v3C830;d7?<{?LJ12AL?(W&RV~X;oromj?PrnL!C( z`Hb>Wj0i{Pk6z}9oY#);qZE$f`Ha^ktsEXbLMai~wO4%U-#V(opOP<^xLzHAwGOl8 zq8RwtxeeTczPpF3JM)pcD6HZ>z}L`~XY0AE%8nFP-Th!sv7WMbgO5~awjGH-f9|$9 zt7-5)o#|K*rz{9anOAkNr^L^i$#tG!=QoV;>0?i;V~;Yr{nFgz(F^O65{~0U(YYjB zH+i;KXk7Fx#fOqR+GQeaD`WKDbEP22x6sXigrFruSB+Ce%m?|^PdTZmr1zPzHuyzF zIO%uI$41hIX*&)>#9f`95_0NbYgqsGqeuTj(-RGWNuPCL?Tc z4y$ua7<~W@xs@lQ243^k0=rv&js|^;js~r5X6RWwsgOZ6HQgY~Bq>XCrw{{?LXLbB zW6}Fmfod-bK81Dpv3M@Eo)(!l2P_-WzMk2hptk0o2w>c1(6aD2p4s)i7M?7Q{1avc z2mXz1`Ww^t-!Y65j+RE&{Qp83{sY5^{11o`1%wHJ5fCW!ZxACG1QI}jpugaW{{k_B zFsMTy0)s@vARYfkF(N=PfxqyHzoQs2z{THij4%*F0Ek2(p#Xje7%G7H)ery#fnk7= zNH_uvK%o%-f;9e)WBi5R`Ujp14*G9C|AAxtD>T317_SE4KVUQ|d1+ZYTjyT^#2AdZ zQ@4|omwsSm4-k|$#lSl)ojv{%t9dwKkeu?i=5_#KVL??h3riz+o^53}6oUj|_wX5C3`rZ2u(#VbIOsD>BSuFzSj7 zgn+_;7zFV@>w4)i`lk$u z!H51{4g^F%{*Zw{f7As-uf_o5E)+8;ue1k7fv)(0F&PZ{qZ||g`@;_y_)op?Up;X} z2ONd^BQ8iV>Wa;nxdDv0A_HPP`;`>`i~*(`416^%AS4)a)jkLW2Ej}k|EvpyLQ%i6 z`8OFHj6tCPF2m?Rpsw^0CZeEU6VsKt@T)pN7_HE&e!wx%`71hrNGJ+)#ShRg1Fz`C zv