-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer.py
159 lines (117 loc) · 4.9 KB
/
transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""Module for transfer learning based on FashionMNIST binary classificator to distinct between flats and heels"""
import logging
import os
import torch
import torchvision
from torch import device, nn
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import transforms
from tqdm import tqdm
from common.tools import calculate_accuracy
from model import BinaryFMnist
logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO"))
dev = device("cuda" if torch.cuda.is_available() else "cpu")
class ShoeDataset(Dataset):
"""Custom PyTorch dataset class"""
def __init__(self, imgs, label):
self.image = imgs
self.label = label
def __len__(self):
return len(self.image)
def __getitem__(self, idx):
image = self.image[idx]
label = self.label[idx]
return image, label
class TransferLearn:
"""Transfer learning pipeline"""
def __init__(self):
self.flats_train = torchvision.io.read_image("heels_flats/train/Flats/107.png")
self.heels_train = torchvision.io.read_image("heels_flats/train/Heels/746.png")
self.flats_test = [
torchvision.io.read_image(os.path.join("./heels_flats/test/Flats", img_dir))
for img_dir in os.listdir("./heels_flats/test/Flats")
]
self.heels_test = [
torchvision.io.read_image(os.path.join("./heels_flats/test/Heels", img_dir))
for img_dir in os.listdir("./heels_flats/test/Heels")
]
self.model = BinaryFMnist()
self.model.load_state_dict(torch.load("models/model.pth"))
def freeze_and_replace_layers(self):
"""Prepare model for transfer learning.
Freeze 2 last leyers and replace with a new ones
"""
# Freeze all layers
for param in self.model.parameters():
param.requires_grad = False
# Replace 2 last FC layers
self.model.linear1 = nn.Linear(192, 120)
self.model.linear2 = nn.Linear(120, 60)
self.model.out = nn.Linear(60, 1)
return self.model
def prepare_train(self):
"""Prepare training examples"""
img = [self.flats_train, self.heels_train]
transform = transforms.Compose(
[transforms.ConvertImageDtype(torch.float32), transforms.Normalize((0.5,), (0.5,))]
)
images = [transform(x) for x in img]
label_flats, label_heels = torch.tensor(1.0), torch.tensor(0.0)
labels = [label_flats, label_heels]
train_dataset = ShoeDataset(images, labels)
return DataLoader(train_dataset, batch_size=1, shuffle=True)
def prepare_test(self):
"""Prepare testing examples"""
transform = transforms.Compose(
[transforms.ConvertImageDtype(torch.float32), transforms.Normalize((0.5,), (0.5,))]
)
flats_images = [transform(x) for x in self.flats_test]
heels_images = [transform(x) for x in self.heels_test]
flats_labels = [torch.tensor(1.0) for x in range(len(flats_images))]
heels_labels = [torch.tensor(0.0) for x in range(len(heels_images))]
images = flats_images + heels_images
labels = flats_labels + heels_labels
test_dataset = ShoeDataset(images, labels)
return DataLoader(test_dataset, batch_size=1, shuffle=False)
def retrain(self, data):
"""Retrain layers"""
epoch_loss = []
for epoch in range(EPOCHS):
running_loss = 0.0
for img, label in tqdm(data, leave=True, desc=f"Epoch:{epoch}/{EPOCHS}"):
img, label = img.to(dev), label.to(dev)
output = model(img)
output = output[0]
loss = criterion(output, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
epoch_loss.append(running_loss)
def test(self, data):
"""Test the model"""
test_loss = 0.0
test_accuracy = 0.0
model.eval()
with torch.no_grad():
for t_img, t_label in data:
t_img, t_label = t_img.to(dev), t_label.to(dev)
output = model(t_img)
output = output[0]
test_loss += criterion(output, t_label).item() # Convert labels to Long data type
test_accuracy += calculate_accuracy(output, t_label)
test_loss /= len(test_data)
test_accuracy /= len(test_data)
print("Testing Loss:", test_loss)
print(f"Testing Accuracy: {test_accuracy * 100}%")
EPOCHS = 50
LEARNNING_RATE = 0.001
tranfer_run = TransferLearn()
model = tranfer_run.freeze_and_replace_layers()
train_data = tranfer_run.prepare_train()
test_data = tranfer_run.prepare_test()
model = model.to(dev)
criterion = nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNNING_RATE)
tranfer_run.retrain(train_data)
tranfer_run.test(test_data)