-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpattern_generation.py
101 lines (68 loc) · 3.19 KB
/
pattern_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import itertools
def generate_inputs(num_dimensions, num_features):
base = np.zeros((1, num_features))
base[0, 0] = 1.0
base_perm = base.copy() # make a copy as to not modify the base vector
# roll the vector to get all possible nodes active in a single input dimension
for i in range(1, num_features):
base_perm = np.vstack((base_perm, np.roll(base, i, axis=1)))
# get all possible combinations of input dimensions
return np.array([np.array(p) for p in itertools.product(base_perm, repeat=num_dimensions)])
def generate_tasks(num_dimensions, num_out_dimensions=None):
if num_out_dimensions is None:
num_out_dimensions = num_dimensions
units = num_dimensions * num_out_dimensions
# generate base vector
base = np.zeros((1, units))
base[0, 0] = 1.0
tasks = base.copy()
# roll vector to get all possible nodes active
for i in range(1, units):
tasks = np.vstack((tasks, np.roll(base, i, axis=1)))
# Generate a map of dimensions mapped by each task
task_numbers = np.arange(units)
task_map = np.reshape(task_numbers, (num_dimensions, num_out_dimensions))
return tasks, task_map
def generate_training_patterns(num_dimensions, num_features, num_out_dimensions=None,
inputs=None, tasks=None, task_map=None):
if num_out_dimensions is None:
num_out_dimensions = num_dimensions
if inputs is None:
inputs = generate_inputs(num_dimensions, num_features)
if tasks is None or task_map is None:
tasks, task_map = generate_tasks(num_dimensions, num_out_dimensions)
num_cases = len(inputs) * len(tasks)
# changed to a tensor to support the sort of indexing I need
target_patterns = np.zeros((num_cases, num_out_dimensions, num_features))
input_patterns = np.zeros((num_cases, num_dimensions, num_features))
task_patterns = np.zeros((num_cases, np.size(tasks, 1)))
in_out_map = np.zeros((num_cases, task_map.ndim)) # logs dim map per trial
# generate input-task combination and target pattern per trial
trial = 0
for task_p in tasks: # loops along task patterns
for input_p in inputs: # loops along input patterns
input_patterns[trial] = input_p
task_patterns[trial] = task_p
task_index = np.argmax(task_p) # np.where(task_p == np.max(task_p))[0][0]
mapping = np.array(np.where(task_map == task_index))[:,0]
in_out_map[trial] = mapping
in_dim = mapping[0]
out_dim = mapping[1]
# Perform the dimension mapping from input to output
target_patterns[trial, out_dim, :] = input_patterns[trial, in_dim, :]
trial += 1
return input_patterns, task_patterns, in_out_map, target_patterns
if __name__ == '__main__':
# ins = generate_inputs(3, 4)
# print(ins[0])
# print(ins[0][0])
# print(ins[0].shape)
# input_patterns, task_patterns, in_out_map, target_patterns = generate_training_patterns(3, 4)
# x = 333
# print(input_patterns[x])
# print(task_patterns[x])
# print(in_out_map[x])
# print(target_patterns[x])
# print(np.argmax(task_patterns, 1))
pass