-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathtest.py
50 lines (39 loc) · 1.74 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# pip install importlib_resources
import torch
import torch.nn.functional as F
import torchvision.models as models
from utils import *
from cam.scorecam import *
# alexnet
alexnet = models.alexnet(pretrained=True).eval()
alexnet_model_dict = dict(type='alexnet', arch=alexnet, layer_name='features_10',input_size=(224, 224))
alexnet_scorecam = ScoreCAM(alexnet_model_dict)
input_image = load_image('images/'+'ILSVRC2012_val_00002193.JPEG')
input_ = apply_transforms(input_image)
if torch.cuda.is_available():
input_ = input_.cuda()
predicted_class = alexnet(input_).max(1)[-1]
scorecam_map = alexnet_scorecam(input_)
basic_visualize(input_.cpu(), scorecam_map.type(torch.FloatTensor).cpu(),save_path='alexnet.png')
# vgg
vgg = models.vgg16(pretrained=True).eval()
vgg_model_dict = dict(type='vgg16', arch=vgg, layer_name='features_29',input_size=(224, 224))
vgg_scorecam = ScoreCAM(vgg_model_dict)
input_image = load_image('images/'+'ILSVRC2012_val_00002193.JPEG')
input_ = apply_transforms(input_image)
if torch.cuda.is_available():
input_ = input_.cuda()
predicted_class = vgg(input_).max(1)[-1]
scorecam_map = vgg_scorecam(input_)
basic_visualize(input_.cpu(), scorecam_map.type(torch.FloatTensor).cpu(),save_path='vgg.png')
# resnet
resnet = models.resnet18(pretrained=True).eval()
resnet_model_dict = dict(type='resnet18', arch=resnet, layer_name='layer4',input_size=(224, 224))
resnet_scorecam = ScoreCAM(resnet_model_dict)
input_image = load_image('images/'+'ILSVRC2012_val_00002193.JPEG')
input_ = apply_transforms(input_image)
if torch.cuda.is_available():
input_ = input_.cuda()
predicted_class = resnet(input_).max(1)[-1]
scorecam_map = resnet_scorecam(input_)
basic_visualize(input_.cpu(), scorecam_map.type(torch.FloatTensor).cpu(),save_path='resnet.png')