Skip to content

Latest commit

 

History

History
81 lines (58 loc) · 1.89 KB

198._house_robber.md

File metadata and controls

81 lines (58 loc) · 1.89 KB

198. House Robber

难度: Easy

刷题内容

原题连接

内容描述

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Example 1:

Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
             Total amount you can rob = 1 + 3 = 4.
Example 2:

Input: [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
             Total amount you can rob = 2 + 9 + 1 = 12.

解题方案

思路 1

状态转移方程:

dp[i] = max(dp[i-1], dp[i-2] + nums[i])

AC 代码

class Solution(object):
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        n = len(nums)
        if n == 0 : return 0
        elif n == 1 : return nums[0]
        elif n == 2 : return max(nums[0], nums[1])
        else:
            dp = [0 for i in range(n)]
            dp[0] = nums[0]
            dp[1] = max(nums[0],nums[1])
            for i in range(2,n):
                dp[i] = max(dp[i-1], dp[i-2] + nums[i])
        return dp[n-1]

思路 2

迭代

class Solution(object):
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        last, now = 0, 0
        for num in nums:
            last, now = now, max(last+num, now)
        return now