-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcleaning_with_coordinate_clustering.py
257 lines (202 loc) · 7.65 KB
/
cleaning_with_coordinate_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import glob
import json
import math
import os
import shutil
import numpy as np
import pandas as pd
from datetime import datetime
from IPython.display import Video
from sklearn.cluster import AgglomerativeClustering
import config
from utils import get_frames, timeit, run_in_parallel, extract_box
class Metadata:
def __init__(self):
self.metadata = pd.read_json(config.METADATA_PATH).T
def __getitem__(self, name):
if name not in self.metadata.index:
return None, None
return self.metadata.loc[name][['label', 'original']].values
def fakes(self, original=None):
fakes = self.metadata[self.metadata['label'] == 'FAKE']
if original is not None:
return fakes[fakes['original'] == original]
return fakes
def reals(self):
return self.metadata[self.metadata['label'] == 'REAL']
metadata = Metadata()
class VideoReader:
def __init__(self, name, face_coordinates=None):
self.frame_ids = []
self.name = name
self.path = os.path.join(os.path.dirname(config.VIDEO_PATH), name)
self.label, self.original = metadata[name]
self.frames = get_frames(self.path, output_type='PIL')
self.face_centers = []
self.cluster_labels = []
if self.label == 'REAL':
self.coordinates = face_coordinates.loc[name].values
else:
self.coordinates = face_coordinates.loc[self.original].values
def __get__(self, frame_id):
return self.coordinates[frame_id]
def get_face(self, frame_id, face_id=None):
faces = []
for i, c in enumerate(self.coordinates[frame_id]):
if face_id is not None and i != face_id:
continue
faces.append(self.frames[frame_id].crop(c))
return faces
def get_all_faces(self):
faces = []
for i, frame in enumerate(self.coordinates):
for face in frame:
faces.append(self.frames[i].crop(face))
return faces
def flatten_face_coordinates(self):
faces = []
for i, frame in enumerate(self.coordinates):
if frame is None or type(frame) != list:
continue
for face in frame:
faces.append(face)
return faces
def calculate_face_centers(self):
for i, frame in enumerate(self.coordinates):
if frame is None or type(frame) != list:
print(f'[WARNING] No faces detected in frame {i} of {self.name}')
continue
for face in frame:
self.face_centers.append([(face[0] + face[2]) / 2,
(face[1] + face[3]) / 2])
self.frame_ids.append(i)
def _cluster(self, threshold=100, linkage='average'):
if len(self.face_centers) == 0:
return
if len(self.face_centers) == 1:
self.cluster_labels = [0]
return
try:
self.cluster_labels = AgglomerativeClustering(n_clusters=None,
distance_threshold=threshold,
linkage=linkage).fit(self.face_centers).labels_
except Exception as e:
print(self.name, e)
exit(-1)
def cluster_faces(self, use_images=False, labels=None):
clusters = {}
if labels is not None:
self.cluster_labels = labels
else:
self.calculate_face_centers()
self._cluster()
if use_images:
faces = self.get_all_faces()
else:
faces = self.flatten_face_coordinates()
for frame_id, label, face in zip(self.frame_ids, self.cluster_labels, faces):
label = int(label)
if clusters.get(label, None) is None:
clusters[label] = []
clusters[label].append((frame_id, face))
return clusters
def extract_faces(self):
"""
Works with clustered faces coordinates
:return:
"""
for coordinates in self.coordinates:
try:
for i, (frame_id, face) in enumerate(coordinates):
extract_box(self.frames[frame_id], face, f'{config.DIR_FACE_IMAGES}/{self.name}_{frame_id}_{i}.jpg')
except Exception as e:
if math.isnan(coordinates):
continue
print(f'Problem with {self.name} : {e}')
def extract_faces_v2(self):
"""
works with non-clustered face coordinates
:return:
"""
faces, labels = [], []
for coordinate, frame in zip(self.coordinates, self.frames):
if coordinate is not None and type(coordinate) == list:
for face in coordinate:
faces.append(extract_box(frame, face))
labels.append(self.label)
if len(faces) == 0:
print(f'[WARNING] No face detected on {self.path}')
return faces, labels
def play(self):
"""
Only available with jupyter notebook
:return: Video instance
"""
return Video(self.path, embed=True, width=640)
def process_clusters(clusters):
# if single cluster, return
if len(clusters.keys()) == 1:
return clusters
processed_clusters = clusters.copy()
for k, v in clusters.items():
if len(v) < 10:
del processed_clusters[k]
return processed_clusters
def run(name):
video = VideoReader(name)
clusters = process_clusters(video.cluster_faces())
return {name: clusters}
@timeit
def clean_face_coordinates(face_coordinates):
"""
- Cluster faces using face centers
- Keep single clusters
- Remove clusters with less than 10 items
- Save new face coordinates
"""
print(f'[{datetime.now()}] Removing redundant face clusters from Part-{config.part}')
results = run_in_parallel(run, face_coordinates.index)
cleaned_faces = {}
for res in results:
cleaned_faces.update(res)
with open(config.CLEANED_FACE_COORDINATES_PATH, 'w') as f:
json.dump(cleaned_faces, f)
def _run(name):
face_coordinates = pd.read_json(config.FACE_COORDINATES_PATH).T
video = VideoReader(name, face_coordinates)
return video.extract_faces_v2()
@timeit
def run_face_extraction():
print(f'[{datetime.now()}] Extracting detected face images from Part-{config.part}')
videos = [os.path.basename(f) for f in glob.glob(config.VIDEO_PATH)]
results = run_in_parallel(_run, videos)
all_faces_in_chunk = []
all_labels_in_chunk = []
for res in results:
faces, labels = res
all_faces_in_chunk.extend(faces)
all_labels_in_chunk.extend(labels)
np.savez(config.CHUNK_PATH, data=all_faces_in_chunk, labels=all_labels_in_chunk)
@timeit
def prepare_labels():
print(f'[{datetime.now()}] Preparing labels for Part-{config.part}')
face_images = [os.path.basename(f) for f in glob.glob(config.DIR_FACE_IMAGES + '/*.jpg')]
labels = {}
for i, f in enumerate(face_images):
if (i + 1) % 1000 == 0:
print(f"{i + 1}/{len(face_images)}")
name = f.split('_')[0]
label = metadata[name][0]
if label is None:
continue
labels[f] = label
pd.DataFrame(labels.items(), columns=['name', 'label']).to_csv(config.FACE_LABELS_PATH, index=False)
if __name__ == '__main__':
run_face_extraction()
# clean_face_coordinates()
# prepare_labels()
# shutil.make_archive('train_faces', 'zip', config.DIR_FACE_IMAGES)
# videos = glob.glob(config.VIDEO_PATH)
# n = os.path.basename(videos[0])
# print(n, len(videos))
# _run(n)