-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
363 lines (281 loc) · 12.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
#!/usr/bin/env python
# coding: utf-8
# # Training sample model with DeiT: Data-efficient Image Transformer
# ## Useful soruces:
#
# * [DeiT classifier for Cassava dataset](https://www.kaggle.com/huseynlilkin/cnn-or-transformer-pytorch-xla-tpu-for-cassava/edit)
# * [Kaggle Utilty Script](https://www.kaggle.com/huseynlilkin/kaggle-pytorch-utility-script/edit?rvi=1)
# * [Face-net Pytorch for face detection](https://www.kaggle.com/huseynlilkin/guide-to-mtcnn-in-facenet-pytorch/edit)
# * [DeepFake starter kit](https://www.kaggle.com/huseynlilkin/deepfake-starter-kit/edit)
# * [Has nice helper functions](https://www.kaggle.com/huseynlilkin/my-deep-fake-solution/edit)
# * [LR reduce - good webiste](https://www.deeplearningwizard.com/deep_learning/boosting_models_pytorch/lr_scheduling/#reduce-on-loss-plateau-decay-patience0-factor01)
# * [Selim's code](https://github.com/selimsef/dfdc_deepfake_challenge)
# * [DeiT github page](https://github.com/facebookresearch/deit)
# * [AffinityPropagation for clustering](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation)
# In[1]:
import os
import cv2
import glob
import time
import numpy as np
import timm
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.utils.data import DataLoader, Dataset
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.cuda.amp import autocast, GradScaler
from albumentations import Compose, RandomBrightnessContrast, HorizontalFlip, HueSaturationValue, OneOf, ToGray, \
ShiftScaleRotate, ImageCompression, PadIfNeeded, GaussNoise, GaussianBlur, Resize, Normalize
from albumentations.pytorch import ToTensorV2
import config
# CONFIG
from utils import timeit
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
MODEL_NAME = 'deit_base_patch16_224' # other model names ['deit_base_patch16_224', 'vit_base_patch16_384', 'resnext50_32x4d', 'tf_efficientnet_b3_ns']
LOAD_PRETRAINED = True
TARGET_SIZE = 2
LOAD_CHECKPOINT = False
LR = 1e-3
# lr scheduler
MODE = 'min'
FACTOR = 0.1
PATIENCE = 1
EPOCHS = 5
BATCH_SIZE = 64
NUM_WORKERS = os.cpu_count() - 1
# ## Dataset
class DFDCDataset(Dataset):
def __init__(self, df, transform=None):
self.df = df
self.names = df['name'].values
self.label_names = df['label'].values
self.labels = np.where(self.label_names == 'REAL', 1, 0)
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
label = torch.tensor(self.labels[idx]).long()
file_name = self.names[idx]
file_path = f'{config.root}/train_faces/{file_name}'
image = cv2.imread(file_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if self.transform:
augmented = self.transform(image=image)
image = augmented['image']
return image, label
class DFDCDatasetNPZ(Dataset):
"""
Loads data from numpy npz files
"""
def __init__(self, npz_path, transform=None):
self.npz = np.load(npz_path, allow_pickle=True)
self.data = self.npz['data']
self.label_names = self.npz['labels']
self.labels = np.where(self.label_names == 'REAL', 1, 0)
self.transform = transform
def __getitem__(self, idx):
label = torch.tensor(self.labels[idx]).long()
image = np.asarray(self.data[idx])
if self.transform:
augmented = self.transform(image=image)
image = augmented['image']
return image, label
def __len__(self):
return len(self.data)
# Original transform functions from Selim's code
def create_train_transforms_by_selim(size=300):
return Compose([
ImageCompression(quality_lower=60, quality_upper=100, p=0.5),
GaussNoise(p=0.1),
GaussianBlur(blur_limit=3, p=0.05),
HorizontalFlip(),
OneOf([
IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC),
IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_LINEAR),
IsotropicResize(max_side=size, interpolation_down=cv2.INTER_LINEAR, interpolation_up=cv2.INTER_LINEAR),
], p=1),
PadIfNeeded(min_height=size, min_width=size, border_mode=cv2.BORDER_CONSTANT),
OneOf([RandomBrightnessContrast(), FancyPCA(), HueSaturationValue()], p=0.7),
ToGray(p=0.2),
ShiftScaleRotate(shift_limit=0.1, scale_limit=0.2, rotate_limit=10, border_mode=cv2.BORDER_CONSTANT, p=0.5),
]
)
def create_val_transforms_by_selim(size=300):
return Compose([
IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC),
PadIfNeeded(min_height=size, min_width=size, border_mode=cv2.BORDER_CONSTANT),
])
# My transforms
def create_train_transforms(size=224):
return Compose([
Resize(224, 224),
ImageCompression(quality_lower=60, quality_upper=100, p=0.5),
GaussNoise(p=0.1),
GaussianBlur(blur_limit=3, p=0.05),
HorizontalFlip(),
# TODO: IsotropicResize
PadIfNeeded(min_height=size, min_width=size, border_mode=cv2.BORDER_CONSTANT),
OneOf([RandomBrightnessContrast(), HueSaturationValue()], p=0.7), # FancyPCA() is missing
ToGray(p=0.2),
ShiftScaleRotate(shift_limit=0.1, scale_limit=0.2, rotate_limit=10, border_mode=cv2.BORDER_CONSTANT, p=0.5),
Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
),
ToTensorV2()
])
def create_val_transforms(size=224):
return Compose([
Resize(224, 224),
PadIfNeeded(min_height=size, min_width=size, border_mode=cv2.BORDER_CONSTANT),
Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
),
ToTensorV2()
])
# ## Models
class DeiT(nn.Module):
def __init__(self):
super().__init__()
self.model = torch.hub.load('facebookresearch/deit:main', MODEL_NAME, pretrained=LOAD_PRETRAINED)
n_features = self.model.head.in_features
self.model.head = nn.Linear(n_features, TARGET_SIZE)
def forward(self, x):
return self.model(x)
class EfficientNet(nn.Module):
def __init__(self, version='b0'):
super().__init__()
if version in ['b0', 'b1', 'b2', 'b3']:
model_name = f'efficientnet_{version}'
else:
model_name = f'tf_efficientnet_{version}'
self.model = timm.create_model(model_name, pretrained=LOAD_PRETRAINED)
n_features = self.model.classifier.in_features
self.model.classifier = nn.Linear(n_features, TARGET_SIZE)
def forward(self, x):
return self.model(x)
# - **TODO: CHECK HOW THEY TRAINED DEIT ORIGINALLY**
# - **TODO: NEXT TIME, DOWNLOAD OTHER NOTEBOOK AND OPEN LOCALLY**
class AverageMeter(object):
"""Computers and stores the average oand current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def save_checkpoint(model, optimizer, scheduler, scaler, epoch, loss, path):
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'scaler_state_dict': scaler.state_dict(),
'loss': loss,
}, path)
def load_checkpoint(path, model, optimizer, scheduler, scaler):
checkpoint = torch.load(path)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
scaler.load_state_dict(checkpoint['scaler_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
return model, optimizer, scheduler, scaler, epoch, loss
def get_validation_loader(path_to_chunk):
validation_dataset = DFDCDatasetNPZ(path_to_chunk, create_val_transforms())
validation_loader = DataLoader(validation_dataset,
batch_size=BATCH_SIZE,
shuffle=False,
num_workers=NUM_WORKERS,
pin_memory=True,
drop_last=True)
return validation_loader
def get_train_loader(path_to_chunk):
train_dataset = DFDCDatasetNPZ(path_to_chunk, create_train_transforms())
train_loader = DataLoader(train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=NUM_WORKERS,
pin_memory=True,
drop_last=True)
return train_loader
# train and validation loop
if __name__ == '__main__':
train_loss = []
validation_loss = []
loss = 0
model = EfficientNet('b4')
model.to(DEVICE)
optimizer = Adam(model.parameters(), lr=LR)
scheduler = ReduceLROnPlateau(optimizer, mode=MODE, factor=FACTOR, patience=PATIENCE, verbose=True)
criterion = nn.CrossEntropyLoss(weight=torch.FloatTensor([2 / 10, 8 / 10]).cuda())
scaler = GradScaler()
chunks = glob.glob(os.path.dirname(config.CHUNK_PATH) + '/*')
# using last chunk as validation
validation_chunk_path = chunks.pop()
print(f"Chunk {os.path.basename(validation_chunk_path)} was used as validation")
validation_loader = get_validation_loader(validation_chunk_path)
if LOAD_CHECKPOINT:
model, optimizer, scheduler, scaler, epoch, loss = load_checkpoint(config.BEST_MODEL_PATH, model,
optimizer, scheduler, scaler)
for epoch in range(EPOCHS):
t = time.time()
model.train()
for chunk in chunks:
train_loader = get_train_loader(chunk)
print(
f"Train starts for : EPOCH: {epoch} CHUNK: {os.path.basename(chunk)} Number of iterations: {len(train_loader)}")
for step, (images, labels) in enumerate(train_loader):
images = images.to(DEVICE)
labels = labels.to(DEVICE)
batch_size = labels.size(0)
with autocast():
y_preds = model(images)
loss = criterion(y_preds, labels)
train_loss.append(loss.item())
scaler.scale(loss).backward()
# TODO: should we do gradient clipping here?
# grad_norm = clip_grad_norm_(model.parameters, 1e-7)
# TODO: what is a gradient accumulation?
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
save_checkpoint(model, optimizer, scheduler, scaler, epoch, loss, path=config.CHECKPOINT_PATH)
print(f'Train : Epoch {epoch} completed in {time.time() - t:.2f} secs')
print(f'Last train loss: {train_loss[-1]} AVG train loss: {np.mean(train_loss)}')
# validation
model.eval()
tmp_loss = []
for step, (images, labels) in enumerate(validation_loader):
images = images.to(DEVICE)
labels = labels.to(DEVICE)
batch_size = labels.size(0)
with torch.no_grad():
y_preds = model(images)
v_loss = criterion(y_preds, labels)
tmp_loss.append(v_loss.item())
cur_val_loss = np.mean(tmp_loss)
validation_loss.append(cur_val_loss)
prev_loss = 99 if len(validation_loss) < 2 else validation_loss[-2]
print(f"Validation loss: {cur_val_loss} previous validation loss: {prev_loss}")
if cur_val_loss < prev_loss:
print(f"Average validation loss improved from {prev_loss} to {cur_val_loss}. Saving checkpoint")
save_checkpoint(model, optimizer, scheduler, scaler, epoch, loss,
path = config.BEST_MODEL_PATH)
scheduler.step(np.mean(validation_loss))
# 20 epochs 2h 40m
# plt.figure(figsize=(24, 12))
print(
f"Training completed: average training loss: {np.mean(train_loss)}, average validation loss: {np.mean(validation_loss)}")
# plt.plot(train_loss)
# plt.plot(validation_loss)
np.savez('efb0-losses.npz', train=train_loss, validation=validation_loss)