-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
142 lines (118 loc) · 4.26 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras.utils.np_utils import to_categorical
from keras.layers import Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D
import cv2
from sklearn.model_selection import train_test_split
import os
import pandas as pd
from keras.preprocessing.image import ImageDataGenerator
path = "Data"
labelFile = 'labels.csv'
batch_size_val=50
steps_per_epoch_val=2000
epochs_val=10
imageDimesions = (32,32,3)
testRatio = 0.2
validationRatio = 0.2
# Importing of the Images
count = 0
images = []
classNo = []
myList = os.listdir(path)
print("Total Classes Detected:",len(myList))
noOfClasses=len(myList)
print("Importing Classes.....")
for x in range (0,len(myList)):
myPicList = os.listdir(path+"/"+str(count))
for y in myPicList:
curImg = cv2.imread(path+"/"+str(count)+"/"+y)
images.append(curImg)
classNo.append(count)
print(count, end =" ")
count +=1
print(" ")
images = np.array(images)
classNo = np.array(classNo)
# Split Data
X_train, X_test, y_train, y_test = train_test_split(images, classNo, test_size=testRatio)
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validationRatio)
# Read CSV file
data=pd.read_csv(labelFile)
# Preprocessing
def grayscale(img):
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
return img
def equalize(img):
img =cv2.equalizeHist(img)
return img
def preprocessing(img):
img = grayscale(img) # convert to gray scale
img = equalize(img) # histogram standardize
img = img/255 # normalize
return img
X_train=np.array(list(map(preprocessing,X_train)))
X_validation=np.array(list(map(preprocessing,X_validation)))
X_test=np.array(list(map(preprocessing,X_test)))
X_train=X_train.reshape(X_train.shape[0],X_train.shape[1],X_train.shape[2],1)
X_validation=X_validation.reshape(X_validation.shape[0],X_validation.shape[1],X_validation.shape[2],1)
X_test=X_test.reshape(X_test.shape[0],X_test.shape[1],X_test.shape[2],1)
# Data augmentation
dataGen= ImageDataGenerator(width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2,
shear_range=0.1,
rotation_range=10)
dataGen.fit(X_train)
batches= dataGen.flow(X_train,y_train,batch_size=20)
X_batch,y_batch = next(batches)
y_train = to_categorical(y_train,noOfClasses)
y_validation = to_categorical(y_validation,noOfClasses)
y_test = to_categorical(y_test,noOfClasses)
# CONVOLUTION NEURAL NETWORK MODEL
def CNN():
no_Of_Filters=60
size_of_Filter=(5,5)
size_of_Filter2=(3,3)
size_of_pool=(2,2)
no_Of_Nodes = 500
model= Sequential()
model.add((Conv2D(no_Of_Filters,size_of_Filter,input_shape=(imageDimesions[0],imageDimesions[1],1),activation='relu')))
model.add((Conv2D(no_Of_Filters, size_of_Filter, activation='relu')))
model.add(MaxPooling2D(pool_size=size_of_pool))
model.add((Conv2D(no_Of_Filters//2, size_of_Filter2,activation='relu')))
model.add((Conv2D(no_Of_Filters // 2, size_of_Filter2, activation='relu')))
model.add(MaxPooling2D(pool_size=size_of_pool))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(no_Of_Nodes,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(noOfClasses,activation='softmax'))
model.compile(Adam(lr=0.001),loss='categorical_crossentropy',metrics=['accuracy'])
return model
# TRAIN
model = CNN()
print(model.summary())
history=model.fit_generator(dataGen.flow(X_train,y_train,batch_size=batch_size_val),steps_per_epoch=steps_per_epoch_val,epochs=epochs_val,validation_data=(X_validation,y_validation),shuffle=1)
model.save("mymodel.h5")
# PLOT
plt.figure(1)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.legend(['training','validation'])
plt.title('loss')
plt.xlabel('epoch')
plt.figure(2)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training','validation'])
plt.title('Acurracy')
plt.xlabel('epoch')
plt.show()
score =model.evaluate(X_test,y_test,verbose=0)
print('Test Score:',score[0])
print('Test Accuracy:',score[1])