-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_syn_images.py
51 lines (41 loc) · 1.76 KB
/
generate_syn_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
import argparse
import pandas as pd
import json
from datasets import load_dataset
from tqdm import tqdm
from torchvision import transforms
def parse_argument():
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", type=int, default=0)
parser.add_argument("--model", type=str, default="stabilityai/stable-diffusion-2-1")
parser.add_argument("--output_dir", type=str, default="image_gen")
parser.add_argument("--num_repeat", type=int, default=100, help="number of repeat image per label")
parser.add_argument("--num_inference_steps", type=int, default=80, help="number of inference steps")
return parser.parse_args()
def main(arg):
cuda_number = arg.cuda
if cuda_number == -1:
cur_device = 'cpu'
else:
if torch.cuda.is_available():
cur_device = "cuda:" + str(cuda_number)
elif torch.backends.mps.is_available():
cur_device = "mps"
else:
cur_device = "cpu"
road_sign = ["speed limit", "stop", "cross walk", "no entry", "traffic light", "yield"]
# Set generated image pipeline
pipeline = AutoPipelineForText2Image.from_pretrained(arg.model, torch_dtype=torch.float16).to(cur_device)
pipeline.set_progress_bar_config(disable=True)
for sign in road_sign:
context = f"a {sign} sign in the road."
sign_name = "_".join(sign.split())
for idx_img in tqdm(range(arg.num_repeat), sign_name):
image = pipeline(context, num_inference_steps=arg.num_inference_steps).images[0]
image.save(arg.output_dir + "/{:}_gen_{:}.png".format(sign_name, idx_img))
if __name__ == '__main__':
arg = parse_argument()
main(arg)