This repository has been archived by the owner on Dec 11, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval.py
173 lines (154 loc) · 7.12 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import json
import os
import os.path as osp
import numpy as np
import torch
import tqdm
from torch.utils.data import DataLoader, Subset
from dataset.SpineDataset import SpineDataset
import SimpleITK as sitk
from sklearn import metrics
import gluoncvth as gcv
from model.UNet import UNet
from torchvision import transforms
def val_transform(image, mask):
image = sitk.GetArrayFromImage(image)
mask = sitk.GetArrayFromImage(mask).astype(np.int64)
image = np.expand_dims(image, axis=1)
image = np.repeat(image, 3, 1)
image = torch.from_numpy(image)
# 缩放到 0-1 范围,然后归一化
image /= image.max()
for idx in range(image.shape[0]):
image[idx] = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(image[idx])
mask = torch.from_numpy(mask)
return image, mask
def test_transform(image):
image = sitk.GetArrayFromImage(image)
image = np.expand_dims(image, axis=1)
image = np.repeat(image, 3, 1)
image = torch.from_numpy(image)
# 缩放到 0-1 范围,然后归一化
image /= image.max()
for idx in range(image.shape[0]):
image[idx] = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(image[idx])
return image
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default=None, required=True,
help='The path to the model file, default: None')
parser.add_argument('--root', type=str, default=osp.expanduser('~/data/datasets/SpineData'),
help='Path of data, default: ~/data/datasets/SpineData')
parser.add_argument('--cuda', type=str, default='1',
help='GPU ids used for testing, default: 1')
parser.add_argument('--network', type=str, default='FCN',
choices=['DeepLab', 'FCN', 'PSPNet', 'UNet'],
help='network type, default: FCN')
parser.add_argument('--backbone', type=str, default='vgg11_bn',
help='backbone for UNet, default: vgg11_bn')
parser.add_argument('--result_dir', type=str, default='submission',
help='dir to save result for submission, default: submission')
parser.add_argument('--num_classes', type=int, default=2,
help='number of classes, default: 2')
parser.add_argument('--test', action='store_true',
help="run test instead of val, default: False")
return parser.parse_args()
def main():
# 参数
args = get_args()
if not osp.exists(args.result_dir):
os.makedirs(args.result_dir)
print("Evaluating configuration:")
for arg in vars(args):
print("{}:\t{}".format(arg, getattr(args, arg)))
with open('eval-config.json', 'w') as f:
json.dump(args.__dict__, f, indent=4)
# 数据
if args.test:
dataset = SpineDataset(root=args.root, split='test', transform=test_transform)
else:
dataset = SpineDataset(root=args.root, split='val', transform=val_transform)
dataloader = DataLoader(dataset,
batch_size=1,
shuffle=False,
num_workers=4,
pin_memory=True)
# 模型
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
if args.network == 'DeepLab':
model = gcv.models.DeepLabV3(nclass=args.num_classes,
backbone=args.backbone)
elif args.network == 'FCN':
model = gcv.models.FCN(nclass=args.num_classes,
backbone=args.backbone)
elif args.network == 'PSPNet':
model = gcv.models.PSP(nclass=args.num_classes,
backbone=args.backbone)
elif args.network == 'UNet':
model = UNet(n_class=args.num_classes,
backbone=args.backbone)
print('load model from {} ...'.format(args.model))
model.load_state_dict(torch.load(args.model, map_location='cpu')['state_dict'])
model = model.to(device)
print('Done!')
# 测试
def eval():
with torch.no_grad():
model.eval()
result = []
tq = tqdm.tqdm(total=len(dataloader))
if args.test:
tq.set_description('test')
for i, (data, img_file) in enumerate(dataloader):
tq.update(1)
data = data.to(device)
predict = np.zeros((data.size()[1], data.size()[3], data.size()[4]), dtype=np.uint16)
for idx in range(data.size()[1]):
if args.network in ['DeepLab', 'FCN', 'PSPNet']:
final_out = model(data[:, idx])[0]
elif args.network == 'UNet':
final_out = model(data[:, idx])
predict[idx] = final_out.argmax(dim=1).cpu().squeeze().numpy().astype(np.uint16)
pred_img = sitk.GetImageFromArray(predict)
test_img = sitk.ReadImage(osp.join(args.root, 'test', 'image', img_file[0]))
pred_img.CopyInformation(test_img)
result_file = 'mask_' + img_file[0].lower()
sitk.WriteImage(pred_img, osp.join(args.result_dir, result_file))
else:
tq.set_description('val')
for i, (data, mask, mask_file) in enumerate(dataloader):
tq.update(1)
gt_img = sitk.ReadImage(osp.join(args.root, 'val', 'groundtruth', mask_file[0]))
data = data.to(device)
predict = np.zeros((data.size()[1], data.size()[3], data.size()[4]), dtype=np.uint16)
for idx in range(data.size()[1]):
if args.network in ['DeepLab', 'FCN', 'PSPNet']:
final_out = model(data[:, idx])[0]
elif args.network == 'UNet':
final_out = model(data[:, idx])
predict[idx] = final_out.argmax(dim=1).cpu().squeeze().numpy().astype(np.uint16)
pred_img = sitk.GetImageFromArray(predict)
pred_img.CopyInformation(gt_img)
sitk.WriteImage(pred_img, osp.join(args.result_dir, mask_file[0]))
ppv, sensitivity, dice, _ = metrics.precision_recall_fscore_support(mask.numpy().flatten(), predict.flatten(), average='binary')
result.append([dice, ppv, sensitivity])
result = np.array(result)
result_mean = result.mean(axis=0)
result_std = result.std(axis=0)
print(result_mean, result_std)
np.savetxt(osp.join(args.result_dir, 'result.txt'),
result_mean,
fmt='%.3f',
header='Dice, Sensitivity, PPV')
tq.close()
eval()
if __name__ == '__main__':
main()
# vim:set ts=4 sw=4 et: