forked from HypoX64/DeepMosaics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBiSeNet_model.py
264 lines (228 loc) · 10.4 KB
/
BiSeNet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# This code clone from https://github.com/ooooverflow/BiSeNet
import torch.nn as nn
import torch
import torch.nn.functional as F
from . import model_util
import warnings
warnings.filterwarnings(action='ignore')
def flatten(tensor):
"""Flattens a given tensor such that the channel axis is first.
The shapes are transformed as follows:
(N, C, D, H, W) -> (C, N * D * H * W)
"""
C = tensor.size(1)
# new axis order
axis_order = (1, 0) + tuple(range(2, tensor.dim()))
# Transpose: (N, C, D, H, W) -> (C, N, D, H, W)
transposed = tensor.permute(axis_order)
# Flatten: (C, N, D, H, W) -> (C, N * D * H * W)
return transposed.contiguous().view(C, -1)
class DiceLoss(nn.Module):
def __init__(self):
super().__init__()
self.epsilon = 1e-5
def forward(self, output, target):
assert output.size() == target.size(), "'input' and 'target' must have the same shape"
output = F.softmax(output, dim=1)
output = flatten(output)
target = flatten(target)
# intersect = (output * target).sum(-1).sum() + self.epsilon
# denominator = ((output + target).sum(-1)).sum() + self.epsilon
intersect = (output * target).sum(-1)
denominator = (output + target).sum(-1)
dice = intersect / denominator
dice = torch.mean(dice)
return 1 - dice
# return 1 - 2. * intersect / denominator
class resnet18(torch.nn.Module):
def __init__(self, pretrained=True):
super().__init__()
self.features = model_util.resnet18(pretrained=pretrained)
self.conv1 = self.features.conv1
self.bn1 = self.features.bn1
self.relu = self.features.relu
self.maxpool1 = self.features.maxpool
self.layer1 = self.features.layer1
self.layer2 = self.features.layer2
self.layer3 = self.features.layer3
self.layer4 = self.features.layer4
def forward(self, input):
x = self.conv1(input)
x = self.relu(self.bn1(x))
x = self.maxpool1(x)
feature1 = self.layer1(x) # 1 / 4
feature2 = self.layer2(feature1) # 1 / 8
feature3 = self.layer3(feature2) # 1 / 16
feature4 = self.layer4(feature3) # 1 / 32
# global average pooling to build tail
tail = torch.mean(feature4, 3, keepdim=True)
tail = torch.mean(tail, 2, keepdim=True)
return feature3, feature4, tail
class resnet101(torch.nn.Module):
def __init__(self, pretrained=True):
super().__init__()
self.features = model_util.resnet101(pretrained=pretrained)
self.conv1 = self.features.conv1
self.bn1 = self.features.bn1
self.relu = self.features.relu
self.maxpool1 = self.features.maxpool
self.layer1 = self.features.layer1
self.layer2 = self.features.layer2
self.layer3 = self.features.layer3
self.layer4 = self.features.layer4
def forward(self, input):
x = self.conv1(input)
x = self.relu(self.bn1(x))
x = self.maxpool1(x)
feature1 = self.layer1(x) # 1 / 4
feature2 = self.layer2(feature1) # 1 / 8
feature3 = self.layer3(feature2) # 1 / 16
feature4 = self.layer4(feature3) # 1 / 32
# global average pooling to build tail
tail = torch.mean(feature4, 3, keepdim=True)
tail = torch.mean(tail, 2, keepdim=True)
return feature3, feature4, tail
def build_contextpath(name,pretrained):
model = {
'resnet18': resnet18(pretrained=pretrained),
'resnet101': resnet101(pretrained=pretrained)
}
return model[name]
class ConvBlock(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=2,padding=1):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self, input):
x = self.conv1(input)
return self.relu(self.bn(x))
class Spatial_path(torch.nn.Module):
def __init__(self):
super().__init__()
self.convblock1 = ConvBlock(in_channels=3, out_channels=64)
self.convblock2 = ConvBlock(in_channels=64, out_channels=128)
self.convblock3 = ConvBlock(in_channels=128, out_channels=256)
def forward(self, input):
x = self.convblock1(input)
x = self.convblock2(x)
x = self.convblock3(x)
return x
class AttentionRefinementModule(torch.nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.bn = nn.BatchNorm2d(out_channels)
self.sigmoid = nn.Sigmoid()
self.in_channels = in_channels
self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1))
def forward(self, input):
# global average pooling
x = self.avgpool(input)
assert self.in_channels == x.size(1), 'in_channels and out_channels should all be {}'.format(x.size(1))
x = self.conv(x)
# x = self.sigmoid(self.bn(x))
x = self.sigmoid(x)
# channels of input and x should be same
x = torch.mul(input, x)
return x
class FeatureFusionModule(torch.nn.Module):
def __init__(self, num_classes, in_channels):
super().__init__()
# self.in_channels = input_1.channels + input_2.channels
# resnet101 3328 = 256(from context path) + 1024(from spatial path) + 2048(from spatial path)
# resnet18 1024 = 256(from context path) + 256(from spatial path) + 512(from spatial path)
self.in_channels = in_channels
self.convblock = ConvBlock(in_channels=self.in_channels, out_channels=num_classes, stride=1)
self.conv1 = nn.Conv2d(num_classes, num_classes, kernel_size=1)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(num_classes, num_classes, kernel_size=1)
self.sigmoid = nn.Sigmoid()
self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1))
def forward(self, input_1, input_2):
x = torch.cat((input_1, input_2), dim=1)
assert self.in_channels == x.size(1), 'in_channels of ConvBlock should be {}'.format(x.size(1))
feature = self.convblock(x)
x = self.avgpool(feature)
x = self.relu(self.conv1(x))
x = self.sigmoid(self.conv2(x))
x = torch.mul(feature, x)
x = torch.add(x, feature)
return x
class BiSeNet(torch.nn.Module):
def __init__(self, num_classes, context_path, train_flag=True):
super().__init__()
# build spatial path
self.saptial_path = Spatial_path()
self.sigmoid = nn.Sigmoid()
# build context path
if train_flag:
self.context_path = build_contextpath(name=context_path,pretrained=True)
else:
self.context_path = build_contextpath(name=context_path,pretrained=False)
# build attention refinement module for resnet 101
if context_path == 'resnet101':
self.attention_refinement_module1 = AttentionRefinementModule(1024, 1024)
self.attention_refinement_module2 = AttentionRefinementModule(2048, 2048)
# supervision block
self.supervision1 = nn.Conv2d(in_channels=1024, out_channels=num_classes, kernel_size=1)
self.supervision2 = nn.Conv2d(in_channels=2048, out_channels=num_classes, kernel_size=1)
# build feature fusion module
self.feature_fusion_module = FeatureFusionModule(num_classes, 3328)
elif context_path == 'resnet18':
# build attention refinement module for resnet 18
self.attention_refinement_module1 = AttentionRefinementModule(256, 256)
self.attention_refinement_module2 = AttentionRefinementModule(512, 512)
# supervision block
self.supervision1 = nn.Conv2d(in_channels=256, out_channels=num_classes, kernel_size=1)
self.supervision2 = nn.Conv2d(in_channels=512, out_channels=num_classes, kernel_size=1)
# build feature fusion module
self.feature_fusion_module = FeatureFusionModule(num_classes, 1024)
else:
print('Error: unspport context_path network \n')
# build final convolution
self.conv = nn.Conv2d(in_channels=num_classes, out_channels=num_classes, kernel_size=1)
self.init_weight()
self.mul_lr = []
self.mul_lr.append(self.saptial_path)
self.mul_lr.append(self.attention_refinement_module1)
self.mul_lr.append(self.attention_refinement_module2)
self.mul_lr.append(self.supervision1)
self.mul_lr.append(self.supervision2)
self.mul_lr.append(self.feature_fusion_module)
self.mul_lr.append(self.conv)
def init_weight(self):
for name, m in self.named_modules():
if 'context_path' not in name:
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
m.eps = 1e-5
m.momentum = 0.1
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, input):
# output of spatial path
sx = self.saptial_path(input)
# output of context path
cx1, cx2, tail = self.context_path(input)
cx1 = self.attention_refinement_module1(cx1)
cx2 = self.attention_refinement_module2(cx2)
cx2 = torch.mul(cx2, tail)
# upsampling
cx1 = torch.nn.functional.interpolate(cx1, size=sx.size()[-2:], mode='bilinear')
cx2 = torch.nn.functional.interpolate(cx2, size=sx.size()[-2:], mode='bilinear')
cx = torch.cat((cx1, cx2), dim=1)
if self.training == True:
cx1_sup = self.supervision1(cx1)
cx2_sup = self.supervision2(cx2)
cx1_sup = torch.nn.functional.interpolate(cx1_sup, size=input.size()[-2:], mode='bilinear')
cx2_sup = torch.nn.functional.interpolate(cx2_sup, size=input.size()[-2:], mode='bilinear')
# output of feature fusion module
result = self.feature_fusion_module(sx, cx)
# upsampling
result = torch.nn.functional.interpolate(result, scale_factor=8, mode='bilinear')
result = self.conv(result)
if self.training == True:
return self.sigmoid(result), self.sigmoid(cx1_sup), self.sigmoid(cx2_sup)
return self.sigmoid(result)