forked from BUPT-GAMMA/OpenHGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLinkPredictionDataset.py
682 lines (594 loc) · 30.4 KB
/
LinkPredictionDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
import dgl
import math
import random
import numpy as np
import torch as th
from dgl.data.knowledge_graph import load_data
from . import BaseDataset, register_dataset
from . import AcademicDataset, HGBDataset, OHGBDataset
from ..utils import add_reverse_edges
__all__ = ['LinkPredictionDataset', 'HGB_LinkPrediction']
@register_dataset('link_prediction')
class LinkPredictionDataset(BaseDataset):
"""
metric: Accuracy, multi-label f1 or multi-class f1. Default: `accuracy`
"""
def __init__(self, *args, **kwargs):
super(LinkPredictionDataset, self).__init__(*args, **kwargs)
self.target_link = None
self.target_link_r = None
def get_split(self, val_ratio=0.1, test_ratio=0.2):
"""
Get subgraphs for train, valid and test.
Generally, the original will have train_mask and test_mask in edata, or we will split it automatically.
If the original graph do not has the train_mask in edata, we default that there is no valid_mask and test_mask.
So we will split the edges of the original graph into train/valid/test 0.7/0.1/0.2.
The dataset has not validation_mask, so we split train edges randomly.
Parameters
----------
val_ratio : int
The ratio of validation. Default: 0.1
test_ratio : int
The ratio of test. Default: 0.2
Returns
-------
train_hg
"""
val_edge_dict = {}
test_edge_dict = {}
out_ntypes = []
train_graph = self.g
for i, etype in enumerate(self.target_link):
num_edges = self.g.num_edges(etype)
if 'train_mask' not in self.g.edges[etype].data:
"""
split edges into train/valid/test.
"""
random_int = th.randperm(num_edges)
val_index = random_int[:int(num_edges * val_ratio)]
val_edge = self.g.find_edges(val_index, etype)
test_index = random_int[int(num_edges * val_ratio):int(num_edges * (test_ratio + val_ratio))]
test_edge = self.g.find_edges(test_index, etype)
val_edge_dict[etype] = val_edge
test_edge_dict[etype] = test_edge
out_ntypes.append(etype[0])
out_ntypes.append(etype[2])
train_graph = dgl.remove_edges(train_graph, th.cat((val_index, test_index)), etype)
# train_graph = dgl.remove_edges(train_graph, val_index, etype)
if self.target_link_r is None:
pass
else:
reverse_edge = self.target_link_r[i]
train_graph = dgl.remove_edges(train_graph, th.arange(train_graph.num_edges(reverse_edge)),
reverse_edge)
edges = train_graph.edges(etype=etype)
train_graph = dgl.add_edges(train_graph, edges[1], edges[0], etype=reverse_edge)
else:
if 'valid_mask' not in self.g.edges[etype].data:
train_idx = self.g.edges[etype].data['train_mask']
random_int = th.randperm(int(train_idx.sum()))
val_index = random_int[:int(train_idx.sum() * val_ratio)]
val_edge = self.g.find_edges(val_index, etype)
else:
val_mask = self.g.edges[etype].data['valid_mask'].squeeze()
val_index = th.nonzero(val_mask).squeeze()
val_edge = self.g.find_edges(val_index, etype)
test_mask = self.g.edges[etype].data['test_mask'].squeeze()
test_index = th.nonzero(test_mask).squeeze()
test_edge = self.g.find_edges(test_index, etype)
val_edge_dict[etype] = val_edge
test_edge_dict[etype] = test_edge
out_ntypes.append(etype[0])
out_ntypes.append(etype[2])
#self.val_label = train_graph.edges[etype[1]].data['label'][val_index]
self.test_label = train_graph.edges[etype[1]].data['label'][test_index]
train_graph = dgl.remove_edges(train_graph, th.cat((val_index, test_index)), etype)
# train_graph = dgl.remove_edges(train_graph, th.cat((val_index, test_index)), 'item-user')
self.out_ntypes = set(out_ntypes)
val_graph = dgl.heterograph(val_edge_dict,
{ntype: self.g.number_of_nodes(ntype) for ntype in set(out_ntypes)})
test_graph = dgl.heterograph(test_edge_dict,
{ntype: self.g.number_of_nodes(ntype) for ntype in set(out_ntypes)})
# todo: val/test negative graphs should be created before training rather than
# create them dynamically in every evaluation.
return train_graph, val_graph, test_graph, None, None
@register_dataset('demo_link_prediction')
class Test_LinkPrediction(LinkPredictionDataset):
def __init__(self, dataset_name):
super(Test_LinkPrediction, self).__init__()
self.g = self.load_HIN('./openhgnn/debug/data.bin')
self.target_link = 'user-item'
self.has_feature = False
self.meta_paths_dict = None
self.preprocess()
# self.generate_negative()
def preprocess(self):
test_mask = self.g.edges[self.target_link].data['test_mask']
index = th.nonzero(test_mask).squeeze()
self.test_edge = self.g.find_edges(index, self.target_link)
self.pos_test_graph = dgl.heterograph({('user', 'user-item', 'item'): self.test_edge},
{ntype: self.g.number_of_nodes(ntype) for ntype in ['user', 'item']})
self.g.remove_edges(index, self.target_link)
self.g.remove_edges(index, 'item-user')
self.neg_test_graph, _ = dgl.load_graphs('./openhgnn/debug/neg.bin')
self.neg_test_graph = self.neg_test_graph[0]
return
def generate_negative(self):
k = 99
e = self.pos_test_graph.edges()
neg_src = []
neg_dst = []
for i in range(self.pos_test_graph.number_of_edges()):
src = e[0][i]
exp = self.pos_test_graph.successors(src)
dst = th.randint(high=self.g.number_of_nodes('item'), size=(k,))
for d in range(len(dst)):
while dst[d] in exp:
dst[d] = th.randint(high=self.g.number_of_nodes('item'), size=(1,))
src = src.repeat_interleave(k)
neg_src.append(src)
neg_dst.append(dst)
neg_edge = (th.cat(neg_src), th.cat(neg_dst))
neg_graph = dgl.heterograph({('user', 'user-item', 'item'): neg_edge},
{ntype: self.g.number_of_nodes(ntype) for ntype in ['user', 'item']})
dgl.save_graphs('./openhgnn/debug/neg.bin', neg_graph)
@register_dataset('hin_link_prediction')
class HIN_LinkPrediction(LinkPredictionDataset):
def __init__(self, dataset_name, *args, **kwargs):
super(HIN_LinkPrediction, self).__init__(*args, **kwargs)
self.g = self.load_HIN(dataset_name)
def load_link_pred(self, path):
u_list = []
v_list = []
label_list = []
with open(path) as f:
for i in f.readlines():
u, v, label = i.strip().split(', ')
u_list.append(int(u))
v_list.append(int(v))
label_list.append(int(label))
return u_list, v_list, label_list
def load_HIN(self, dataset_name):
self.dataset_name = dataset_name
if dataset_name == 'academic4HetGNN':
# which is used in HetGNN
dataset = AcademicDataset(name='academic4HetGNN', raw_dir='')
g = dataset[0].long()
self.train_batch = self.load_link_pred('./openhgnn/dataset/' + dataset_name + '/a_a_list_train.txt')
self.test_batch = self.load_link_pred('./openhgnn/dataset/' + dataset_name + '/a_a_list_test.txt')
self.category = 'author'
elif dataset_name == 'Book-Crossing':
g, _ = dgl.load_graphs('./openhgnn/dataset/book_graph.bin')
g = g[0]
self.target_link = [('user', 'user-item', 'item')]
self.node_type = ['user', 'item']
elif dataset_name == 'amazon4SLICE':
dataset = AcademicDataset(name='amazon4SLICE', raw_dir='')
g = dataset[0].long()
elif dataset_name == 'MTWM':
dataset = AcademicDataset(name='MTWM', raw_dir='')
g = dataset[0].long()
self.target_link = [('user', 'user-buy-spu', 'spu')]
#self.target_link_r = [('spu', 'user-buy-spu-rev', 'user')]
self.node_type = ['user', 'spu']
elif dataset_name == 'HGBl-ACM':
dataset = HGBDataset(name='HGBn-ACM', raw_dir='')
g = dataset[0].long()
self.has_feature = True
self.target_link = [('paper', 'paper-ref-paper', 'paper')]
self.node_type = ['author', 'paper', 'subject', 'term']
self.target_link_r = [('paper', 'paper-cite-paper', 'paper')]
self.meta_paths_dict = {'PAP': [('paper', 'paper-author', 'author'), ('author', 'author-paper', 'paper')],
'PSP': [('paper', 'paper-subject', 'subject'),
('subject', 'subject-paper', 'paper')],
'PcPAP': [('paper', 'paper-cite-paper', 'paper'),
('paper', 'paper-author', 'author'),
('author', 'author-paper', 'paper')],
'PcPSP': [('paper', 'paper-cite-paper', 'paper'),
('paper', 'paper-subject', 'subject'),
('subject', 'subject-paper', 'paper')],
'PrPAP': [('paper', 'paper-ref-paper', 'paper'),
('paper', 'paper-author', 'author'),
('author', 'author-paper', 'paper')],
'PrPSP': [('paper', 'paper-ref-paper', 'paper'),
('paper', 'paper-subject', 'subject'),
('subject', 'subject-paper', 'paper')]
}
elif dataset_name == 'HGBl-DBLP':
dataset = HGBDataset(name='HGBn-DBLP', raw_dir='')
g = dataset[0].long()
self.has_feature = True
self.target_link = [('author', 'author-paper', 'paper')]
self.node_type = ['author', 'paper', 'venue', 'term']
self.target_link_r = [('paper', 'paper-author', 'author')]
self.meta_paths_dict = {'APA': [('author', 'author-paper', 'paper'), ('paper', 'paper-author', 'author')],
'APTPA': [('author', 'author-paper', 'paper'), ('paper', 'paper-term', 'term'),
('term', 'term-paper', 'paper'), ('paper', 'paper-author', 'author')],
'APVPA': [('author', 'author-paper', 'paper'), ('paper', 'paper-venue', 'venue'),
('venue', 'venue-paper', 'paper'), ('paper', 'paper-author', 'author')],
'PAP': [('paper', 'paper-author', 'author'), ('author', 'author-paper', 'paper')],
'PTP': [('paper', 'paper-term', 'term'), ('term', 'term-paper', 'paper')],
'PVP': [('paper', 'paper-venue', 'venue'), ('venue', 'venue-paper', 'paper')],
}
elif dataset_name == 'HGBl-IMDB':
dataset = HGBDataset(name='HGBn-IMDB', raw_dir='')
g = dataset[0].long()
self.has_feature = True
# self.target_link = [('author', 'author-paper', 'paper')]
# self.node_type = ['author', 'paper', 'subject', 'term']
# self.target_link_r = [('paper', 'paper-author', 'author')]
self.target_link = [('actor', 'actor->movie', 'movie')]
self.node_type = ['actor', 'director', 'keyword', 'movie']
self.target_link_r = [('movie', 'movie->actor', 'actor')]
self.meta_paths_dict = {
'MAM': [('movie', 'movie->actor', 'actor'), ('actor', 'actor->movie', 'movie')],
'MDM': [('movie', 'movie->director', 'director'), ('director', 'director->movie', 'movie')],
'MKM': [('movie', 'movie->keyword', 'keyword'), ('keyword', 'keyword->movie', 'movie')],
# 'DMD': [('director', 'director->movie', 'movie'), ('movie', 'movie->director', 'director')],
# 'DMAMD': [('director', 'director->movie', 'movie'), ('movie', 'movie->actor', 'actor'),
# ('actor', 'actor->movie', 'movie'), ('movie', 'movie->director', 'director')],
'AMA': [('actor', 'actor->movie', 'movie'), ('movie', 'movie->actor', 'actor')],
'AMDMA': [('actor', 'actor->movie', 'movie'), ('movie', 'movie->director', 'director'),
('director', 'director->movie', 'movie'), ('movie', 'movie->actor', 'actor')]
}
return g
def get_split(self, val_ratio=0.1, test_ratio=0.2):
if self.dataset_name == 'academic4HetGNN':
return None, None, None, None, None
else:
return super(HIN_LinkPrediction, self).get_split(val_ratio, test_ratio)
@register_dataset('HGBl_link_prediction')
class HGB_LinkPrediction(LinkPredictionDataset):
r"""
The HGB dataset will be used in task *link prediction*.
Dataset Name :
HGBn-amazon/HGBn-LastFM/HGBn-PubMed
So if you want to get more information, refer to
`HGB datasets <https://github.com/THUDM/HGB>`_
Attributes
-----------
has_feature : bool
Whether the dataset has feature. Except HGBl-LastFM, others have features.
target_link : list of tuple[canonical_etypes]
The etypes of test link. HGBl-amazon has two etypes of test link. other has only one.
"""
def __init__(self, dataset_name, *args, **kwargs):
super(HGB_LinkPrediction, self).__init__(*args, **kwargs)
self.dataset_name = dataset_name
self.target_link_r = None
if dataset_name == 'HGBl-amazon':
dataset = HGBDataset(name=dataset_name, raw_dir='')
g = dataset[0].long()
self.has_feature = False
self.target_link = [('product', 'product-product-0', 'product'),
('product', 'product-product-1', 'product')]
self.target_link_r = None
self.link = [0, 1]
self.node_type = ["product"]
self.test_edge_type = {'product-product-0': 0, 'product-product-1': 1}
self.meta_paths_dict = {
'P0P': [('product', 'product-product-0', 'product'), ('product', 'product-product-1', 'product')],
'P1P': [('product', 'product-product-1', 'product'), ('product', 'product-product-0', 'product')]
}
elif dataset_name == 'HGBl-LastFM':
dataset = HGBDataset(name=dataset_name, raw_dir='')
g = dataset[0].long()
self.has_feature = False
self.target_link = [('user', 'user-artist', 'artist')]
self.node_type = ['user', 'artist', 'tag']
self.test_edge_type = {'user-artist': 0}
g = add_reverse_edges(g)
self.target_link_r = [('artist', 'user-artist-rev', 'user')]
self.meta_paths_dict = {'UU': [('user', 'user-user', 'user')],
'UAU': [('user', 'user-artist', 'artist'), ('artist', 'user-artist-rev', 'user')],
'UATAU': [('user', 'user-artist', 'artist'), ('artist', 'artist-tag', 'tag'),
('tag', 'artist-tag-rev', 'artist'),
('artist', 'user-artist-rev', 'user')],
'AUA': [('artist', 'user-artist-rev', 'user'), ('user', 'user-artist', 'artist')],
'ATA': [('artist', 'artist-tag', 'tag'), ('tag', 'artist-tag-rev', 'artist')]
}
elif dataset_name == 'HGBl-PubMed':
dataset = HGBDataset(name=dataset_name, raw_dir='')
g = dataset[0].long()
self.has_feature = True
self.target_link = [('1', '1_to_1', '1')]
self.node_type = ['0', '1', '2', '3']
self.test_edge_type = {'1_to_1': 2}
g = add_reverse_edges(g)
self.target_link_r = [('1', '1_to_1-rev', '1')]
self.meta_paths_dict = {'101': [('1', '0_to_1-rev', '0'), ('0', '0_to_1', '1')],
'111': [('1', '1_to_1', '1'), ('1', '1_to_1-rev', '1')],
'121': [('1', '2_to_1-rev', '2'), ('2', '2_to_1', '1')],
'131': [('1', '3_to_1-rev', '3'), ('3', '3_to_1', '1')]
}
self.g = g
self.shift_dict = self.calculate_node_shift()
def load_link_pred(self, path):
return
def calculate_node_shift(self):
node_shift_dict = {}
count = 0
for type in self.node_type:
node_shift_dict[type] = count
count += self.g.num_nodes(type)
return node_shift_dict
def get_split(self):
r"""
Get graphs for train, valid or test.
The dataset has not validation_mask, so we split train edges randomly.
"""
val_edge_dict = {}
test_edge_dict = {}
out_ntypes = []
train_graph = self.g
val_ratio = 0.1
for i, etype in enumerate(self.target_link):
train_mask = self.g.edges[etype].data['train_mask'].squeeze()
train_index = th.nonzero(train_mask).squeeze()
random_int = th.randperm(len(train_index))[:int(len(train_index) * val_ratio)]
val_index = train_index[random_int]
val_edge = self.g.find_edges(val_index, etype)
test_mask = self.g.edges[etype].data['test_mask'].squeeze()
test_index = th.nonzero(test_mask).squeeze()
test_edge = self.g.find_edges(test_index, etype)
val_edge_dict[etype] = val_edge
test_edge_dict[etype] = test_edge
out_ntypes.append(etype[0])
out_ntypes.append(etype[2])
train_graph = dgl.remove_edges(train_graph, th.cat((val_index, test_index)), etype)
if self.target_link_r is None:
pass
else:
train_graph = dgl.remove_edges(train_graph, th.cat((val_index, test_index)), self.target_link_r[i])
self.out_ntypes = set(out_ntypes)
val_graph = dgl.heterograph(val_edge_dict,
{ntype: self.g.number_of_nodes(ntype) for ntype in set(out_ntypes)})
test_graph = dgl.heterograph(test_edge_dict,
{ntype: self.g.number_of_nodes(ntype) for ntype in set(out_ntypes)})
return train_graph, val_graph, test_graph, None, None
def save_results(self, hg, score, file_path):
with hg.local_scope():
src_list = []
dst_list = []
edge_type_list = []
for etype in hg.canonical_etypes:
edges = hg.edges(etype=etype)
src_id = edges[0] + self.shift_dict[etype[0]]
dst_id = edges[1] + self.shift_dict[etype[2]]
src_list.append(src_id)
dst_list.append(dst_id)
edge_type_list.append(th.full((src_id.shape[0],), self.test_edge_type[etype[1]]))
src_list = th.cat(src_list)
dst_list = th.cat(dst_list)
edge_type_list = th.cat(edge_type_list)
with open(file_path, "w") as f:
for l, r, edge_type, c in zip(src_list, dst_list, edge_type_list, score):
f.write(f"{l}\t{r}\t{edge_type}\t{round(float(c), 4)}\n")
@register_dataset('ohgb_link_prediction')
class OHGB_LinkPrediction(LinkPredictionDataset):
def __init__(self, dataset_name, *args, **kwargs):
super(OHGB_LinkPrediction, self).__init__(*args, **kwargs)
self.dataset_name = dataset_name
self.has_feature = True
if dataset_name == 'ohgbl-MTWM':
dataset = OHGBDataset(name=dataset_name, raw_dir='')
g = dataset[0].long()
self.target_link = [('user', 'user-buy-spu', 'spu')]
self.target_link_r = [('spu', 'user-buy-spu-rev', 'user')]
self.node_type = ['user', 'spu']
elif dataset_name == 'ohgbl-yelp1':
dataset = OHGBDataset(name=dataset_name, raw_dir='')
g = dataset[0].long()
self.target_link = [('user', 'user-buy-business', 'business')]
self.target_link_r = [('business', 'user-buy-business-rev', 'user')]
elif dataset_name == 'ohgbl-yelp2':
dataset = OHGBDataset(name=dataset_name, raw_dir='')
g = dataset[0].long()
self.target_link = [('business', 'described-with', 'phrase')]
self.target_link_r = [('business', 'described-with-rev', 'phrase')]
self.g = g
def build_graph_from_triplets(num_nodes, num_rels, triplets):
""" Create a DGL graph. The graph is bidirectional because RGCN authors
use reversed relations.
This function also generates edge type and normalization factor
(reciprocal of node incoming degree)
"""
g = dgl.graph(([], []))
g.add_nodes(num_nodes)
src, rel, dst = triplets
src, dst = np.concatenate((src, dst)), np.concatenate((dst, src))
rel = np.concatenate((rel, rel + num_rels))
edges = sorted(zip(dst, src, rel))
dst, src, rel = np.array(edges).transpose()
g.add_edges(src, dst)
norm = comp_deg_norm(g)
print("# nodes: {}, # edges: {}".format(num_nodes, len(src)))
return g, rel.astype('int64'), norm.astype('int64')
def comp_deg_norm(g):
g = g.local_var()
in_deg = g.in_degrees(range(g.number_of_nodes())).float().numpy()
norm = 1.0 / in_deg
norm[np.isinf(norm)] = 0
return norm
@register_dataset('kg_link_prediction')
class KG_LinkPrediction(LinkPredictionDataset):
"""
From `RGCN <https://arxiv.org/abs/1703.06103>`_, WN18 & FB15k face a data leakage.
"""
def __init__(self, dataset_name, *args, **kwargs):
super(KG_LinkPrediction, self).__init__(*args, **kwargs)
if dataset_name in ['wn18', 'FB15k', 'FB15k-237']:
dataset = load_data(dataset_name)
g = dataset[0]
self.num_rels = dataset.num_rels
self.num_nodes = dataset.num_nodes
self.train_hg, self.train_triplets = self._build_hg(g, 'train')
self.valid_hg, self.valid_triplets = self._build_hg(g, 'valid')
self.test_hg, self.test_triplets = self._build_hg(g, 'test')
self.g = self.train_hg
self.category = '_N'
self.target_link = self.test_hg.canonical_etypes
def _build_hg(self, g, mode):
sub_g = dgl.edge_subgraph(g, g.edata[mode+'_edge_mask'], relabel_nodes=False)
src, dst = sub_g.edges()
etype = sub_g.edata['etype']
edge_dict = {}
for i in range(self.num_rels):
mask = (etype == i)
edge_name = ('_N', str(i), '_N')
edge_dict[edge_name] = (src[mask], dst[mask])
hg = dgl.heterograph(edge_dict, {'_N': self.num_nodes})
return hg, th.stack((src, etype, dst)).T
def modify_size(self, eval_percent, dataset_type):
if dataset_type == 'valid':
self.valid_triplets = th.tensor(random.sample(self.valid_triplets.tolist(), math.ceil(self.valid_triplets.shape[0]*eval_percent)))
elif dataset_type == 'test':
self.test_triplets = th.tensor(random.sample(self.test_triplets.tolist(), math.ceil(self.test_triplets.shape[0]*eval_percent)))
def get_graph_directed_from_triples(self, triples, format='graph'):
s = th.LongTensor(triples[:, 0])
r = th.LongTensor(triples[:, 1])
o = th.LongTensor(triples[:, 2])
if format == 'graph':
edge_dict = {}
for i in range(self.num_rels):
mask = (r == i)
edge_name = (self.category, str(i), self.category)
edge_dict[edge_name] = (s[mask], o[mask])
return dgl.heterograph(edge_dict, {self.category: self.num_nodes})
def get_triples(self, g, mask_mode):
'''
:param g:
:param mask_mode: should be one of 'train_mask', 'val_mask', 'test_mask
:return:
'''
edges = g.edges()
etype = g.edata['etype']
mask = g.edata.pop(mask_mode)
return th.stack((edges[0][mask], etype[mask], edges[1][mask]))
def get_all_triplets(self, dataset):
train_data = th.LongTensor(dataset.train)
valid_data = th.LongTensor(dataset.valid)
test_data = th.LongTensor(dataset.test)
return train_data, valid_data, test_data
def get_split(self):
return self.train_hg, self.valid_hg, self.test_hg, None, None
def split_graph(self, g, mode='train'):
"""
Parameters
----------
g: DGLGraph
a homogeneous graph fomat
mode: str
split the subgraph according to the mode
Returns
-------
hg: DGLHeterograph
"""
edges = g.edges()
etype = g.edata['etype']
if mode == 'train':
mask = g.edata['train_mask']
elif mode == 'valid':
mask = g.edata['valid_edge_mask']
elif mode == 'test':
mask = g.edata['test_edge_mask']
hg = self.build_graph((edges[0][mask], edges[1][mask]), etype[mask])
return hg
def build_graph(self, edges, etype):
edge_dict = {}
for i in range(self.num_rels):
mask = (etype == i)
edge_name = (self.category, str(i), self.category)
edge_dict[edge_name] = (edges[0][mask], edges[1][mask])
hg = dgl.heterograph(edge_dict, {self.category: self.num_nodes})
return hg
def build_g(self, train):
s = train[:, 0]
r = train[:, 1]
o = train[:, 2]
edge_dict = {}
for i in range(self.num_rels):
mask = (r == i)
edge_name = (self.category, str(i), self.category)
edge_dict[edge_name] = (th.LongTensor(s[mask]), th.LongTensor(o[mask]))
hg = dgl.heterograph(edge_dict, {self.category: self.num_nodes})
return hg
class kg_sampler():
def __init__(self, ):
self.sampler = 'uniform'
return
def generate_sampled_graph_and_labels(self, triplets, sample_size, split_size,
num_rels, adj_list, degrees,
negative_rate, sampler="uniform"):
"""Get training graph and signals
First perform edge neighborhood sampling on graph, then perform negative
sampling to generate negative samples
"""
# perform edge neighbor sampling
if self.sampler == "uniform":
edges = sample_edge_uniform(adj_list, degrees, len(triplets), sample_size)
elif self.sampler == "neighbor":
edges = sample_edge_neighborhood(adj_list, degrees, len(triplets), sample_size)
else:
raise ValueError("Sampler type must be either 'uniform' or 'neighbor'.")
# relabel nodes to have consecutive node ids
edges = triplets[edges]
src, rel, dst = edges.transpose()
uniq_v, edges = np.unique((src, dst), return_inverse=True)
src, dst = np.reshape(edges, (2, -1))
relabeled_edges = np.stack((src, rel, dst)).transpose()
# negative sampling
samples, labels = negative_sampling(relabeled_edges, len(uniq_v),
negative_rate)
# further split graph, only half of the edges will be used as graph
# structure, while the rest half is used as unseen positive samples
split_size = int(sample_size * split_size)
graph_split_ids = np.random.choice(np.arange(sample_size),
size=split_size, replace=False)
src = src[graph_split_ids]
dst = dst[graph_split_ids]
rel = rel[graph_split_ids]
# build DGL graph
print("# sampled nodes: {}".format(len(uniq_v)))
print("# sampled edges: {}".format(len(src) * 2))
g, rel, norm = build_graph_from_triplets(len(uniq_v), num_rels,
(src, rel, dst))
return g, uniq_v, rel, norm, samples, labels
def sample_edge_neighborhood(adj_list, degrees, n_triplets, sample_size):
"""Sample edges by neighborhool expansion.
This guarantees that the sampled edges form a connected graph, which
may help deeper GNNs that require information from more than one hop.
"""
edges = np.zeros((sample_size), dtype=np.int32)
# initialize
sample_counts = np.array([d for d in degrees])
picked = np.array([False for _ in range(n_triplets)])
seen = np.array([False for _ in degrees])
for i in range(0, sample_size):
weights = sample_counts * seen
if np.sum(weights) == 0:
weights = np.ones_like(weights)
weights[np.where(sample_counts == 0)] = 0
probabilities = (weights) / np.sum(weights)
chosen_vertex = np.random.choice(np.arange(degrees.shape[0]),
p=probabilities)
chosen_adj_list = adj_list[chosen_vertex]
seen[chosen_vertex] = True
chosen_edge = np.random.choice(np.arange(chosen_adj_list.shape[0]))
chosen_edge = chosen_adj_list[chosen_edge]
edge_number = chosen_edge[0]
while picked[edge_number]:
chosen_edge = np.random.choice(np.arange(chosen_adj_list.shape[0]))
chosen_edge = chosen_adj_list[chosen_edge]
edge_number = chosen_edge[0]
edges[i] = edge_number
other_vertex = chosen_edge[1]
picked[edge_number] = True
sample_counts[chosen_vertex] -= 1
sample_counts[other_vertex] -= 1
seen[other_vertex] = True
return edges
def sample_edge_uniform(adj_list, degrees, n_triplets, sample_size):
"""Sample edges uniformly from all the edges."""
all_edges = np.arange(n_triplets)
return np.random.choice(all_edges, sample_size, replace=False)