-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathfuselageWingInducedAlpha.m
46 lines (40 loc) · 1.75 KB
/
fuselageWingInducedAlpha.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
function Delta_alpha_rel = fuselageWingInducedAlpha( R, y )
% fuselageWingInducedAlpha return the relative induced angle of attack by a
% fuselage on a wing at different spanwise positions.
% The method is based on [1]. However, it was found that the presented
% theory in [1], Fig. 10.17 does not really match the presented measured
% data in [1], Fig. 10.16.
% That is why "Kurve 1" is used for the outer fuselage part (but "Kurve
% 1" was multiplied with the factor 1.6!). For the inner fuselage part,
% the function is also based on "Kurve 1", but modified even stronger:
% The exponent of 2 was replaced with an exponent of 6. Moreover, the
% curve goes from -2 to 1.6 instead of from -1 to 1.
%
% Inputs:
% R fuselage radius (scalar), in m
% y spanwise wing position (1xN array), in m
%
% Outputs:
% Delta_alpha_rel relative induced angle of attack (Delta
% alpha)/(alpha_inf) (1xN array), in m
%
% Literature:
% [1] Schlichting, H., & Truckenbrodt, E. (2001). Aerodynamik des
% Flugzeuges. Zweiter Band: Aerodynamik des Tragfluegels (Teil II),
% des Rumpfes, der Fluegel-Rumpf-Anordnung und der Leitwerke. 3.
% Auflage. Springer-Verlag Berlin Heidelberg.
%
% Disclaimer:
% SPDX-License-Identifier: GPL-3.0-only
%
% Copyright (C) 2020-2022 Yannic Beyer
% Copyright (C) 2022 TU Braunschweig, Institute of Flight Guidance
% *************************************************************************
Delta_alpha_rel = zeros( size(y) );
% indices where y is inside fuselage area
idx = abs(y)<R;
Delta_alpha_rel(idx) = -(2-3.6*y(idx).^6/R^6);
Delta_alpha_rel(~idx) = R^2./y(~idx).^2 * 1.6;
% Delta_alpha_rel(idx) = -(1-2*y(idx).^2/R^2);
% Delta_alpha_rel(~idx) = R^2./y(~idx).^2;
end