forked from AC-BO-Hackathon/BOPE-GPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbotorch_multiBO.py
97 lines (81 loc) · 3.08 KB
/
botorch_multiBO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
from botorch.models import SingleTaskGP, ModelListGP
from botorch.fit import fit_gpytorch_model
from botorch.acquisition.multi_objective import qExpectedHypervolumeImprovement
from botorch.optim import optimize_acqf
from botorch.utils.sampling import draw_sobol_samples
from botorch.utils.multi_objective import pareto
from botorch.utils.multi_objective.box_decompositions.non_dominated import FastNondominatedPartitioning
from gpytorch.mlls import ExactMarginalLogLikelihood
from torch.quasirandom import SobolEngine
# Assuming these imports for the missing pieces:
def objective_1(x):
# Placeholder for the first objective function
return torch.sin(x).sum(dim=-1)
def objective_2(x):
# Placeholder for the second objective function
return torch.cos(x).sum(dim=-1)
# Fixed parts of the setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float64
MC_SAMPLES = 128
NUM_RESTARTS = 10
RAW_SAMPLES = 512
BATCH_SIZE = 5
dim = 2
bounds = torch.stack([torch.zeros(dim), torch.ones(dim)]).to(device=device, dtype=dtype)
N = 20
iteration_number = 20
refi = torch.tensor([0., 0.], device=device, dtype=dtype)
# Initial Sobol samples
train_x = draw_sobol_samples(bounds=bounds, n=1, q=N).squeeze(0).to(device=device, dtype=dtype)
# Hypothetical objective function evaluations
train_y = torch.stack([objective_1(train_x), objective_2(train_x)], dim=-1).to(device=device, dtype=dtype)
# Initialize models for each objective
models = [SingleTaskGP(train_X=train_x, train_Y=train_y[:, i].unsqueeze(-1)) for i in range(train_y.shape[-1])]
# Fit models
mlls = [ExactMarginalLogLikelihood(model.likelihood, model) for model in models]
for mll in mlls:
fit_gpytorch_model(mll)
# Combine models into a ModelListGP
model = ModelListGP(*models)
partitioning = FastNondominatedPartitioning(
ref_point=refi,
Y=train_y,
)
# Perform 20 BO iterations
for i in range(iteration_number):
print("Iteration: "+str(i))
acq_func = qExpectedHypervolumeImprovement(
model=model,
ref_point=refi,
partitioning=partitioning,
#sampler=qehvi_sampler,
)
# optimize
candidates, _ = optimize_acqf(
acq_function=acq_func,
bounds=bounds,
q=BATCH_SIZE,
num_restarts=NUM_RESTARTS,
raw_samples=RAW_SAMPLES, # used for intialization heuristic
options={"batch_limit": 5, "maxiter": 200},
sequential=True,
)
# observe new values
new_x = candidates.detach()
new_y_obj1 = objective_1(new_x)
new_y_obj2 = objective_2(new_x)
new_y = torch.stack([new_y_obj1, new_y_obj2], dim=-1)
train_x=torch.vstack([train_x,new_x])
train_y=torch.vstack([train_y,new_y])
models = [SingleTaskGP(train_X=train_x, train_Y=train_y[:, i].unsqueeze(-1)) for i in range(train_y.shape[-1])]
# Fit models
mlls = [ExactMarginalLogLikelihood(model.likelihood, model) for model in models]
for mll in mlls:
fit_gpytorch_model(mll)
model = ModelListGP(*models)
partitioning = FastNondominatedPartitioning(
ref_point=refi,
Y=train_y,
)