-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmian.py
96 lines (79 loc) · 2.85 KB
/
mian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# 此文档用于ppt截图美化代码 插件名:polacod
#代码
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.cluster import AgglomerativeClustering
from sklearn import svm
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
# 1. 读取数据
data = pd.read_csv('./data/Score_train.csv')
# 2. 数据预处理:pca降维
# 测试git
# data_new = transfer.fit_transform(data)
# 3. 选择模型
estimator = KMeans(n_clusters=4)
estimator.fit(data)
y_predict = estimator.predict(data)
y_predict[:300]
silhouette_score(data, y_predict)
print('聚类的轮廓系数为:{}'.format( \
silhouette_score(data, y_predict)))
# 1. 读取数据
data = pd.read_csv('./data/Score_train.csv')
estimator = AgglomerativeClustering(
n_clusters=4, affinity='euclidean', linkage='ward')
estimator.fit(data)
silhouette_score(data, estimator.labels_)
clf = svm.SVC()
clf.fit(data, estimator.labels_)
clf.feature_importances_
from sklearn.ensemble import ExtraTreesClassifier
clf = ExtraTreesClassifier()magit.status
magit.status
magit.status
magit.status
clf = ExtraTreesClassifier()magit.status
clf = ExtraTreesClassifier()magit.status
clf.fit(train_x, train_y.astype(int))
clf.feature_importances_
w = 11
w = 122
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import ExtraTreesClassifier
clf = ExtraTreesClassifier()
clf.fit(train_x, train_y.astype(int))
clf.feature_importances_
w = 11
clf = ExtraTreesClassifier()
clf.fit(train_x, train_y.astype(int))
clf.feature_importances_
w = 11
clf = ExtraTreesClassifier()
clf.fit(train_x, train_y.astype(int))
clf.feature_importances_
w = 11
clf = ExtraTreesClassifier()
clf.fit(train_x, train_y.astype(int))
clf.feature_importances_
w = 11
clf = ExtraTreesClassifier()
clf.fit(train_x, train_y.astype(int))
clf.feature_importances_
w = 11
param_4={'C':[1, 2, 4], 'penalty':['l1', 'l2']}
model_4=GridSearchCV(estimator = LogisticRegression(), param_grid = param_4, n_jobs=1, cv=5)
model_4.fit(x_train,y_train.astype(int))
param_5 = {'n_estimators':list(range(100, 600, 50))}
model_5 = GridSearchCV(estimator = GradientBoostingClassifier(), param_grid = param_5, n_jobs=-1, cv=5)
model_5.fit(x_train,y_train.astype(int))
param_6={'gamma':np.linspace(0, 0.001, 100)}
model_6=GridSearchCV(estimator = SVC(kernel = 'rbf'), param_grid = param_6, n_jobs=-1,cv=5)
model_6.fit(x_train,y_train.astype(int))
param_3={'n_neighbors':[i for i in range(1,11)], 'p':[i for i in range(1,6)]}
model_3=GridSearchCV(estimator = neighbors.KNeighborsClassifier(), param_grid = param_3, n_jobs=-1, cv=5)
model_3.fit(x_train,y_train.astype(int))