-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
77 lines (57 loc) · 2.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import json
from dotenv import load_dotenv
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.chains import create_qa_with_sources_chain, LLMChain
from langchain.prompts import PromptTemplate
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
import gradio
load_dotenv()
db = Chroma(
persist_directory="./chroma",
embedding_function=OpenAIEmbeddings(model="text-embedding-ada-002"),
)
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo")
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
condense_question_prompt = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.\
Make sure to avoid using any unclear pronouns.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
condense_question_prompt = PromptTemplate.from_template(condense_question_prompt)
condense_question_chain = LLMChain(
llm=llm,
prompt=condense_question_prompt,
)
qa_chain = create_qa_with_sources_chain(llm)
doc_prompt = PromptTemplate(
template="Content: {page_content}\nSource: {source}",
input_variables=["page_content", "source"],
)
final_qa_chain = StuffDocumentsChain(
llm_chain=qa_chain,
document_variable_name="context",
document_prompt=doc_prompt,
)
retrieval_qa = ConversationalRetrievalChain(
question_generator=condense_question_chain,
retriever=db.as_retriever(),
memory=memory,
combine_docs_chain=final_qa_chain,
)
def predict(message, history):
response = retrieval_qa.run({"question": message})
print(response)
responseDict = json.loads(response)
answer = responseDict["answer"]
sources = responseDict["sources"]
if type(sources) == list:
sources = "\n".join(sources)
if sources:
return answer + "\n\nSee more:\n" + sources
return answer
gradio.ChatInterface(predict).launch()