-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathrun-exp.py
executable file
·52 lines (39 loc) · 1.5 KB
/
run-exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/usr/bin/env python
from __future__ import division
import sys
import logging
import numpy as np
#=============================================================================
if __name__ == "__main__":
import argparse
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser()
parser.add_argument('--verbose', '-v', action='count')
parser.add_argument('--overwrite', action='store_true')
parser.add_argument('--name', "-n", default=None)
parser.add_argument('param_file')
parser.add_argument('result_dir', nargs='?', default=None,
help="Continue a previous in result_dir")
args = parser.parse_args()
import theano
import theano.tensor as T
from learning.utils.datalog import dlog, StoreToH5, TextPrinter
from learning.experiment import Experiment
FORMAT = '[%(asctime)s] %(name)-15s %(message)s'
DATEFMT = "%H:%M:%S"
logging.basicConfig(format=FORMAT, datefmt=DATEFMT, level=logging.INFO)
if args.name is None:
out_name = args.param_file
else:
out_name = args.name
np.random.seed(23)
experiment = Experiment.from_param_file(args.param_file)
experiment.setup_output_dir(out_name, with_suffix=(not args.overwrite))
experiment.setup_logging()
experiment.print_summary()
if args.result_dir is None:
experiment.run_experiment()
else:
experiment.continue_experiment(args.result_dir+"/results.h5")
logger.info("Finished. Exiting")
experiment.print_summary()