forked from amcastro-tri/SoftBubble
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTriangleRayIntersection.m
221 lines (211 loc) · 9.52 KB
/
TriangleRayIntersection.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
function [intersect, t, u, v, xcoor] = TriangleRayIntersection (...
orig, dir, vert0, vert1, vert2, varargin)
%TRIANGLERAYINTERSECTION Ray/triangle intersection.
% INTERSECT = TriangleRayIntersection(ORIG, DIR, VERT1, VERT2, VERT3)
% calculates ray/triangle intersections using the algorithm proposed
% BY Möller and Trumbore (1997), implemented as highly vectorized
% MATLAB code. The ray starts at ORIG and points toward DIR. The
% triangle is defined by vertix points: VERT1, VERT2, VERT3. All input
% arrays are in Nx3 or 1x3 format, where N is number of triangles or
% rays.
%
% [INTERSECT, T, U, V, XCOOR] = TriangleRayIntersection(...)
% Returns:
% * Intersect - boolean array of length N informing which line and
% triangle pair intersect
% * t - distance from the ray origin to the intersection point in
% units of |dir|. Provided only for line/triangle pair that
% intersect unless 'fullReturn' parameter is true.
% * u,v - barycentric coordinates of the intersection point
% * xcoor - carthesian coordinates of the intersection point
%
% TriangleRayIntersection(...,'param','value','param','value'...) allows
% additional param/value pairs to be used. Allowed parameters:
% * planeType - 'one sided' or 'two sided' (default) - how to treat
% triangles. In 'one sided' version only intersections in single
% direction are counted and intersections with back facing
% tringles are ignored
% * lineType - 'ray' (default), 'line' or 'segment' - how to treat rays:
% - 'line' means infinite (on both sides) line;
% - 'ray' means infinite (on one side) ray comming out of origin;
% - 'segment' means line segment bounded on both sides
% * border - controls border handling:
% - 'normal'(default) border - triangle is exactly as defined.
% Intersections with border points can be easily lost due to
% rounding errors.
% - 'inclusive' border - triangle is marginally larger.
% Intersections with border points are always captured but can
% lead to double counting when working with surfaces.
% - 'exclusive' border - triangle is marginally smaller.
% Intersections with border points are not captured and can
% lead to under-counting when working with surfaces.
% * epsilon - (default = 1e-5) controls border size
% * fullReturn - (default = false) controls returned variables t, u, v,
% and xcoor. By default in order to save time, not all t, u & v are
% calculated, only t, u & v for intersections can be expected.
% fullReturn set to true will force the calculation of them all.
%
% ALGORITHM:
% Function solves
% |t|
% M * |u| = (o-v0)
% |v|
% for [t; u; v] where M = [-d, v1-v0, v2-v0]. u,v are barycentric coordinates
% and t - the distance from the ray origin in |d| units
% ray/triangle intersect if u>=0, v>=0 and u+v<=1
%
% NOTE:
% The algorithm is able to solve several types of problems:
% * many faces / single ray intersection
% * one face / many rays intersection
% * one face / one ray intersection
% * many faces / many rays intersection
% In order to allow that to happen all imput arrays are expected in Nx3
% format, where N is number of vertices or rays. In most cases number of
% vertices is different than number of rays, so one of the imputs will
% have to be cloned to have the right size. Use "repmat(A,size(B,1),1)".
%
% Based on:
% *"Fast, minimum storage ray-triangle intersection". Tomas Möller and
% Ben Trumbore. Journal of Graphics Tools, 2(1):21--28, 1997.
% http://www.graphics.cornell.edu/pubs/1997/MT97.pdf
% * http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/raytri/
% * http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/raytri/raytri.c
%
% Author:
% Jarek Tuszynski ([email protected])
%
% License: BSD license (http://en.wikipedia.org/wiki/BSD_licenses)
%% Transpose inputs if needed
if (size(orig ,1)==3 && size(orig ,2)~=3), orig =orig' ; end
if (size(dir ,1)==3 && size(dir ,2)~=3), dir =dir' ; end
if (size(vert0,1)==3 && size(vert0,2)~=3), vert0=vert0'; end
if (size(vert1,1)==3 && size(vert1,2)~=3), vert1=vert1'; end
if (size(vert2,1)==3 && size(vert2,2)~=3), vert2=vert2'; end
%% In case of single points clone them to the same size as the rest
N = max([size(orig,1), size(dir,1), size(vert0,1), size(vert1,1), size(vert2,1)]);
if (size(orig ,1)==1 && N>1 && size(orig ,2)==3), orig = repmat(orig , N, 1); end
if (size(dir ,1)==1 && N>1 && size(dir ,2)==3), dir = repmat(dir , N, 1); end
if (size(vert0,1)==1 && N>1 && size(vert0,2)==3), vert0 = repmat(vert0, N, 1); end
if (size(vert1,1)==1 && N>1 && size(vert1,2)==3), vert1 = repmat(vert1, N, 1); end
if (size(vert2,1)==1 && N>1 && size(vert2,2)==3), vert2 = repmat(vert2, N, 1); end
%% Check if all the sizes match
SameSize = (any(size(orig)==size(vert0)) && ...
any(size(orig)==size(vert1)) && ...
any(size(orig)==size(vert2)) && ...
any(size(orig)==size(dir )) );
assert(SameSize && size(orig,2)==3, ...
'All input vectors have to be in Nx3 format.');
%% Read user preferences
eps = 1e-5;
planeType = 'two sided';
lineType = 'ray';
border = 'normal';
fullReturn = false;
nVarargs = length(varargin);
k = 1;
if nVarargs>0 && isstruct(varargin{1})
% This section is provided for backward compability only
options = varargin{1};
if (isfield(options, 'eps' )), eps = options.eps; end
if (isfield(options, 'triangle')), planeType= options.triangle; end
if (isfield(options, 'ray' )), lineType = options.ray; end
if (isfield(options, 'border' )), border = options.border; end
else
while (k<=nVarargs)
assert(ischar(varargin{k}), 'Incorrect input parameters')
switch lower(varargin{k})
case 'eps'
eps = abs(varargin{k+1});
k = k+1;
case 'planetype'
planeType = lower(strtrim(varargin{k+1}));
k = k+1;
case 'border'
border = lower(strtrim(varargin{k+1}));
k = k+1;
case 'linetype'
lineType = lower(strtrim(varargin{k+1}));
k = k+1;
case 'fullreturn'
fullReturn = (double(varargin{k+1})~=0);
k = k+1;
end
k = k+1;
end
end
%% Set up border parameter
switch border
case 'normal'
zero=0.0;
case 'inclusive'
zero=eps;
case 'exclusive'
zero=-eps;
otherwise
error('Border parameter must be either "normal", "inclusive" or "exclusive"')
end
%% initialize default output
intersect = false(size(orig,1),1); % by default there are no intersections
t = inf+zeros(size(orig,1),1); u=t; v=t;
xcoor = nan+zeros(size(orig));
%% Find faces parallel to the ray
edge1 = vert1-vert0; % find vectors for two edges sharing vert0
edge2 = vert2-vert0;
tvec = orig -vert0; % vector from vert0 to ray origin
pvec = cross(dir, edge2,2); % begin calculating determinant - also used to calculate U parameter
det = sum(edge1.*pvec,2); % determinant of the matrix M = dot(edge1,pvec)
switch planeType
case 'two sided' % treats triangles as two sided
angleOK = (abs(det)>eps); % if determinant is near zero then ray lies in the plane of the triangle
case 'one sided' % treats triangles as one sided
angleOK = (det>eps);
otherwise
error('Triangle parameter must be either "one sided" or "two sided"');
end
if all(~angleOK), return; end % if all parallel than no intersections
%% Different behavior depending on one or two sided triangles
det(~angleOK) = nan; % change to avoid division by zero
u = sum(tvec.*pvec,2)./det; % 1st barycentric coordinate
if fullReturn
% calculate all variables for all line/triangle pairs
qvec = cross(tvec, edge1,2); % prepare to test V parameter
v = sum(dir .*qvec,2)./det; % 2nd barycentric coordinate
t = sum(edge2.*qvec,2)./det; % 'position on the line' coordinate
% test if line/plane intersection is within the triangle
ok = (angleOK & u>=-zero & v>=-zero & u+v<=1.0+zero);
else
% limit some calculations only to line/triangle pairs where it makes
% a difference. It is tempting to try to push this concept of
% limiting the number of calculations to only the necessary to "u"
% and "t" but that produces slower code
v = nan+zeros(size(u)); t=v;
ok = (angleOK & u>=-zero & u<=1.0+zero); % mask
% if all line/plane intersections are outside the triangle than no intersections
if ~any(ok), intersect = ok; return; end
qvec = cross(tvec(ok,:), edge1(ok,:),2); % prepare to test V parameter
v(ok,:) = sum(dir(ok,:).*qvec,2) ./ det(ok,:); % 2nd barycentric coordinate
if (~strcmpi(lineType,'line')) % 'position on the line' coordinate
t(ok,:) = sum(edge2(ok,:).*qvec,2)./det(ok,:);
end
% test if line/plane intersection is within the triangle
ok = (ok & v>=-zero & u+v<=1.0+zero);
end
%% Test where along the line the line/plane intersection occurs
switch lineType
case 'line' % infinite line
intersect = ok;
case 'ray' % ray is bound on one side
intersect = (ok & t>=-zero); % intersection on the correct side of the origin
case 'segment' % segment is bound on two sides
intersect = (ok & t>=-zero & t<=1.0+zero); % intersection between origin and destination
otherwise
error('lineType parameter must be either "line", "ray" or "segment"');
end
%% calculate intersection coordinates if requested
if (nargout>4)
ok = intersect | fullReturn;
xcoor(ok,:) = vert0(ok,:) ...
+ edge1(ok,:).*repmat(u(ok,1),1,3) ...
+ edge2(ok,:).*repmat(v(ok,1),1,3);
end