forked from amcastro-tri/SoftBubble
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalc_nodal_pressure.m
71 lines (54 loc) · 1.97 KB
/
calc_nodal_pressure.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
function [p, dpdu, H, phi0] = calc_nodal_pressure(p_WP_list, normalP_W_list, lengths, X_WB, k)
% p_WP: mehs points P in the world frame.
% normalP_W: surface normal at P, expressed in W.
% X_WB: pose of the box, a 4x4 matrix.
% lenghts: the box sides lenghts.
% k: stiffness factor.
nnodes = size(p_WP_list, 1);
X_BW = pose_inverse(X_WB);
R_WB = X_WB(1:3, 1:3);
R_BW = R_WB';
p = zeros(nnodes, 1);
dpdu = zeros(nnodes, 1);
H = sparse(nnodes, nnodes);
phi0 = zeros(nnodes, 1);
for i=1:nnodes
% Point P position in the world frame W.
p_WP = p_WP_list(i, :)';
normalP_W = normalP_W_list(i, :)';
normalP_B = R_BW * normalP_W;
% Point P position in the body frame B.
p_BP = transform_point(X_BW, p_WP);
% Level set at point P. Gradient expressed in box frame B.
[phi, nabla_phi_B] = calc_box_level_set(lengths, p_BP');
nabla_phi_B = nabla_phi_B'; %because it comes in "list" format.
% Penalty force at P, expressed in B.
[gval, dgdphi] = g(phi);
% Force on the object. (on the bubble is the negative)
f_P_B = -k * gval * nabla_phi_B;
f_P_W = R_WB * f_P_B; % Re-express in the world frame.
% Compute pressure as the normal component of f_P_B
% Negative pressure pushes into the bubble.
fdotn = dot(f_P_W, normalP_W); % most likely positive.
p(i) = -max(0, fdotn); %negative, pressure on the bubble.
% Compute gradient dpdu
H_fdotn = fdotn > 0;
n_dot_nablaphi = dot(normalP_B, nabla_phi_B);
% Always negative since dgdphi < 0.
dpdu(i) = k * H_fdotn * dgdphi * n_dot_nablaphi * n_dot_nablaphi;
% Build approximation phi = phi0 - H * u, st H * u < phi0
if (phi < 0)
%if (abs(n_dot_nablaphi) > 0.5)
H(i, i) = -n_dot_nablaphi;
phi0(i) = phi;
%end
end
%phi0(i) = phi;
end
end
% Operator on the distance function.
% Other options could include some smoothing for positive distances.
function [y, dy] = g(phi)
y = max(0, -phi);
dy = -1.0 * (phi < 0);
end