forked from amcastro-tri/SoftBubble
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmembrane3d_sparse.m
2115 lines (1843 loc) · 49.9 KB
/
membrane3d_sparse.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function [K, F, node_boundary] = membrane3d_sparse(node_xyz, element_node, stiffness, u, pr, dpdu, K, assemble_stiffness, apply_bcs)
% node_xyz has size num_nodes x 3.
% element_node has size num_elements x 3.
debugging = 0;
quad_num = 3;
node_xyz = node_xyz';
[ dim_num, node_num ] = size ( node_xyz );
%fprintf ( 1, ' Number of nodes = %d\n', node_num );
%r8mat_transpose_print_some ( dim_num, node_num, node_xyz, 1, 1, 3, 10, ...
% ' First 10 nodes' );
element_node = element_node';
[ element_order, element_num ] = size ( element_node );
%fprintf ( 1, '\n' );
%fprintf ( 1, ' Element order = %d\n', element_order );
%fprintf ( 1, ' Number of elements = %d\n', element_num );
%i4mat_transpose_print_some ( 3, element_num, ...
% element_node, 1, 1, 3, 10, ' First 10 elements' );
%fprintf ( 1, '\n' );
%fprintf ( 1, ' Quadrature order = %d\n', quad_num );
%
% Determine which nodes are boundary nodes and which have a
% finite element unknown. Then set the boundary values.
%
node_boundary = triangulation_order3_boundary_node ( node_num, ...
element_num, element_node );
%
% Determine the node conditions.
% For now, we'll just assume all boundary nodes are Dirichlet.
%
node_condition(1:node_num) = 1;
for node = 1 : node_num
if ( node_boundary(node) )
node_condition(node) = 2;
end
end
%
% Determine the element neighbor array, just so we can estimate
% the nonzeros.
%
element_neighbor = triangulation_neighbor_triangles ( ...
element_order, element_num, element_node );
%
% Determine the maximum number of nonzeros.
%
[ nz_num, adj_col ] = triangulation_order3_adj_count ( node_num, ...
element_num, element_node, element_neighbor );
%fprintf ( 1, '\n' );
%fprintf ( 1, ' TRIANGULATION_ORDER3_ADJ_COUNT returns NZ_NUM = %d\n', ...
% nz_num );
%
% Assemble the finite element coefficient matrix A and the right-hand side F.
%
[ a, f ] = assemble_poisson_sparse ( node_num, node_xyz, ...
element_num, element_node, quad_num, nz_num, stiffness, u, pr, dpdu, K, assemble_stiffness);
if ( debugging )
a_copy = full ( a );
r8mat_print_some ( node_num, node_num, a_copy, 1, 1, 10, 10, ...
' Part of Poisson stiffness matrix A:' );
r8vec_print_some ( node_num, f, 1, 10, ...
' Part of finite element right hand side vector F:' );
end
%
% Adjust the linear system to account for Dirichlet boundary conditions.
%
%In case we need the original matrix for a symmetric QP.
if (apply_bcs)
[ a, f ] = dirichlet_apply_sparse ( node_num, node_xyz, node_condition, a, f);
end
if ( debugging )
a_copy = full ( a );
r8mat_print_some ( node_num, node_num, a_copy, 1, 1, 10, 10, ...
' Part of Matrix A after Dirichlet boundary adjustments:' );
r8mat_print_some ( node_num, 1, f, 1, 1, 10, 1, ...
' Part of right hand side after Dirichlet boundary adjustments:' );
end
%
% Solve the linear system using MATLAB's sparse solver.
%
% node_u = a \ f;
%r8vec_print_some ( node_num, node_u, 1, 10, ...
% ' Part of the solution vector:' );
%node_r = a * node_u - f;
%node_r = residual_poisson ( node_num, node_xyz, node_condition, ...
% element_num, element_node, quad_num, a, f, node_u );
%fprintf ( 1, '\n' );
%fprintf ( 1, ' Maximum absolute residual = %f\n', ...
% max ( abs ( node_r(1:node_num) ) ) );
K = a;
F = f;
return
end
function [ a, f ] = assemble_poisson_sparse ( node_num, node_xyz, ...
element_num, element_node, quad_num, nz_num, stiffness, u, pr, dpdu, K, assemble_stiffness)
%*****************************************************************************80
%
%% ASSEMBLE_POISSON_SPARSE assembles the system for the Poisson equation.
%
% Discussion:
%
% The matrix is stored in MATLAB sparse matrix format.
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 15 July 2010
%
% Author:
%
% John Burkardt
%
% Parameters:
%
% Input, integer NODE_NUM, the number of nodes.
%
% Input, real NODE_XY(2,NODE_NUM), the coordinates of nodes.
%
% Input, integer ELEMENT_NUM, the number of elements.
%
% Input, integer ELEMENT_NODE(3,ELEMENT_NUM);
% element_NODE(I,J) is the global index of local node I in element J.
%
% Input, integer QUAD_NUM, the number of quadrature points used in assembly.
%
% Input, integer NZ_NUM, the (maximum) number of nonzeros in the matrix.
% If set to 0 on input, we hope MATLAB's sparse utility will be able
% to take over the task of reallocating space as necessary.
%
% Output, real sparse A(:,:), the coefficient matrix.
%
% Output, real F(NODE_NUM,1), the right hand side.
%
% Local parameters:
%
% Local, real BI, DBIDX, DBIDY, the value of some basis function
% and its first derivatives at a quadrature point.
%
% Local, real BJ, DBJDX, DBJDY, the value of another basis
% function and its first derivatives at a quadrature point.
%
%
% Initialize the arrays to zero.
%
f(1:node_num,1) = 0.0;
%fprintf ( 1, '\n' );
%fprintf ( 1, 'ASSEMBLE_POISSON_SPARSE:\n' );
%fprintf ( 1, ' Setting up sparse Poisson matrix with NZ_NUM = %d\n', nz_num );
if(assemble_stiffness)
a = sparse ( [], [], [], node_num, node_num, nz_num );
else
a = K;
end
%
% Get the quadrature weights and nodes.
%
[ quad_w, quad_xy ] = quad_rule ( quad_num );
%
% Add up all quantities associated with the element-th element.
%
for element = 1 : element_num
%
% Make a copy of the element.
%
% Each column of t3 is a point in the triangle.
% Rows correspond to x, y, z.
t3_W(1:3,1:3) = node_xyz(1:3,element_node(1:3,element));
% Define a local 2D frame to the triangle in which the z axis points
% in the normal direction.
p1 = t3_W(1:3, 1);
p2 = t3_W(1:3, 2);
p3 = t3_W(1:3, 3);
u1 = p2 - p1;
u2 = p3 - p1;
u3 = cross(u1, u2);
area = 0.5 * norm(u3);
normal_W = u3 / (2*area);
u3 = normal_W;
u1 = u1 / norm(u1);
u2 = cross(u3, u1);
% Orientation of the triangle frame T in the world frame W.
R_WT = [u1 u2 u3];
% Pose of frame T in the world frame W. To = p1.
X_WT = [R_WT p1;
zeros(1, 3) 1];
X_TW = [R_WT' -R_WT'*p1;
zeros(1, 3) 1];
% Triangle nodes measured and expressed in T.
res = X_TW * [t3_W; 1 1 1];
t3_T = res(1:3, :);
% Gauss points measured and expressed in the triangle frame T.
phys_xy_T(1:3,1:quad_num) = reference_to_physical_t3(t3_T, quad_num, quad_xy);
%
% Map the quadrature points QUAD_XY to points PHYS_XY in the physical element.
%
% phys_xy_W(1:3,1:quad_num) = reference_to_physical_t3( t3_W, quad_num, quad_xy );
% Gauss points measured and expressed in the triangle frame T.
%res = X_TW * [phys_xy_W; 1 1 1];
%phys_xy_T = res(1:3, :);
w(1:quad_num,1) = quad_w(1:quad_num,1) * area;
% DEL H(X,Y) DEL U(X,Y) = F(X,Y)
%
% U(X,Y) = G(X,Y)
%TODO: passing phys_xy_T makes no sense. but now these are constant
%anyway.
%phys_rhs = rhs ( quad_num, phys_xy_T );
% Pressure at the nodal points of the element.
pr_a = pr(element_node(1:3,element));
% Convenience quadrature mapping from nodal values to Gauss points
% values.
quad_map = [
(1.0 - quad_xy(1,1:quad_num) - quad_xy(2,1:quad_num) )',...
quad_xy(1,1:quad_num)',...
quad_xy(2,1:quad_num)'];
% Compute pressure at the Gauss point.
pr_gp = quad_map * pr_a;
%pr_gp = zeros(3, quad_num);
%pr_gp(1:quad_num) = ...
% pr_a(1) * ( 1.0 - quad_xy(1,1:quad_num) - quad_xy(2,1:quad_num) ) ...
% + pr_a(2) * quad_xy(1,1:quad_num) ...
% + pr_a(3) * quad_xy(2,1:quad_num);
% Pressure gradient at Gauss points.
dpdu_a = dpdu(element_node(1:3,element));
dpdu_gp = quad_map * dpdu_a;
% Deformation at nodal points.
u_a = u(element_node(1:3,element));
%
% Consider the QUAD-th quadrature point..
%
for quad = 1 : quad_num
%
% Consider the TEST-th test function.
%
% We generate an integral for every node associated with an unknown.
% But if a node is associated with a boundary condition, we do nothing.
%
for test = 1 : 3
i = element_node(test,element);
[ bi, dbidx, dbidy ] = basis_11_t3 ( t3_T(1:2,:), test, phys_xy_T(1:2,quad) );
% Gradient of u at Gauss point.
dudx_gp = 0;
dudy_gp = 0;
for basis = 1 : 3
j = element_node(basis,element);
[ bj, dbjdx, dbjdy ] = basis_11_t3 ( t3_T(1:2,:), basis, phys_xy_T(1:2,quad) );
% Compute gradient of u.
dudx_gp = dudx_gp + u_a(basis) * dbjdx;
dudy_gp = dudy_gp + u_a(basis) * dbjdy;
if(assemble_stiffness)
% 1) Pressure term which, when linearized, ends up in a mass
% matrix term.
a(i,j) = a(i,j) - w(quad,1) * dpdu_gp(quad) * bi * bj;
% 2) Laplacian term.
a(i,j) = a(i,j) + w(quad,1) * ( stiffness * ( dbidx * dbjdx + dbidy * dbjdy ) );
end
end
% 1) Presure term.
f(i,1) = f(i,1) + w(quad,1) * pr_gp(quad) * bi;
% 2) Laplacian of u.
f(i,1) = f(i,1) - w(quad,1) * stiffness * (dbidx * dudx_gp + dbidy * dudy_gp);
%
% Consider the BASIS-th basis function, which is used to form the
% value of the solution function.
%
% Assemble stiffness matrix K.
if(assemble_stiffness)
for basis = 1 : 3
j = element_node(basis,element);
[ bj, dbjdx, dbjdy ] = basis_11_t3 ( t3_T(1:2,:), basis, phys_xy_T(1:2,quad) );
a(i,j) = a(i,j) + w(quad,1) * ( stiffness * ( dbidx * dbjdx + dbidy * dbjdy ) );
end
end
end
end
end
return
end
function [ qi, dqidx, dqidy ] = basis_11_t3 ( t, i, p )
%*****************************************************************************80
%
%% BASIS_11_T3: one basis at one point for the T3 element.
%
% Discussion:
%
% The routine is given the coordinates of the nodes of a triangle.
%
% 3
% / \
% / \
% / \
% 1-------2
%
% It evaluates the linear basis function Q(I)(X,Y) associated with
% node I, which has the property that it is a linear function
% which is 1 at node I and zero at the other two nodes.
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 14 February 2003
%
% Author:
%
% John Burkardt
%
% Parameters:
%
% Input, real T(2,3), the coordinates of the nodes.
%
% Input, integer I, the index of the desired basis function.
% I should be between 1 and 3.
%
% Input, real P(2), the coordinates of a point at which the basis
% function is to be evaluated.
%
% Output, real QI, DQIDX, DQIDY, the values of the basis function
% and its X and Y derivatives.
%
area = abs ( t(1,1) * ( t(2,2) - t(2,3) ) ...
+ t(1,2) * ( t(2,3) - t(2,1) ) ...
+ t(1,3) * ( t(2,1) - t(2,2) ) );
if ( area == 0.0 )
fprintf ( 1, '\n' );
fprintf ( 1, 'BASIS_11_T3 - Fatal error!\n' );
fprintf ( 1, ' Element has zero area.\n' );
error ( 'BASIS_11_T3 - Fatal error!' );
end
if ( i < 1 | 3 < i )
fprintf ( 1, '\n' );
fprintf ( 1, 'BASIS_11_T3 - Fatal error!\n' );
fprintf ( 1, ' Basis index I is not between 1 and 3.\n' );
fprintf ( 1, ' I = %d\n', i );
error ( 'BASIS_11_T3 - Fatal error!' );
end
if ( i == 1 )
ip1 = 2;
ip2 = 3;
elseif ( i == 2 )
ip1 = 3;
ip2 = 1;
else
ip1 = 1;
ip2 = 2;
end
qi = ( ( t(1,ip2) - t(1,ip1) ) * ( p(2) - t(2,ip1) ) ...
- ( t(2,ip2) - t(2,ip1) ) * ( p(1) - t(1,ip1) ) ) / area;
dqidx = - ( t(2,ip2) - t(2,ip1) ) / area;
dqidy = ( t(1,ip2) - t(1,ip1) ) / area;
return
end
function [ a, f ] = dirichlet_apply_sparse ( node_num, node_xyz, ...
node_condition, a, f)
%*****************************************************************************80
%
%% DIRICHLET_APPLY_SPARSE accounts for Dirichlet boundary conditions.
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 14 February 2003
%
% Author:
%
% John Burkardt
%
% Parameters:
%
% Input, integer NODE_NUM, the number of nodes.
%
% Input, real NODE_XY(2,NODE_NUM), the coordinates of nodes.
%
% Input, integer NODE_CONDITION(NODE_NUM), reports the condition
% used to set the unknown associated with the node.
% 0, unknown.
% 1, finite element equation.
% 2, Dirichlet condition;
% 3, Neumann condition.
%
% Input, real sparse A(:,:), the coefficient matrix.
%
% Input, real F(NODE_NUM,1), the right hand side.
%
% Output, real sparse A(:,:), the coefficient matrix,
% adjusted for Dirichlet boundary conditions.
%
% Output, real F(NODE_NUM), the right hand side, adjusted for
% Dirichlet boundary conditions.
%
node_bc = dirichlet_condition ( node_num, node_xyz );
DIRICHLET = 2;
for node = 1 : node_num
if ( node_condition(node) == DIRICHLET )
a(node,:) = 0.0;
a(node,node) = 1.0;
f(node,1) = node_bc(node);
end
end
return
end
function isgn = i4col_compare ( m, n, a, i, j )
%*****************************************************************************80
%
%% I4COL_COMPARE compares columns I and J of a integer array.
%
% Example:
%
% Input:
%
% M = 3, N = 4, I = 2, J = 4
%
% A = (
% 1 2 3 4
% 5 6 7 8
% 9 10 11 12 )
%
% Output:
%
% ISGN = -1
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 12 June 2005
%
% Author:
%
% John Burkardt
%
% Parameters:
%
% Input, integer M, N, the number of rows and columns.
%
% Input, integer A(M,N), an array of N columns of vectors of length M.
%
% Input, integer I, J, the columns to be compared.
% I and J must be between 1 and N.
%
% Output, integer ISGN, the results of the comparison:
% -1, column I < column J,
% 0, column I = column J,
% +1, column J < column I.
%
%
% Check.
%
if ( i < 1)
fprintf ( 1, '\n' );
fprintf ( 1, 'I4COL_COMPARE - Fatal error!\n' );
fprintf ( 1, ' Column index I = %d < 1.\n', i );
error ( 'I4COL_COMPARE - Fatal error!' );
end
if ( n < i )
fprintf ( 1, '\n' );
fprintf ( 1, 'I4COL_COMPARE - Fatal error!\n' );
fprintf ( 1, ' N = %d < column index I = %d.\n', n, i );
error ( 'I4COL_COMPARE - Fatal error!' );
end
if ( j < 1 )
fprintf ( 1, '\n' );
fprintf ( 1, 'I4COL_COMPARE - Fatal error!\n' );
fprintf ( 1, ' Column index J = %d < 1.\n', j );
error ( 'I4COL_COMPARE - Fatal error!' );
end
if ( n < j )
fprintf ( 1, '\n' );
fprintf ( 1, 'I4COL_COMPARE - Fatal error!\n' );
fprintf ( 1, ' N = %d < column index J = %d.\n', n, j );
error ( 'I4COL_COMPARE - Fatal error!' );
end
isgn = 0;
if ( i == j )
return
end
k = 1;
while ( k <= m )
if ( a(k,i) < a(k,j) )
isgn = -1;
return
elseif ( a(k,j) < a(k,i) )
isgn = +1;
return
end
k = k + 1;
end
return
end
function a = i4col_sort_a ( m, n, a )
%*****************************************************************************80
%
%% I4COL_SORT_A ascending sorts an I4COL.
%
% Discussion:
%
% In lexicographic order, the statement "X < Y", applied to two real
% vectors X and Y of length M, means that there is some index I, with
% 1 <= I <= M, with the property that
%
% X(J) = Y(J) for J < I,
% and
% X(I) < Y(I).
%
% In other words, the first time they differ, X is smaller.
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 20 February 2005
%
% Author:
%
% John Burkardt
%
% Parameters:
%
% Input, integer M, the number of rows of A, and the length of
% a vector of data.
%
% Input, integer N, the number of columns of A.
%
% Input, integer A(M,N), the array of N columns of M-vectors.
%
% Output, integer A(M,N), the columns of A have been sorted in ascending
% lexicographic order.
%
if ( m <= 0 )
return
end
if ( n <= 1 )
return
end
%
% Initialize.
%
i = 0;
indx = 0;
isgn = 0;
j = 0;
%
% Call the external heap sorter.
%
while ( 1 )
[ indx, i, j ] = sort_heap_external ( n, indx, isgn );
%
% Interchange the I and J objects.
%
if ( 0 < indx )
a = i4col_swap ( m, n, a, i, j );
%
% Compare the I and J objects.
%
elseif ( indx < 0 )
isgn = i4col_compare ( m, n, a, i, j );
elseif ( indx == 0 )
break
end
end
return
end
function a = i4col_swap ( m, n, a, i, j )
%*****************************************************************************80
%
%% I4COL_SWAP swaps columns I and J of a integer array of column data.
%
% Example:
%
% Input:
%
% M = 3, N = 4, I = 2, J = 4
%
% A = (
% 1 2 3 4
% 5 6 7 8
% 9 10 11 12 )
%
% Output:
%
% A = (
% 1 4 3 2
% 5 8 7 6
% 9 12 11 10 )
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 19 February 2005
%
% Author:
%
% John Burkardt
%
% Parameters:
%
% Input, integer M, N, the number of rows and columns in the array.
%
% Input, integer A(M,N), an array of N columns of length M.
%
% Input, integer I, J, the columns to be swapped.
%
% Output, integer A(M,N), the array, with columns I and J swapped.
%
if ( i < 1 | n < i | j < 1 | n < j )
fprintf ( 1, '\n' );
fprintf ( 1, 'I4COL_SWAP - Fatal error!\n' );
fprintf ( 1, ' I or J is out of bounds.\n' );
fprintf ( 1, ' I = %d\n', i );
fprintf ( 1, ' J = %d\n', j );
fprintf ( 1, ' N = %d\n', n );
error ( 'I4COL_SWAP - Fatal error!' );
end
if ( i == j )
return
end
col(1:m) = a(1:m,i)';
a(1:m,i) = a(1:m,j);
a(1:m,j) = col(1:m)';
return
end
function i4mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title )
%*****************************************************************************80
%
%% I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed.
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 21 June 2005
%
% Author:
%
% John Burkardt
%
% Parameters:
%
% Input, integer M, N, the number of rows and columns.
%
% Input, integer A(M,N), an M by N matrix to be printed.
%
% Input, integer ILO, JLO, the first row and column to print.
%
% Input, integer IHI, JHI, the last row and column to print.
%
% Input, string TITLE, a title.
%
incx = 10;
fprintf ( 1, '\n' );
fprintf ( 1, '%s\n', title );
for i2lo = max ( ilo, 1 ) : incx : min ( ihi, m )
i2hi = i2lo + incx - 1;
i2hi = min ( i2hi, m );
i2hi = min ( i2hi, ihi );
inc = i2hi + 1 - i2lo;
fprintf ( 1, '\n' );
fprintf ( 1, ' Row: ' );
for i = i2lo : i2hi
fprintf ( 1, '%7d ', i );
end
fprintf ( 1, '\n' );
fprintf ( 1, ' Col\n' );
fprintf ( 1, '\n' );
j2lo = max ( jlo, 1 );
j2hi = min ( jhi, n );
for j = j2lo : j2hi
fprintf ( 1, '%5d ', j );
for i2 = 1 : inc
i = i2lo - 1 + i2;
fprintf ( 1, '%7d ', a(i,j) );
end
fprintf ( 1, '\n' );
end
end
return
end
function [ quad_w, quad_xy ] = quad_rule ( quad_num )
%*****************************************************************************80
%
%% QUAD_RULE sets the quadrature rule for assembly.
%
% Discussion:
%
% The quadrature rule is given for a reference element, points (X,Y) such
% that
%
% 0 <= X,
% 0 <= Y, and
% X + Y <= 1.
%
% ^
% 1 | *
% | |\
% Y | | \
% | | \
% 0 | *---*
% +------->
% 0 X 1
%
% The rules have the following precision:
%
% QUAD_NUM Precision
%
% 1 1
% 3 2
% 4 3
% 6 4
% 7 5
% 9 6
% 13 7
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 14 February 2003
%
% Author:
%
% John Burkardt
%
% Parameters:
%
% Input, integer QUAD_NUM, the number of quadrature nodes.
% Legal values are 1, 3, 4, 6, 7, 9, 13.
%
% Output, real QUAD_W(QUAD_NUM,1), the quadrature weights.
%
% Output, real QUAD_XY(2,QUAD_NUM), the quadrature nodes.
%
if ( quad_num == 1 )
quad_xy(1:2,1:quad_num) = [ 1.0 / 3.0, 1.0 / 3.0 ]';
quad_w(1:quad_num,1) = 1.0;
elseif ( quad_num == 3 )
quad_xy(1:2,1:quad_num) = [ ...
0.5, 0.0; ...
0.5, 0.5; ...
0.0, 0.5 ]';
quad_w(1:quad_num,1) = 1.0 / 3.0;
elseif ( quad_num == 4 )
a = 6.0;
b = 10.0;
c = 18.0;
d = 25.0;
e = -27.0;
f = 30.0;
g = 48.0;
quad_xy(1:2,1:quad_num) = [ ...
b, b; ...
c, a; ...
a, c; ...
a, a ]' / f;
quad_w(1:quad_num,1) = [ e, d, d, d ]' / g;
elseif ( quad_num == 6 )
a = 0.816847572980459;
b = 0.091576213509771;
c = 0.108103018168070;
d = 0.445948490915965;
v = 0.109951743655322;
w = 0.223381589678011;
quad_xy(1:2,1:quad_num) = [
a, b; ...
b, a; ...
b, b; ...
c, d; ...
d, c; ...
d, d ]';
quad_w(1:6,1) = [ v, v, v, w, w, w ]';
elseif ( quad_num == 7 )
a = 1.0 / 3.0;
b = ( 9.0 + 2.0 * sqrt ( 15.0 ) ) / 21.0;
c = ( 6.0 - sqrt ( 15.0 ) ) / 21.0;
d = ( 9.0 - 2.0 * sqrt ( 15.0 ) ) / 21.0;
e = ( 6.0 + sqrt ( 15.0 ) ) / 21.0;
u = 0.225;
v = ( 155.0 - sqrt ( 15.0 ) ) / 1200.0;
w = ( 155.0 + sqrt ( 15.0 ) ) / 1200.0;
quad_xy(1:2,1:quad_num) = [ ...
a, a; ...
b, c; ...
c, b; ...
c, c; ...
d, e; ...
e, d; ...
e, e ]';
quad_w(1:quad_num,1) = [ u, v, v, v, w, w, w ]';
elseif ( quad_num == 9 )
a = 0.124949503233232;
b = 0.437525248383384;
c = 0.797112651860071;
d = 0.165409927389841;
e = 0.037477420750088;
u = 0.205950504760887;
v = 0.063691414286223;
quad_xy(1:2,1:quad_num) = [ ...
a, b; ...
b, a; ...
b, b; ...
c, d; ...
c, e; ...
d, c; ...
d, e; ...
e, c; ...
e, d ]';
quad_w(1:quad_num,1) = [ u, u, u, v, v, v, v, v, v ]';
elseif ( quad_num == 13 )
h = 1.0 / 3.0;
a = 0.479308067841923;
b = 0.260345966079038;
c = 0.869739794195568;
d = 0.065130102902216;
e = 0.638444188569809;
f = 0.312865496004875;
g = 0.048690315425316;
w = -0.149570044467670;
t = 0.175615257433204;
u = 0.053347235608839;
v = 0.077113760890257;
quad_xy(1:2,1:quad_num) = [
h, h; ...
a, b; ...
b, a; ...
b, b; ...
c, d; ...
d, c; ...
d, d; ...