-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_benchmark.py
225 lines (178 loc) · 9.36 KB
/
test_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import argparse
import json
import os
import pickle
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
from sklearn.preprocessing import LabelEncoder
from cmib.data.lafan1_dataset import LAFAN1Dataset
from cmib.lafan1 import benchmarks, extract
from cmib.data.utils import process_seq_names
from cmib.model.network import TransformerModel
from cmib.model.preprocess import (lerp_input_repr, replace_constant,
slerp_input_repr, vectorize_representation)
from cmib.model.skeleton import (Skeleton, sk_joints_to_remove, sk_offsets, sk_parents, amass_offsets)
def test(opt, device):
save_dir = Path(os.path.join('runs', 'train', opt.exp_name))
test_dir = Path(os.path.join('runs', 'test', opt.exp_name))
test_dir.mkdir(exist_ok=True, parents=True)
wdir = save_dir / 'weights'
weights = os.listdir(wdir)
if opt.weight == 'latest':
weights_paths = [wdir / weight for weight in weights]
weight_path = max(weights_paths , key = os.path.getctime)
else:
weight_path = wdir / ('train-' + opt.weight + '.pt')
ckpt = torch.load(weight_path, map_location=device)
print(f"Loaded weight: {weight_path}")
# Load Skeleton
offset = sk_offsets if opt.dataset == 'LAFAN' else amass_offsets
skeleton_mocap = Skeleton(offsets=offset, parents=sk_parents, device=device)
skeleton_mocap.remove_joints(sk_joints_to_remove)
# Load LAFAN Dataset
Path(opt.processed_data_dir).mkdir(parents=True, exist_ok=True)
if ckpt['horizon'] < 60:
test_window = 65 # Use default test window for 30-frame benchamrk setting.
else:
test_window = ckpt['horizon'] - 1 + 10
lafan_dataset = LAFAN1Dataset(lafan_path=opt.data_path, processed_data_dir=opt.processed_data_dir, train=False, device=device, window=test_window, dataset=opt.dataset)
# Extract stats
if opt.dataset == 'LAFAN':
train_actors = ["subject1", "subject2", "subject3", "subject4"]
elif opt.dataset in ['HumanEva', 'PosePrior']:
train_actors = ["subject1", "subject2"]
elif opt.dataset in ['HUMAN4D']:
train_actors = ["subject1", "subject2", "subject3", "subject4", "subject5", "subject6", "subject7"]
elif opt.dataset in ['MPI_HDM05']:
train_actors = ["subject1", "subject2", "subject3"]
else:
ValueError("Invalid Dataset")
bvh_folder = opt.data_path
stats_file = os.path.join(opt.processed_data_dir, 'train_stats.pkl')
if not os.path.exists(stats_file):
x_mean, x_std, offsets = extract.get_train_stats(bvh_folder, train_actors)
with open(stats_file, 'wb') as f:
pickle.dump({
'x_mean': x_mean,
'x_std': x_std,
'offsets': offsets,
}, f, protocol=pickle.HIGHEST_PROTOCOL)
else:
print('Reusing stats file: ' + stats_file)
with open(stats_file, 'rb') as f:
stats = pickle.load(f)
x_mean = stats['x_mean']
x_std = stats['x_std']
offsets = stats['offsets']
total_data = lafan_dataset.data['global_pos'].shape[0]
from_idx, target_idx = ckpt['from_idx'], ckpt['target_idx'] # default: 9-38, max: 48
horizon = ckpt['horizon']
print(f"HORIZON: {horizon}")
test_idx = []
for i in range(total_data):
test_idx.append(i)
# Extract dimension from processed data
pos_dim = lafan_dataset.num_joints * 3
rot_dim = lafan_dataset.num_joints * 4
repr_dim = pos_dim + rot_dim
root_pos = torch.Tensor(lafan_dataset.data['root_p'][:, from_idx:target_idx+1]).to(device)
local_q = torch.Tensor(lafan_dataset.data['local_q'][:, from_idx:target_idx+1]).to(device)
local_q_normalized = nn.functional.normalize(local_q, p=2.0, dim=-1)
# Replace testing inputs
fixed = 0
global_pos, global_q = skeleton_mocap.forward_kinematics_with_rotation(local_q_normalized, root_pos)
global_pos[:,fixed] += torch.Tensor([0,0,0]).expand(global_pos.size(0),lafan_dataset.num_joints,3)
interpolation = ckpt['interpolation']
if interpolation == 'constant':
global_pose_vec_gt = vectorize_representation(global_pos, global_q)
global_pose_vec_input = global_pose_vec_gt.clone().detach()
pose_interpolated_input = replace_constant(global_pose_vec_input, fixed)
elif interpolation == 'slerp':
global_pose_vec_gt = vectorize_representation(global_pos, global_q)
global_pose_vec_input = global_pose_vec_gt.clone().detach()
root_vec = global_pose_vec_input[:,:,:pos_dim]
rot_vec = global_pose_vec_input[:,:,pos_dim:]
root_lerped = lerp_input_repr(root_vec, fixed)
rot_slerped = slerp_input_repr(rot_vec, fixed)
pose_interpolated_input = torch.cat([root_lerped, rot_slerped], dim=2)
else:
raise ValueError('Invalid interpolation method')
pose_vectorized_input = pose_interpolated_input.permute(1,0,2)
src_mask = torch.zeros((horizon, horizon), device=device).type(torch.bool)
src_mask = src_mask.to(device)
le = LabelEncoder()
le.classes_ = np.load(os.path.join(save_dir, 'le_classes_.npy'))
num_labels = len(le.classes_)
model = TransformerModel(seq_len=ckpt['horizon'], d_model=ckpt['d_model'], nhead=ckpt['nhead'], d_hid=ckpt['d_hid'], nlayers=ckpt['nlayers'], dropout=0.0, out_dim=repr_dim, num_labels=num_labels)
model.load_state_dict(ckpt['transformer_encoder_state_dict'])
model.eval()
l2p = []
l2q = []
pred_rot_npss = []
for i in range(len(test_idx)):
print(f"Processing ID: {test_idx[i]}")
seq_label = lafan_dataset.data['seq_names'][i][:-1]
if opt.dataset == 'LAFAN':
seq_label = [x[:-1] for x in lafan_dataset.data['seq_names']][i]
else:
seq_label = process_seq_names(lafan_dataset.data['seq_names'], dataset=opt.dataset)[i]
match_class = np.where(le.classes_ == seq_label)[0]
class_id = 0 if len(match_class) == 0 else match_class[0]
conditioning_label = torch.Tensor([[class_id]]).type(torch.int64).to(device)
cond_output, cond_gt = model(pose_vectorized_input[:, test_idx[i]:test_idx[i]+1, :], src_mask, conditioning_label)
print(f"Condition: {le.classes_[class_id]}")
output = cond_output
pred_global_pos = output[1:,:,:pos_dim].permute(1,0,2).reshape(1,horizon-1,22,3)
global_pos_unit_vec = skeleton_mocap.convert_to_unit_offset_mat(pred_global_pos)
pred_global_pos = skeleton_mocap.convert_to_global_pos(global_pos_unit_vec).detach().numpy()
# Replace start/end with gt
gt_global_pos = lafan_dataset.data['global_pos'][test_idx[i]:test_idx[i]+1, from_idx:target_idx+1].reshape(1, -1, lafan_dataset.num_joints, 3)
pred_global_pos[0,0] = gt_global_pos[0,0]
pred_global_pos[0,-1] = gt_global_pos[0,-1]
pred_global_rot = output[1:,:,pos_dim:].permute(1,0,2).reshape(1,horizon-1,22,4)
pred_global_rot_normalized = nn.functional.normalize(pred_global_rot, p=2.0, dim=3)
gt_global_rot = global_q[test_idx[i]:test_idx[i]+1]
pred_global_rot_normalized[0,0] = gt_global_rot[0,0]
pred_global_rot_normalized[0,-1] = gt_global_rot[0,-1]
pred_rot_npss.append(pred_global_rot_normalized)
# Normalize for L2P
normalized_gt_pos = torch.Tensor((lafan_dataset.data['global_pos'][test_idx[i]:test_idx[i]+1, from_idx:target_idx+1].reshape(1, -1, lafan_dataset.num_joints * 3).transpose(0,2,1) - x_mean) / x_std)
normalized_pred_pos = torch.Tensor((pred_global_pos.reshape(1, -1, lafan_dataset.num_joints * 3).transpose(0,2,1) - x_mean) / x_std)
l2p.append(torch.mean(torch.norm(normalized_pred_pos[0] - normalized_gt_pos[0], dim=(0))).item())
l2q.append(torch.mean(torch.norm(pred_global_rot_normalized[0] - global_q[test_idx[i]], dim=(1,2))).item())
print(f"ID {test_idx[i]}: test completed.")
l2p_mean = np.mean(l2p)
l2q_mean = np.mean(l2q)
# Drop end nodes for fair comparison
pred_quaternions = torch.cat(pred_rot_npss, dim=0)
npss_gt = global_q[:,:,skeleton_mocap.has_children()].reshape(global_q.shape[0],global_q.shape[1], -1)
npss_pred = pred_quaternions[:,:,skeleton_mocap.has_children()].reshape(pred_quaternions.shape[0],pred_quaternions.shape[1], -1)
npss = benchmarks.npss(npss_gt, npss_pred).item()
print(f"TOTAL TEST DATA: {len(l2p)}")
print(f"L2P: {l2p_mean}")
print(f"L2Q: {l2q_mean}")
print(f"NPSS: {npss}")
benchmark_out = {
'total_data': len(l2p),
'L2P': l2p_mean,
'L2Q': l2q_mean,
'NPSS': npss
}
with open(os.path.join(test_dir, f'benchmark_out-{opt.weight}.json'), 'w') as f:
json.dump(benchmark_out, f)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--project', default='runs/train', help='project/name')
parser.add_argument('--exp_name', default='HUMAN4D_80', help='experiment name')
parser.add_argument('--weight', default='latest')
parser.add_argument('--data_path', type=str, default='AMASS/PosePrior', help='BVH dataset path')
parser.add_argument('--dataset', type=str, default='HUMAN4D', help='Dataset name')
parser.add_argument('--processed_data_dir', type=str, default='processed_data_human4d_80/', help='path to save pickled processed data')
opt = parser.parse_args()
return opt
if __name__ == "__main__":
opt = parse_opt()
device = torch.device("cpu")
test(opt, device)