-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
329 lines (268 loc) Β· 15.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os
import pathlib
import numpy as np
import torch
import yaml
from torch.optim import Adam
from torch.utils.data import DataLoader
from tqdm import tqdm
from rmi.data.lafan1_dataset import LAFAN1Dataset
from rmi.data.utils import flip_bvh
from rmi.model.network import Decoder, Discriminator, InputEncoder, LSTMNetwork
from rmi.model.noise_injector import noise_injector
from rmi.model.positional_encoding import PositionalEncoding
from rmi.model.skeleton import (Skeleton, amass_offsets, sk_joints_to_remove,
sk_offsets, sk_parents)
import shutil
def train():
# Load configuration from yaml
config = yaml.safe_load(open('./config/config_base.yaml', 'r').read())
# Set device to use
gpu_id = config['device']['gpu_id']
device = torch.device(f"cuda:{gpu_id}" if torch.cuda.is_available() else "cpu")
# Prepare Directory
exp_name = config['data']['exp_name']
model_path = os.path.join('model_weights', exp_name)
pathlib.Path(model_path).mkdir(parents=True, exist_ok=True)
shutil.copy(src='config/config_base.yaml', dst=model_path+'/config.yaml')
pathlib.Path(config['data']['processed_data_dir']).mkdir(parents=True, exist_ok=True)
# Load Skeleton
offset = sk_offsets if config['data']['dataset'] == 'LAFAN' else amass_offsets
skeleton = Skeleton(offsets=offset, parents=sk_parents, device=device)
skeleton.remove_joints(sk_joints_to_remove)
# Flip, Load and preprocess data. It utilizes LAFAN1 utilities
if config['data']['flip_bvh']:
flip_bvh(config['data']['data_dir'], skip='subject5')
training_frames = config['model']['training_frames']
lafan_dataset = LAFAN1Dataset(lafan_path=config['data']['data_dir'], processed_data_dir=config['data']['processed_data_dir'], train=True,
device=device, window=config['model']['window'], dataset=config['data']['dataset'])
lafan_data_loader = DataLoader(lafan_dataset, batch_size=config['model']['batch_size'], shuffle=True, num_workers=config['data']['data_loader_workers'])
pos_std = lafan_dataset.global_pos_std
# Extract dimension from processed data
root_v_dim = lafan_dataset.root_v_dim
local_q_dim = lafan_dataset.local_q_dim
contact_dim = lafan_dataset.contact_dim
# Initializing networks
state_in = root_v_dim + local_q_dim + contact_dim
state_encoder = InputEncoder(input_dim=state_in)
state_encoder.to(device)
offset_in = root_v_dim + local_q_dim
offset_encoder = InputEncoder(input_dim=offset_in)
offset_encoder.to(device)
target_in = local_q_dim
target_encoder = InputEncoder(input_dim=target_in)
target_encoder.to(device)
# LSTM
lstm_in = state_encoder.out_dim * 3
lstm = LSTMNetwork(input_dim=lstm_in, hidden_dim=lstm_in, device=device)
lstm.to(device)
# Decoder
decoder = Decoder(input_dim=lstm_in, out_dim=state_in)
decoder.to(device)
discriminator_in = lafan_dataset.num_joints * 3 * 2 # See Appendix
short_discriminator = Discriminator(input_dim=discriminator_in, length=2)
short_discriminator.to(device)
long_discriminator = Discriminator(input_dim=discriminator_in, length=5)
long_discriminator.to(device)
pe = PositionalEncoding(dimension=256, max_len=training_frames, device=device)
generator_optimizer = Adam(params=list(state_encoder.parameters()) +
list(offset_encoder.parameters()) +
list(target_encoder.parameters()) +
list(lstm.parameters()) +
list(decoder.parameters()),
lr=config['model']['learning_rate'],
betas=(config['model']['optim_beta1'], config['model']['optim_beta2']),
amsgrad=True)
discriminator_optimizer = Adam(params=list(short_discriminator.parameters()) +
list(long_discriminator.parameters()),
lr=config['model']['learning_rate'],
betas=(config['model']['optim_beta1'], config['model']['optim_beta2']),
amsgrad=True)
for epoch in tqdm(range(config['model']['epochs']), position=0, desc="Epoch"):
state_encoder.train()
offset_encoder.train()
target_encoder.train()
lstm.train()
decoder.train()
batch_pbar = tqdm(lafan_data_loader, position=1, desc="Batch")
for sampled_batch in batch_pbar:
loss_pos = 0
loss_quat = 0
loss_contact = 0
loss_root = 0
current_batch_size = len(sampled_batch['global_pos'])
# state input
local_q = sampled_batch['local_q'].to(device)
root_v = sampled_batch['root_v'].to(device)
contact = sampled_batch['contact'].to(device)
# offset input
root_p_offset = sampled_batch['root_p_offset'].to(device)
local_q_offset = sampled_batch['local_q_offset'].to(device)
local_q_offset = local_q_offset.view(current_batch_size, -1)
# target input
target = sampled_batch['q_target'].to(device)
target = target.view(current_batch_size, -1)
# root pos
root_p = sampled_batch['root_p'].to(device)
# global pos
global_pos = sampled_batch['global_pos'].to(device)
global_rot = sampled_batch['global_rot'].to(device)
lstm.init_hidden(current_batch_size)
# 3.4: target noise is sampled once per sequence
target_noise = torch.normal(mean=0, std=config['model']['target_noise'], size=(current_batch_size, 256 * 2), device=device)
root_pred_list = []
local_q_pred_list = []
contact_pred_list = []
pos_next_list = []
local_q_next_list = []
root_p_next_list = []
contact_next_list = []
global_q_next_list = []
for t in range(training_frames):
if t == 0: # if initial frame
root_p_t = root_p[:,t+10]
root_v_t = root_v[:,t+10]
local_q_t = local_q[:,t+10]
local_q_t = local_q_t.view(local_q_t.size(0), -1)
contact_t = contact[:,t+10]
else:
root_p_t = root_pred # Be careful about dimension
root_v_t = root_v_pred[0]
local_q_t = local_q_pred[0]
contact_t = contact_pred
assert root_p_offset.shape == root_p_t.shape
# state input
state_input = torch.cat([local_q_t, root_v_t, contact_t], -1)
# offset input
root_p_offset_t = root_p_offset - root_p_t
local_q_offset_t = local_q_offset - local_q_t
offset_input = torch.cat([root_p_offset_t, local_q_offset_t], -1)
# target input
target_input = target
h_state = state_encoder(state_input)
h_offset = offset_encoder(offset_input)
h_target = target_encoder(target_input)
# Use positional encoding
tta = training_frames - t # (5 ~ 30) / (0 ~ 29)
h_state = pe(h_state, tta)
h_offset = pe(h_offset, tta) # (batch size, 256)
h_target = pe(h_target, tta) # (batch size, 256)
offset_target = torch.cat([h_offset, h_target], dim=1)
# Inject noise by scheduling
noise_multiplier = noise_injector(t, length=training_frames) # Noise injection
prtbd_offset_target = offset_target + noise_multiplier * target_noise
# lstm
h_in = torch.cat([h_state, prtbd_offset_target], dim=1).unsqueeze(0)
h_out = lstm(h_in)
# decoder
h_pred, contact_pred = decoder(h_out)
local_q_v_pred = h_pred[:,:,:target_in]
local_q_pred = local_q_v_pred + local_q_t
local_q_pred_ = local_q_pred.view(local_q_pred.size(0), local_q_pred.size(1), -1, 4)
local_q_pred_ = local_q_pred_ / torch.norm(local_q_pred_, dim = -1, keepdim = True)
root_v_pred = h_pred[:,:,target_in:]
root_pred = root_v_pred + root_p_t
# root, q, contact prediction
if root_pred.size(1) == 1:
root_pred = root_pred[0]
else:
root_pred = root_pred.squeeze()
if local_q_pred_.size(1) == 1:
local_q_pred_ = local_q_pred_[0]
else:
local_q_pred_ = local_q_pred_.squeeze() # (N, 22, 4)
root_pred_list.append(root_pred)
local_q_pred_list.append(local_q_pred_)
if contact_pred.size(1) == 1:
contact_pred = contact_pred[0]
else:
contact_pred = contact_pred.squeeze()
contact_pred_list.append(contact_pred)
# For loss
pos_next_list.append(global_pos[:, t+1+10])
global_q_next_list.append(global_rot[:, t+1+10])
local_q_next_list.append(local_q[:,t+1+10].view(local_q.size(0), -1))
root_p_next_list.append(root_p[:,t+1+10])
contact_next_list.append(contact[:,t+1+10])
root_pred_stack = torch.stack(root_pred_list, dim=1)
local_q_pred_stack = torch.stack(local_q_pred_list, dim=1)
contact_pred_stack = torch.stack(contact_pred_list, dim=1)
pos_preds, pos_rot = skeleton.forward_kinematics_with_rotation(local_q_pred_stack, root_pred_stack)
pos_next_stack = torch.stack(pos_next_list, dim=1)
root_p_next_list = torch.stack(root_p_next_list, dim=1)
local_q_next_list = torch.stack(local_q_next_list, dim=1)
contact_next_list = torch.stack(contact_next_list, dim=1)
rot_next_stack = torch.stack(global_q_next_list, dim=1)
# Calculate L1 Norm
# 3.7.3: We scale all of our losses to be approximately equal on the LaFAN1 dataset
# for an untrained network before tuning them with custom weights.
loss_pos = torch.mean(torch.sum(torch.abs(pos_preds - pos_next_stack), dim=1) / pos_std) / training_frames
loss_root = torch.mean(torch.sum(torch.abs(root_pred_stack - root_p_next_list), dim=1) / pos_std[0]) / training_frames
loss_global_quat = torch.norm((pos_rot - rot_next_stack), dim=(2,3)).mean()
loss_quat = torch.mean(torch.sum(torch.abs(local_q_pred_stack - local_q_next_list.reshape(current_batch_size, training_frames, lafan_dataset.num_joints, -1)), dim=1)) / training_frames
loss_contact = torch.mean(torch.sum(torch.abs(contact_pred_stack - contact_next_list), dim=1)) / training_frames
# Adversarial
fake_gan_input = torch.cat([global_pos[:,0+10].reshape(current_batch_size, -1).unsqueeze(1), pos_preds.reshape(current_batch_size, training_frames, -1)], dim=1)
fake_pos_input = fake_gan_input[:,:training_frames+1,:].permute(0,2,1)
fake_v_input = torch.cat([fake_pos_input[:,:,1:] - fake_pos_input[:,:,:-1], torch.zeros_like(fake_pos_input[:,:,0:1], device=device)], -1)
fake_input = torch.cat([fake_pos_input, fake_v_input], 1)
real_pos_input = global_pos[:,10:training_frames+11].reshape(current_batch_size, training_frames+1, -1).permute(0,2,1)
real_v_input = torch.cat([real_pos_input[:,:,1:] - real_pos_input[:,:,:-1], torch.zeros_like(real_pos_input[:,:,0:1], device=device)], -1)
real_input = torch.cat([real_pos_input, real_v_input], 1)
## Discriminator
discriminator_optimizer.zero_grad()
# LSGAN Loss
short_fake_logits = torch.mean(short_discriminator(fake_input.detach())[:,0], dim=1)
short_real_logits = torch.mean(short_discriminator(real_input)[:,0], dim=1)
short_d_fake_loss = torch.mean((short_fake_logits) ** 2)
short_d_real_loss = torch.mean((short_real_logits - 1) ** 2)
short_d_loss = (short_d_fake_loss + short_d_real_loss) / 2.0
long_fake_logits = torch.mean(long_discriminator(fake_input.detach())[:,0], dim=1)
long_real_logits = torch.mean(long_discriminator(real_input)[:,0], dim=1)
long_d_fake_loss = torch.mean((long_fake_logits) ** 2)
long_d_real_loss = torch.mean((long_real_logits - 1) ** 2)
long_d_loss = (long_d_fake_loss + long_d_real_loss) / 2.0
total_d_loss = config['model']['loss_discriminator_weight'] * (long_d_loss + short_d_loss)
total_d_loss.backward()
discriminator_optimizer.step()
generator_optimizer.zero_grad()
loss_total = config['model']['loss_pos_weight'] * loss_pos + \
config['model']['loss_quat_weight'] * loss_quat + \
config['model']['loss_global_quat'] * loss_global_quat + \
config['model']['loss_root_weight'] * loss_root + \
config['model']['loss_contact_weight'] * loss_contact
# Adversarial
short_fake_logits = torch.mean(short_discriminator(fake_input)[:,0], 1)
short_g_loss = torch.mean((short_fake_logits - 1) ** 2)
long_fake_logits = torch.mean(long_discriminator(fake_input)[:,0], 1)
long_g_loss = torch.mean((long_fake_logits - 1) ** 2)
total_g_loss = config['model']['loss_generator_weight'] * (long_g_loss + short_g_loss)
loss_total += total_g_loss
# TOTAL LOSS
loss_total.backward()
# Gradient clipping for training stability
torch.nn.utils.clip_grad_norm_(state_encoder.parameters(), 1.0)
torch.nn.utils.clip_grad_norm_(offset_encoder.parameters(), 1.0)
torch.nn.utils.clip_grad_norm_(target_encoder.parameters(), 1.0)
torch.nn.utils.clip_grad_norm_(lstm.parameters(), 1.0)
torch.nn.utils.clip_grad_norm_(decoder.parameters(), 1.0)
torch.nn.utils.clip_grad_norm_(short_discriminator.parameters(), 1.0)
torch.nn.utils.clip_grad_norm_(long_discriminator.parameters(), 1.0)
generator_optimizer.step()
batch_pbar.set_postfix({'LOSS': np.round(loss_total.item(), decimals=3)})
if (epoch + 1) % config['log']['weight_save_interval'] == 0:
weight_epoch = 'trained_weight_' + str(epoch + 1)
weight_path = os.path.join(model_path, weight_epoch)
pathlib.Path(weight_path).mkdir(parents=True, exist_ok=True)
torch.save(state_encoder.state_dict(), weight_path + '/state_encoder.pkl')
torch.save(target_encoder.state_dict(), weight_path + '/target_encoder.pkl')
torch.save(offset_encoder.state_dict(), weight_path + '/offset_encoder.pkl')
torch.save(lstm.state_dict(), weight_path + '/lstm.pkl')
torch.save(decoder.state_dict(), weight_path + '/decoder.pkl')
torch.save(short_discriminator.state_dict(), weight_path + '/short_discriminator.pkl')
torch.save(long_discriminator.state_dict(), weight_path + '/long_discriminator.pkl')
if config['model']['save_optimizer']:
torch.save(generator_optimizer.state_dict(), weight_path + '/generator_optimizer.pkl')
torch.save(discriminator_optimizer.state_dict(), weight_path + '/discriminator_optimizer.pkl')
if __name__ == '__main__':
train()