-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpubmedExtract.py
41 lines (34 loc) · 1.61 KB
/
pubmedExtract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# you need to install Biopython:
# pip install biopython
# Full discussion:
# https://marcobonzanini.wordpress.com/2015/01/12/searching-pubmed-with-python/
from Bio import Entrez
import json
query='("University of California, Los Angeles"[Affiliation] OR "University of California, Los Angeles"[Affiliation] OR "University of California Los Angeles"[Affiliation] OR "University of California at Los Angeles"[Affiliation] OR "University of California of Los Angeles"[Affiliation] OR "University of California in Los Angeles"[Affiliation] OR UCLA[Affiliation] OR 90095[Affiliation]) AND ("2014/01/01"[PDAT] : "2018/01/31"[PDAT])'
print(query)
def search(query):
Entrez.email = '[email protected]'
handle = Entrez.esearch(db='pubmed',
sort='relevance',
retmax='20',
retmode='xml',
term=query)
results = Entrez.read(handle)
return results
def fetch_details(id_list):
ids = ','.join(id_list)
Entrez.email = '[email protected]'
handle = Entrez.efetch(db='pubmed',
retmode='xml',
id=ids)
results = Entrez.read(handle)
return results
if __name__ == '__main__':
results = search(query)
id_list = results['IdList']
papers = fetch_details(id_list)
print(results)
for i, paper in enumerate(papers['PubmedArticle']): print("%d) %s" % (i+1, paper['MedlineCitation']['Article']['ArticleTitle']))
# Pretty print the first paper in full
import json
print(json.dumps(papers[0], indent=2, separators=(',', ':')))