forked from cmower/optas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdual_arm.py
215 lines (161 loc) · 6.07 KB
/
dual_arm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Python standard lib
import os
import sys
import pathlib
# OpTaS
import optas
from optas.templates import Manager
# PyBullet
import pybullet_api
kukal_base_position = [0.0, -0.25, 0.0]
kukar_base_position = [0.0, 0.25, 0.0]
class DualKukaPlanner(Manager):
def setup_solver(self):
# Parameters
T = 50
Tmax = 10.0
link_ee = "end_effector_ball"
t = optas.linspace(0, Tmax, T)
dt = float((t[1] - t[0]).toarray()[0, 0])
# Setup robot models
kukal = self._setup_kuka_model("kukal", kukal_base_position)
kukar = self._setup_kuka_model("kukar", kukar_base_position)
# Get robot names
kukal_name = kukal.get_name()
kukar_name = kukar.get_name()
# Setup optimization builder
builder = optas.OptimizationBuilder(T=T, robots=[kukal, kukar])
# Setup parameters
qcl = builder.add_parameter("qcl", kukal.ndof)
qcr = builder.add_parameter("qcr", kukar.ndof)
# Constraint: initial configuration
builder.fix_configuration(kukal_name, qcl)
builder.fix_configuration(kukar_name, qcr)
# Constraint: dynamics
builder.integrate_model_states(
kukal_name,
time_deriv=1, # i.e. integrate velocities to positions
dt=dt,
)
builder.integrate_model_states(
kukar_name,
time_deriv=1, # i.e. integrate velocities to positions
dt=dt,
)
# Get position FK function
posl_ee = kukal.get_global_link_position_function(link_ee, n=T)
posr_ee = kukar.get_global_link_position_function(link_ee, n=T)
# Get joint trajectory
Ql = builder.get_model_states(
kukal_name
) # ndof-by-T sym array for robot trajectory
Qr = builder.get_model_states(
kukar_name
) # ndof-by-T sym array for robot trajectory
# Get end-effector position trajectories
ee_pos_pathl = posl_ee(Ql)
ee_pos_pathr = posr_ee(Qr)
# Get joint velocity trajectory
dQl = builder.get_model_states(kukal_name, time_deriv=1)
dQr = builder.get_model_states(kukar_name, time_deriv=1)
# Cost: minimize joint velocity
w_dq = 0.01
builder.add_cost_term("kukal_min_join_vel", w_dq * optas.sumsqr(dQl))
builder.add_cost_term("kukar_min_join_vel", w_dq * optas.sumsqr(dQr))
# Get start position for each robot
pos0l = kukal.get_global_link_position(link_ee, qcl)
pos0r = kukar.get_global_link_position(link_ee, qcr)
# Find first goal positions
pos1l = pos0l + optas.DM([-0.1, 0.1, -0.2])
pos1r = pos0r + optas.DM([-0.1, -0.1, -0.2])
# Find second goal positions
pos2l = pos1l + optas.DM([0.0, 0.0, 0.3])
pos2r = pos1r + optas.DM([0.0, 0.0, 0.3])
# Find ee path
path_eel = optas.SX.zeros(3, T)
path_eer = optas.SX.zeros(3, T)
for i in range(T):
alpha_ = float(i) / float(T - 1)
if alpha_ < 0.4:
alpha = alpha_ / 0.4
path_eel[:, i] = alpha * pos1l + (1.0 - alpha) * pos0l
path_eer[:, i] = alpha * pos1r + (1.0 - alpha) * pos0r
elif 0.4 <= alpha_ < 0.5:
path_eel[:, i] = pos1l
path_eer[:, i] = pos1r
else:
alpha = (alpha_ - 0.5) / 0.5
path_eel[:, i] = alpha * pos2l + (1.0 - alpha) * pos1l
path_eer[:, i] = alpha * pos2r + (1.0 - alpha) * pos1r
builder.add_cost_term("ee_pos_pathl", optas.sumsqr(ee_pos_pathl - path_eel))
builder.add_cost_term("ee_pos_pathr", optas.sumsqr(ee_pos_pathr - path_eer))
# Setup solver
optimization = builder.build()
solver = optas.CasADiSolver(optimization).setup("ipopt")
# Save variables for later
self.kukal_name = kukal_name
self.kukar_name = kukar_name
self.Tmax = Tmax
return solver
def _setup_kuka_model(self, name, base_position):
cwd = pathlib.Path(
__file__
).parent.resolve() # path to current working directory
urdf_filename = os.path.join(cwd, "robots", "kuka_lwr", "kuka_lwr.urdf")
model = optas.RobotModel(
urdf_filename=urdf_filename,
name=name,
time_derivs=[0, 1], # i.e. joint position/velocity trajectory
)
model.add_base_frame("global_world", xyz=base_position)
return model
def is_ready(self):
return True
def reset(self, qcl, qcr):
# Set parameters
self.solver.reset_parameters(
{
"qcl": optas.DM(qcl),
"qcr": optas.DM(qcr),
}
)
def get_target(self):
return self.solution
def plan(self):
self.solve()
solution = self.get_target()
# Interpolate
planl = self.solver.interpolate(solution[f"{self.kukal_name}/q"], self.Tmax)
planr = self.solver.interpolate(solution[f"{self.kukar_name}/q"], self.Tmax)
return planl, planr
def main(gui=True):
dual_kuka_planner = DualKukaPlanner()
hz = 50
dt = 1.0 / float(hz)
pb = pybullet_api.PyBullet(dt, gui=gui)
box = pybullet_api.DynamicBox(
base_position=[0.75, 0, 0.15], half_extents=[0.15, 0.15, 0.15]
)
kukal = pybullet_api.KukaLWR(base_position=kukal_base_position)
kukar = pybullet_api.KukaLWR(base_position=kukar_base_position)
qc = optas.np.deg2rad([0, -30, 0, 90, 0, 30, 0])
kukal.reset(qc)
kukar.reset(qc)
dual_kuka_planner.reset(qc, qc)
planl, planr = dual_kuka_planner.plan()
pb.start()
pybullet_api.time.sleep(2.0)
start_time = pybullet_api.time.time()
while True:
t = pybullet_api.time.time() - start_time
if t > dual_kuka_planner.Tmax:
break
kukal.cmd(planl(t))
kukar.cmd(planr(t))
pybullet_api.time.sleep(dt*float(gui))
pybullet_api.time.sleep(10.0*float(gui))
pb.stop()
pb.close()
return 0
if __name__ == "__main__":
sys.exit(main())