forked from cmower/optas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfigure_eight_plan.py
187 lines (142 loc) · 5.39 KB
/
figure_eight_plan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Python standard lib
import os
import sys
import pathlib
# PyBullet
import pybullet_api
# OpTaS
import optas
from optas.templates import Manager
cwd = pathlib.Path(__file__).parent.resolve() # path to current working directory
class Planner(Manager):
def setup_solver(self):
# Setup robot ========================
# Kuka LWR
# link_ee = 'end_effector_ball' # end-effector link name
# filename = os.path.join(cwd, 'robots', 'kuka_lwr', 'kuka_lwr.urdf')
# use_xacro = False
# Kuka LBR
link_ee = "lbr_link_ee"
filename = os.path.join(cwd, "robots", "kuka_lbr", "med7.urdf.xacro")
use_xacro = True
# =====================================
# Setup
pi = optas.np.pi # 3.141...
self.T = 50 # no. time steps in trajectory
self.Tmax = 10.0 # trajectory of 5 secs
t = optas.linspace(0, self.Tmax, self.T)
self.dt = float((t[1] - t[0]).toarray()[0, 0]) # time step
# Setup robot
robot_model_input = {}
robot_model_input["time_derivs"] = [
0,
1,
] # i.e. joint position/velocity trajectory
if use_xacro:
robot_model_input["xacro_filename"] = filename
else:
robot_model_input["urdf_filename"] = filename
self.kuka = optas.RobotModel(**robot_model_input)
self.kuka_name = self.kuka.get_name()
print("Using robot named", self.kuka_name)
# Setup optimization builder
builder = optas.OptimizationBuilder(T=self.T, robots=[self.kuka])
# Setup parameters
qc = builder.add_parameter(
"qc", self.kuka.ndof
) # current robot joint configuration
# Constraint: initial configuration
builder.fix_configuration(self.kuka_name, config=qc)
builder.fix_configuration(
self.kuka_name, time_deriv=1
) # initial joint vel is zero
# Constraint: dynamics
builder.integrate_model_states(
self.kuka_name,
time_deriv=1, # i.e. integrate velocities to positions
dt=self.dt,
)
# Get joint trajectory
Q = builder.get_model_states(
self.kuka_name
) # ndof-by-T symbolic array for robot trajectory
# End effector position trajectory
pos = self.kuka.get_global_link_position_function(link_ee, n=self.T)
pos_ee = pos(Q) # 3-by-T position trajectory for end-effector (FK)
# Get current position of end-effector
pc = self.kuka.get_global_link_position(link_ee, qc)
Rc = self.kuka.get_global_link_rotation(link_ee, qc)
quatc = self.kuka.get_global_link_quaternion(link_ee, qc)
# Generate figure-of-eight path for end-effector in end-effector frame
path = optas.SX.zeros(3, self.T)
path[0, :] = 0.2 * optas.sin(t * pi * 0.5).T # need .T since t is col vec
path[1, :] = 0.1 * optas.sin(t * pi).T # need .T since t is col vec
# Put path in global frame
for k in range(self.T):
path[:, k] = pc + Rc @ path[:, k]
# Cost: figure eight
builder.add_cost_term("ee_path", 1000.0 * optas.sumsqr(path - pos_ee))
# Cost: minimize joint velocity
dQ = builder.get_model_states(self.kuka_name, time_deriv=1)
builder.add_cost_term("min_join_vel", 0.01 * optas.sumsqr(dQ))
# Prevent rotation in end-effector
quat = self.kuka.get_global_link_quaternion_function(link_ee, n=self.T)
builder.add_equality_constraint("no_eff_rot", quat(Q), quatc)
# Setup solver
optimization = builder.build()
solver = optas.CasADiSolver(optimization).setup("ipopt")
return solver
def is_ready(self):
return True
def reset(self, qc):
# Set parameters
self.solver.reset_parameters({"qc": optas.DM(qc)})
# Set initial seed, note joint velocity will be set to zero
Q0 = optas.diag(qc) @ optas.DM.ones(self.kuka.ndof, self.T)
self.solver.reset_initial_seed({f"{self.kuka_name}/q/x": Q0})
def get_target(self):
return self.solution
def plan(self):
# Solve problem
self.solve()
solution = self.get_target()
# Interpolate
plan = self.solver.interpolate(solution[f"{self.kuka_name}/q"], self.Tmax)
class Plan:
def __init__(self, robot, plan_function):
self.robot = robot
self.plan_function = plan_function
def __call__(self, t):
q = self.plan_function(t)
return q
return Plan(self.kuka, plan)
def main(gui=True):
# Initialize planner
planner = Planner()
# Plan trajectory
qc = optas.np.deg2rad([0, 30, 0, -90, 0, -30, 0])
planner.reset(qc)
plan = planner.plan()
# Setup PyBullet
hz = 50
dt = 1.0 / float(hz)
pb = pybullet_api.PyBullet(dt, gui=gui)
if planner.kuka_name == "med7":
kuka = pybullet_api.KukaLBR()
else:
kuka = pybullet_api.KukaLWR()
kuka.reset(plan(0.0))
pb.start()
start_time = pybullet_api.time.time()
# Main loop
while True:
t = pybullet_api.time.time() - start_time
if t > planner.Tmax:
break
kuka.cmd(plan(t))
pybullet_api.time.sleep(dt*float(gui))
pb.stop()
pb.close()
return 0
if __name__ == "__main__":
sys.exit(main())