-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtest_viper.py
172 lines (141 loc) · 5.74 KB
/
test_viper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import os.path as osp
import argparse
import numpy as np
import torch
import torch.nn as nn
from sklearn.metrics.pairwise import pairwise_distances
from torch.autograd import Variable
from torchvision import datasets, transforms
import scipy.io
from model import ft_net, ft_net_dense
from re_ranking import re_ranking
'''
Command
#python test_viper.py --use_dense --which_epoch 59 --name viper_dense
'''
parser = argparse.ArgumentParser(description='Testing arguments')
parser.add_argument('--use_dense', action='store_true', help='use densenet121')
parser.add_argument('--re_rank', action='store_true', help='use reranking')
parser.add_argument('--name', default='resnet', type=str, help='save model path')
parser.add_argument('--which_epoch', default='59', type=str, help='0,1,2,3...or last')
opt = parser.parse_args()
model_path = opt.name
data_transforms = transforms.Compose([
transforms.Resize((288, 144), interpolation=3),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
data_dir = '/home/paul/datasets/viper/pytorch'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms) for x in
['gallery', 'query']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=8,
shuffle=False, num_workers=4) for x in
['gallery', 'query']}
class_names = image_datasets['query'].classes
use_gpu = torch.cuda.is_available()
def load_network(network):
save_path = os.path.join('./viper', model_path, 'net_%s.pth' % opt.which_epoch)
network.load_state_dict(torch.load(save_path))
return network
def extract_feature(model, dataloaders):
features = torch.FloatTensor()
count = 0
labels = torch.LongTensor()
for data in dataloaders:
img, label = data
labels = torch.cat((labels, label), 0)
n, c, h, w = img.size()
count += n
#print(count)
if opt.use_dense:
ff = torch.FloatTensor(n, 1024).zero_()
else:
ff = torch.FloatTensor(n, 2048).zero_()
for i in range(2):
if i == 1:
img = fliplr(img)
input_img = Variable(img.cuda())
outputs = model(input_img)
f = outputs.data.cpu()
ff = ff + f
# norm feature
fnorm = torch.norm(ff, p=2, dim=1, keepdim=True)
ff = ff.div(fnorm.expand_as(ff))
features = torch.cat((features, f), 0)
return features.numpy(), labels.numpy()
def fliplr(img):
'''flip horizontal'''
inv_idx = torch.arange(img.size(3) - 1, -1, -1).long() # N x C x H x W
img_flip = img.index_select(3, inv_idx)
return img_flip
def _cmc_core(D, G, P, k):
order = np.argsort(D, axis=0)
res = np.zeros((k, D.shape[1]))
for i in range(k):
for j in range(D.shape[1]):
if G[order[i][j]] == P[j]:
res[i][j] += 1
return (res.sum(axis=1) * 1.0 / D.shape[1]).cumsum()
def _re_assign_labels(q_pids, g_pids):
# Reassign the labels to make them sequentially numbered from zero
unique_labels = np.unique(np.r_[q_pids, g_pids])
labels_map = {l: i for i, l in enumerate(unique_labels)}
q_pids = np.asarray([labels_map[l] for l in q_pids])
g_pids = np.asarray([labels_map[l] for l in g_pids])
return q_pids, g_pids
def test(query_feature, query_label, gallery_feature, gallery_label, method='cosine'):
D = pairwise_distances(gallery_feature, query_feature, metric=method, n_jobs=-2)
query_label, gallery_label = _re_assign_labels(query_label, gallery_label)
gallery_labels_set = np.unique(gallery_label)
if opt.re_rank:
q_g_dist = np.dot(query_feature, np.transpose(gallery_feature))
q_q_dist = np.dot(query_feature, np.transpose(query_feature))
g_g_dist = np.dot(gallery_feature, np.transpose(gallery_feature))
for label in query_label:
if label not in gallery_labels_set:
print('Probe-id is out of Gallery-id sets.')
Times = 100
k = 110
res = np.zeros(k)
gallery_labels_map = [[] for i in range(gallery_labels_set.size)]
for i, g in enumerate(gallery_label):
gallery_labels_map[g].append(i)
for __ in range(Times):
# Randomly select one gallery sample per label selected
newD = np.zeros((gallery_labels_set.size, query_label.size))
print(newD.shape)
for i, g in enumerate(gallery_labels_set):
j = np.random.choice(gallery_labels_map[g])
newD[i, :] = D[j, :]
# Compute CMC
print(newD.shape)
res += _cmc_core(newD, gallery_labels_set, query_label, k)
if opt.re_rank:
newD = re_ranking(q_g_dist, q_q_dist, g_g_dist)
newD = np.transpose(newD)
res += _cmc_core(newD, gallery_labels_set, query_label, k)
res /= Times
return res
if __name__ == '__main__':
# Load Collected data Trained model
print('-------test-----------')
if opt.use_dense:
model_structure = ft_net_dense(316)
else:
model_structure = ft_net(316)
model = load_network(model_structure)
# Remove the final fc layer and classifier layer
model.model.fc = nn.Sequential()
model.classifier = nn.Sequential()
# Change to test mode
model = model.eval()
if use_gpu:
model = model.cuda()
# Extract feature
gallery_feature, gallery_label = extract_feature(model, dataloaders['gallery'])
query_feature, query_label = extract_feature(model, dataloaders['query'])
res = test(query_feature, query_label, gallery_feature, gallery_label)
scipy.io.savemat('./viper/'+model_path.split('_')[1]+'.mat', {'CMC': res})
for topk in [1, 5, 10, 20]:
print("{:8}{:8.2%}".format('rank-' + str(topk), res[topk - 1]))