-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
205 lines (161 loc) · 7.22 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
import numpy as np
from torch.utils.data import DataLoader
from DataLoaders.DataAscad import DataAscad
from DataLoaders.DataDK import DataDK
from util import HW, device, save_model
import util_optimizer
def train(x_profiling, y_profiling, train_size,
x_validation, y_validation, validation_size,
network, loss_function, epochs=80, batch_size=1000, lr=0.00001,
checkpoints=None, save_path=None, l2_penalty=0.0, optimizer="Adam"):
# Cut to the correct training size
# x_profiling = x_profiling[0:train_size]
# y_profiling = y_profiling[0:train_size]
train_data_set = DataAscad(x_profiling, y_profiling, train_size)
validation_data_set = DataAscad(x_validation, y_validation, validation_size)
print(network)
# Optimizer
# optimizer = torch.optim.RMSprop(network.parameters(), lr=lr)
# optimizer = torch.optim.Adam(net.parameters(), lr=lr)
# optimizer = Nadam(network.parameters(), lr=lr)
# optimizer = torch.optim.Adam(network.parameters(), lr=lr, weight_decay=l2_penalty)
optimizer_args = {
"lr": lr,
"l2": l2_penalty
}
print(f"Using optimizer {optimizer}")
optimizer_func = util_optimizer.get_optimizer(optimizer)
optimizer = optimizer_func(network.parameters(), optimizer_args)
# Loss function
# criterion = nn.CrossEntropyLoss().to(device)
loss_function = loss_function.to(device)
# Losses and accuracy for saving
vali_losses = []
train_losses = []
vali_acc = []
train_acc = []
# Perform training
for epoch in range(epochs):
# Save checkpoints
if checkpoints is not None and epoch in checkpoints:
save_model(network, '{}.{}.pt'.format(save_path, epoch))
# Load the data and shuffle it each epoch
train_loader = DataLoader(train_data_set, batch_size=batch_size, shuffle=True)
train_iter = iter(train_loader)
total_batches = int(train_size / batch_size)
# Loop over all batches
train_running_loss = 0.0
train_correct = 0
for i in range(total_batches):
batch_x, batch_y = train_iter.next()
# zero the parameter gradients
optimizer.zero_grad()
# Calculate the batch and do a backward pass
net_out = network(batch_x)
loss = loss_function(net_out, batch_y)
loss.backward()
optimizer.step()
train_running_loss += loss.item()
_, pred = net_out.max(1)
z = pred == batch_y
train_correct += z.sum().item()
# Do a check on the validation
validation_iter = iter(DataLoader(validation_data_set, batch_size=batch_size))
validation_loss = 0.0
validation_batches = int(validation_size / batch_size)
validation_correct = 0
with torch.no_grad():
for i in range(validation_batches):
batch_x, batch_y = validation_iter.next()
net_out = network(batch_x)
loss = loss_function(net_out, batch_y)
validation_loss += loss.item()
_, pred = net_out.max(1)
z = pred == batch_y
validation_correct += z.sum().item()
train_loss = train_running_loss / total_batches
vali_loss = validation_loss / validation_batches
print("Epoch {}, train loss {}, train acc {}%, validation loss {}, vali acc {}%".format(
epoch,
train_loss, train_correct / train_size * 100.0,
vali_loss, validation_correct / validation_size * 100.0))
# Append the results of the epoch
vali_losses.append(vali_loss)
train_losses.append(train_loss)
vali_acc.append(validation_correct / validation_size)
train_acc.append(train_correct / train_size)
return network, (train_losses, vali_losses, train_acc, vali_acc)
def train_dk2(x_profiling, y_profiling, p_profiling, train_size,
x_validation, y_validation, p_validation, validation_size,
network, loss_function, epochs=80, batch_size=1000, lr=0.00001,
checkpoints=None, save_path=None, l2_penalty=0.0):
# Cut to the correct training size
x_profiling = x_profiling[0:train_size]
y_profiling = y_profiling[0:train_size]
p_profiling = p_profiling[0:train_size]
train_data_set = DataDK(x_profiling, y_profiling, p_profiling, train_size)
validation_data_set = DataDK(x_validation, y_validation, p_validation, validation_size)
print(network)
# Optimizer
optimizer = torch.optim.Adam(network.parameters(), lr=lr, weight_decay=l2_penalty)
# Loss function
# criterion = nn.CrossEntropyLoss().to(device)
loss_function = loss_function.to(device)
# Losses and accuracy for saving
vali_losses = []
train_losses = []
vali_acc = []
train_acc = []
# Perform training
for epoch in range(epochs):
# Save checkpoints
if checkpoints is not None and epoch in checkpoints:
save_model(network, '{}.{}.pt'.format(save_path, epoch))
# Load the data and shuffle it each epoch
train_loader = DataLoader(train_data_set, batch_size=batch_size, shuffle=True)
train_iter = iter(train_loader)
total_batches = int(train_size / batch_size)
# Loop over all batches
train_running_loss = 0.0
train_correct = 0
for i in range(total_batches):
batch_x, batch_y, plaintexts = train_iter.next()
# zero the parameter gradients
optimizer.zero_grad()
# Calculate the batch and do a backward pass
net_out = network(batch_x, plaintexts)
loss = loss_function(net_out, batch_y)
loss.backward()
optimizer.step()
train_running_loss += loss.item()
_, pred = net_out.max(1)
z = pred == batch_y
train_correct += z.sum().item()
# Do a check on the validation
validation_iter = iter(DataLoader(validation_data_set, batch_size=batch_size))
validation_loss = 0.0
validation_batches = int(validation_size / batch_size)
validation_correct = 0
with torch.no_grad():
for i in range(validation_batches):
batch_x, batch_y, plaintexts = validation_iter.next()
net_out = network(batch_x, plaintexts)
loss = loss_function(net_out, batch_y)
validation_loss += loss.item()
_, pred = net_out.max(1)
z = pred == batch_y
validation_correct += z.sum().item()
train_loss = train_running_loss / total_batches
vali_loss = validation_loss / validation_batches
print("Epoch {}, train loss {}, train acc {}%, validation loss {}, vali acc {}%".format(
epoch,
train_loss, train_correct / train_size * 100.0,
vali_loss, validation_correct / validation_size * 100.0))
# Append the results of the epoch
vali_losses.append(vali_loss)
train_losses.append(train_loss)
vali_acc.append(validation_correct / validation_size)
train_acc.append(train_correct / train_size)
return network, (train_losses, vali_losses, train_acc, vali_acc)