-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathcache_text_encoder_outputs.py
166 lines (129 loc) · 7.02 KB
/
cache_text_encoder_outputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import os
from typing import Optional, Union
import numpy as np
import torch
from tqdm import tqdm
from dataset import config_utils
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
import accelerate
from dataset.image_video_dataset import ItemInfo, save_text_encoder_output_cache
from hunyuan_model import text_encoder as text_encoder_module
from hunyuan_model.text_encoder import TextEncoder
import logging
from utils.model_utils import str_to_dtype
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def encode_prompt(text_encoder: TextEncoder, prompt: Union[str, list[str]]):
data_type = "video" # video only, image is not supported
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type)
with torch.no_grad():
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type)
return prompt_outputs.hidden_state, prompt_outputs.attention_mask
def encode_and_save_batch(
text_encoder: TextEncoder, batch: list[ItemInfo], is_llm: bool, accelerator: Optional[accelerate.Accelerator]
):
prompts = [item.caption for item in batch]
# print(prompts)
# encode prompt
if accelerator is not None:
with accelerator.autocast():
prompt_embeds, prompt_mask = encode_prompt(text_encoder, prompts)
else:
prompt_embeds, prompt_mask = encode_prompt(text_encoder, prompts)
# # convert to fp16 if needed
# if prompt_embeds.dtype == torch.float32 and text_encoder.dtype != torch.float32:
# prompt_embeds = prompt_embeds.to(text_encoder.dtype)
# save prompt cache
for item, embed, mask in zip(batch, prompt_embeds, prompt_mask):
save_text_encoder_output_cache(item, embed, mask, is_llm)
def main(args):
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
# Load dataset config
blueprint_generator = BlueprintGenerator(ConfigSanitizer())
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_utils.load_user_config(args.dataset_config)
blueprint = blueprint_generator.generate(user_config, args)
train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group)
datasets = train_dataset_group.datasets
# define accelerator for fp8 inference
accelerator = None
if args.fp8_llm:
accelerator = accelerate.Accelerator(mixed_precision="fp16")
# define encode function
num_workers = args.num_workers if args.num_workers is not None else max(1, os.cpu_count() - 1)
all_cache_files_for_dataset = [] # exisiting cache files
all_cache_paths_for_dataset = [] # all cache paths in the dataset
for dataset in datasets:
all_cache_files = [os.path.normpath(file) for file in dataset.get_all_text_encoder_output_cache_files()]
all_cache_files = set(all_cache_files)
all_cache_files_for_dataset.append(all_cache_files)
all_cache_paths_for_dataset.append(set())
def encode_for_text_encoder(text_encoder: TextEncoder, is_llm: bool):
for i, dataset in enumerate(datasets):
logger.info(f"Encoding dataset [{i}]")
all_cache_files = all_cache_files_for_dataset[i]
all_cache_paths = all_cache_paths_for_dataset[i]
for batch in tqdm(dataset.retrieve_text_encoder_output_cache_batches(num_workers)):
# update cache files (it's ok if we update it multiple times)
all_cache_paths.update([os.path.normpath(item.text_encoder_output_cache_path) for item in batch])
# skip existing cache files
if args.skip_existing:
filtered_batch = [
item for item in batch if not os.path.normpath(item.text_encoder_output_cache_path) in all_cache_files
]
# print(f"Filtered {len(batch) - len(filtered_batch)} existing cache files")
if len(filtered_batch) == 0:
continue
batch = filtered_batch
bs = args.batch_size if args.batch_size is not None else len(batch)
for i in range(0, len(batch), bs):
encode_and_save_batch(text_encoder, batch[i : i + bs], is_llm, accelerator)
# Load Text Encoder 1
text_encoder_dtype = torch.float16 if args.text_encoder_dtype is None else str_to_dtype(args.text_encoder_dtype)
logger.info(f"loading text encoder 1: {args.text_encoder1}")
text_encoder_1 = text_encoder_module.load_text_encoder_1(args.text_encoder1, device, args.fp8_llm, text_encoder_dtype)
text_encoder_1.to(device=device)
# Encode with Text Encoder 1
logger.info("Encoding with Text Encoder 1")
encode_for_text_encoder(text_encoder_1, is_llm=True)
del text_encoder_1
# Load Text Encoder 2
logger.info(f"loading text encoder 2: {args.text_encoder2}")
text_encoder_2 = text_encoder_module.load_text_encoder_2(args.text_encoder2, device, text_encoder_dtype)
text_encoder_2.to(device=device)
# Encode with Text Encoder 2
logger.info("Encoding with Text Encoder 2")
encode_for_text_encoder(text_encoder_2, is_llm=False)
del text_encoder_2
# remove cache files not in dataset
for i, dataset in enumerate(datasets):
all_cache_files = all_cache_files_for_dataset[i]
all_cache_paths = all_cache_paths_for_dataset[i]
for cache_file in all_cache_files:
if cache_file not in all_cache_paths:
if args.keep_cache:
logger.info(f"Keep cache file not in the dataset: {cache_file}")
else:
os.remove(cache_file)
logger.info(f"Removed old cache file: {cache_file}")
def setup_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_config", type=str, required=True, help="path to dataset config .toml file")
parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory")
parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory")
parser.add_argument("--device", type=str, default=None, help="device to use, default is cuda if available")
parser.add_argument("--text_encoder_dtype", type=str, default=None, help="data type for Text Encoder, default is float16")
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
parser.add_argument(
"--batch_size", type=int, default=None, help="batch size, override dataset config if dataset batch size > this"
)
parser.add_argument("--num_workers", type=int, default=None, help="number of workers for dataset. default is cpu count-1")
parser.add_argument("--skip_existing", action="store_true", help="skip existing cache files")
parser.add_argument("--keep_cache", action="store_true", help="keep cache files not in dataset")
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
main(args)