-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday13.py
105 lines (82 loc) · 2.65 KB
/
day13.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from __future__ import annotations
from typing import List, Tuple, NamedTuple
# PART 1
def earliest_bus(earliest_depart: int, departures: List[int]) -> int:
earliest: Tuple[int, int] = (1, 10000)
for departure in departures:
diff = departure * ((earliest_depart // departure) + 1) - earliest_depart
if earliest[1] > diff:
earliest = (departure, diff)
return earliest[0] * earliest[1]
# PART 2
class Bus(NamedTuple):
bus_id: int
wait: int
@staticmethod
def parse(raw: str) -> List[Bus]:
return [Bus(int(x), i) for i, x in enumerate(raw.split(",")) if x != "x"]
def brute_force(buses: Bus) -> int:
for num in range(1000000000000000):
good_buses = 0
for i, bus in enumerate(buses):
if i == 0:
continue
if ((buses[0].bus_id * num) + bus.wait) % bus.bus_id == 0:
good_buses += 1
else:
break
if good_buses == len(buses) - 1:
return buses[0].bus_id * num
return -1
def congru(a: int, b: int, n: int) -> int:
for k in range(0, n):
if (a * k) % n == b:
return k
def inverse(a: int, n: int):
"""
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers
Find t such that a*t ≋ 1 (mod n)
Examples:
>>> inverse(3, 11)
4
which satisfies 3*4 ≋ 1 (mod 11)
"""
t = 0
newt = 1
r = n
newr = a
while newr != 0:
quotient = r // newr
(t, newt) = (newt, t - quotient * newt)
(r, newr) = (newr, r - quotient * newr)
if r > 1:
raise Exception("a is not invertible")
if t < 0:
t += n
return t
def chinese_remainder_theorem(buses: List[Bus]) -> int:
M = 1
for bus in buses:
M *= bus.bus_id
Mi = [M // bus.bus_id for bus in buses]
Yi = [congru(mi, 1, bus.bus_id) for mi, bus in zip(Mi, buses)]
X = [(bus.bus_id - bus.wait) * mi * yi for bus, mi, yi in zip(buses, Mi, Yi)]
return sum(X) % M
# # TEST
RAW = """939
7,13,x,x,59,x,31,19"""
# earliest_departure, buses = RAW.split("\n")
# buses = [int(x) for x in buses.split(",") if x != "x"]
# print(earliest_bus(int(earliest_departure), buses))
# buses = Bus.parse(RAW.split("\n")[1])
# print(brute_force(buses))
# print(chinese_remainder_theorem(buses))
# EXERCISE
with open("inputs/day13.txt") as f:
erl_dep, buses = f.read().splitlines()
buses_ids = [int(x) for x in buses.split(",") if x != "x"]
print(earliest_bus(int(erl_dep), buses_ids))
buses = Bus.parse(buses)
n = [bus.bus_id for bus in buses]
a = [bus.bus_id - bus.wait for bus in buses]
print(chinese_remainder_theorem(buses))