-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_answers.py
139 lines (92 loc) · 5.34 KB
/
my_answers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np
class NeuralNetwork(object):
def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
# Set number of nodes in input, hidden and output layers.
self.input_nodes = input_nodes
self.hidden_nodes = hidden_nodes
self.output_nodes = output_nodes
# Initialize weights
self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5,
(self.input_nodes, self.hidden_nodes))
self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5,
(self.hidden_nodes, self.output_nodes))
self.lr = learning_rate
def sigmoid(x):
return 1 / (1 + np.exp(-x))
self.activation_function = sigmoid
def train(self, features, targets):
''' Train the network on batch of features and targets.
Arguments
---------
features: 2D array, each row is one data record, each column is a feature
targets: 1D array of target values
'''
n_records = features.shape[0]
delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape)
delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape)
for X, y in zip(features, targets):
final_outputs, hidden_outputs = self.forward_pass_train(X) # Implement the forward pass function below
# Implement the backproagation function below
delta_weights_i_h, delta_weights_h_o = self.backpropagation(final_outputs, hidden_outputs, X, y,
delta_weights_i_h, delta_weights_h_o)
self.update_weights(delta_weights_i_h, delta_weights_h_o, n_records)
def forward_pass_train(self, X):
''' Implement forward pass here
Arguments
---------
X: features batch
'''
hidden_inputs = np.dot(X, self.weights_input_to_hidden) # signals into hidden layer
hidden_outputs = 1 / (1 + np.exp(-hidden_inputs)) # signals from hidden layer
final_inputs = np.dot(hidden_outputs,self.weights_hidden_to_output) # signals into final output layer
final_outputs = final_inputs # signals from final output layer
return final_outputs, hidden_outputs
def backpropagation(self, final_outputs, hidden_outputs, X, y, delta_weights_i_h, delta_weights_h_o):
''' Implement backpropagation
Arguments
---------
final_outputs: output from forward pass
y: target (i.e. label) batch
delta_weights_i_h: change in weights from input to hidden layers
delta_weights_h_o: change in weights from hidden to output layers
'''
#### Implement the backward pass here ####
### Backward pass ###
error = y - final_outputs # Output layer error is the difference between desired target and actual output.
hidden_error = np.dot(error, self.weights_hidden_to_output.T)
output_error_term = error
hidden_error_term = hidden_error_term = hidden_error * hidden_outputs * (1 - hidden_outputs)
#delta_weights_h_o += hidden_outputs[:, None] * output_error_term
# Weight step (input to hidden)
delta_weights_i_h =delta_weights_i_h + (hidden_error_term * X[:, None])
# Weight step (hidden to output)
delta_weights_h_o =delta_weights_h_o + (output_error_term * hidden_outputs[:, None])
return delta_weights_i_h, delta_weights_h_o
def update_weights(self, delta_weights_i_h, delta_weights_h_o, n_records):
''' Update weights on gradient descent step
Arguments
---------
delta_weights_i_h: change in weights from input to hidden layers
delta_weights_h_o: change in weights from hidden to output layers
n_records: number of records
'''
self.weights_hidden_to_output =self.weights_hidden_to_output + (self.lr * delta_weights_h_o / n_records) # update hidden-to-output weights with gradient descent step
self.weights_input_to_hidden =self.weights_input_to_hidden + (self.lr * delta_weights_i_h / n_records) # update input-to-hidden weights with gradient descent step
def run(self, features):
''' Run a forward pass through the network with input features
Arguments
---------
features: 1D array of feature values
'''
hidden_inputs = np.dot(features,self.weights_input_to_hidden) # signals into hidden layer
hidden_outputs = 1 / (1 + np.exp(-hidden_inputs)) # signals from hidden layer
final_inputs = np.dot(hidden_outputs,self.weights_hidden_to_output) # signals into final output layer
final_outputs = final_inputs # signals from final output layer
return final_outputs
#########################################################
# Set hyperparameters here
##########################################################
iterations = 5000
learning_rate = 0.4
hidden_nodes = 25
output_nodes = 1