forked from zhxing001/code_of_paper_about_tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
先放到这里,可能需要用
- Loading branch information
Showing
5 changed files
with
780 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2016 uoip | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
# KCF tracker in Python | ||
|
||
Python implementation of | ||
> [High-Speed Tracking with Kernelized Correlation Filters](http://www.robots.ox.ac.uk/~joao/publications/henriques_tpami2015.pdf)<br> | ||
> J. F. Henriques, R. Caseiro, P. Martins, J. Batista<br> | ||
> TPAMI 2015 | ||
It is translated from [KCFcpp](https://github.com/joaofaro/KCFcpp) (Authors: Joao Faro, Christian Bailer, Joao F. Henriques), a C++ implementation of Kernelized Correlation Filters. Find more references and code of KCF at http://www.robots.ox.ac.uk/~joao/circulant/ | ||
|
||
### Requirements | ||
- Python 2.7 | ||
- NumPy | ||
- Numba (needed if you want to use the hog feature) | ||
- OpenCV (ensure that you can `import cv2` in python) | ||
|
||
Actually, I have installed Anaconda(for Python 2.7), and OpenCV 3.1(from [opencv.org](http://opencv.org/)). | ||
|
||
### Use | ||
Download the sources and execute | ||
```shell | ||
git clone https://github.com/uoip/KCFpy.git | ||
cd KCFpy | ||
python run.py | ||
``` | ||
It will open the default camera of your computer, you can also open a different camera or a video | ||
```shell | ||
python run.py 2 | ||
``` | ||
```shell | ||
python run.py ./test.avi | ||
``` | ||
Try different options (hog/gray, fixed/flexible window, singlescale/multiscale) of KCF tracker by modifying the arguments in line `tracker = kcftracker.KCFTracker(False, True, False) # hog, fixed_window, multiscale` in run.py. | ||
|
||
|
||
### Peoblem | ||
I have struggled to make this python implementation as fast as possible, but it's still 2 ~ 3 times slower than its C++ counterpart, furthermore, the use of Numba introduce some unpleasant delay when initializing tracker (***NEW:*** the problem has been solved in [KCFnb](https://github.com/uoip/KCFnb) by using AOT compilation). | ||
|
||
***NEWER:*** I write a python wrapper for KCFcpp, see [KCFcpp-py-wrapper](https://github.com/uoip/KCFcpp-py-wrapper), so we can benefit from C++'s speed in python now. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,308 @@ | ||
import numpy as np | ||
import cv2 | ||
from numba import jit | ||
|
||
# constant | ||
NUM_SECTOR = 9 | ||
FLT_EPSILON = 1e-07 | ||
|
||
|
||
@jit | ||
def func1(dx, dy, boundary_x, boundary_y, height, width, numChannels): | ||
r = np.zeros((height, width), np.float32) | ||
alfa = np.zeros((height, width, 2), np.int) | ||
|
||
for j in xrange(1, height-1): | ||
for i in xrange(1, width-1): | ||
c = 0 | ||
x = dx[j, i, c] | ||
y = dy[j, i, c] | ||
r[j, i] = np.sqrt(x*x + y*y) | ||
|
||
for ch in xrange(1, numChannels): | ||
tx = dx[j, i, ch] | ||
ty = dy[j, i, ch] | ||
magnitude = np.sqrt(tx*tx + ty*ty) | ||
if(magnitude > r[j, i]): | ||
r[j, i] = magnitude | ||
c = ch | ||
x = tx | ||
y = ty | ||
|
||
mmax = boundary_x[0]*x + boundary_y[0]*y | ||
maxi = 0 | ||
|
||
for kk in xrange(0, NUM_SECTOR): | ||
dotProd = boundary_x[kk]*x + boundary_y[kk]*y | ||
if(dotProd > mmax): | ||
mmax = dotProd | ||
maxi = kk | ||
elif(-dotProd > mmax): | ||
mmax = -dotProd | ||
maxi = kk + NUM_SECTOR | ||
|
||
alfa[j, i, 0] = maxi % NUM_SECTOR | ||
alfa[j, i, 1] = maxi | ||
return r, alfa | ||
|
||
@jit | ||
def func2(dx, dy, boundary_x, boundary_y, r, alfa, nearest, w, k, height, width, sizeX, sizeY, p, stringSize): | ||
mapp = np.zeros((sizeX*sizeY*p), np.float32) | ||
for i in xrange(sizeY): | ||
for j in xrange(sizeX): | ||
for ii in xrange(k): | ||
for jj in xrange(k): | ||
if((i * k + ii > 0) and (i * k + ii < height - 1) and (j * k + jj > 0) and (j * k + jj < width - 1)): | ||
mapp[i*stringSize + j*p + alfa[k*i+ii,j*k+jj,0]] += r[k*i+ii,j*k+jj] * w[ii,0] * w[jj,0] | ||
mapp[i*stringSize + j*p + alfa[k*i+ii,j*k+jj,1] + NUM_SECTOR] += r[k*i+ii,j*k+jj] * w[ii,0] * w[jj,0] | ||
if((i + nearest[ii] >= 0) and (i + nearest[ii] <= sizeY - 1)): | ||
mapp[(i+nearest[ii])*stringSize + j*p + alfa[k*i+ii,j*k+jj,0]] += r[k*i+ii,j*k+jj] * w[ii,1] * w[jj,0] | ||
mapp[(i+nearest[ii])*stringSize + j*p + alfa[k*i+ii,j*k+jj,1] + NUM_SECTOR] += r[k*i+ii,j*k+jj] * w[ii,1] * w[jj,0] | ||
if((j + nearest[jj] >= 0) and (j + nearest[jj] <= sizeX - 1)): | ||
mapp[i*stringSize + (j+nearest[jj])*p + alfa[k*i+ii,j*k+jj,0]] += r[k*i+ii,j*k+jj] * w[ii,0] * w[jj,1] | ||
mapp[i*stringSize + (j+nearest[jj])*p + alfa[k*i+ii,j*k+jj,1] + NUM_SECTOR] += r[k*i+ii,j*k+jj] * w[ii,0] * w[jj,1] | ||
if((i + nearest[ii] >= 0) and (i + nearest[ii] <= sizeY - 1) and (j + nearest[jj] >= 0) and (j + nearest[jj] <= sizeX - 1)): | ||
mapp[(i+nearest[ii])*stringSize + (j+nearest[jj])*p + alfa[k*i+ii,j*k+jj,0]] += r[k*i+ii,j*k+jj] * w[ii,1] * w[jj,1] | ||
mapp[(i+nearest[ii])*stringSize + (j+nearest[jj])*p + alfa[k*i+ii,j*k+jj,1] + NUM_SECTOR] += r[k*i+ii,j*k+jj] * w[ii,1] * w[jj,1] | ||
return mapp | ||
|
||
@jit | ||
def func3(partOfNorm, mappmap, sizeX, sizeY, p, xp, pp): | ||
newData = np.zeros((sizeY*sizeX*pp), np.float32) | ||
for i in xrange(1, sizeY+1): | ||
for j in xrange(1, sizeX+1): | ||
pos1 = i * (sizeX+2) * xp + j * xp | ||
pos2 = (i-1) * sizeX * pp + (j-1) * pp | ||
|
||
valOfNorm = np.sqrt(partOfNorm[(i )*(sizeX + 2) + (j )] + | ||
partOfNorm[(i )*(sizeX + 2) + (j + 1)] + | ||
partOfNorm[(i + 1)*(sizeX + 2) + (j )] + | ||
partOfNorm[(i + 1)*(sizeX + 2) + (j + 1)]) + FLT_EPSILON | ||
newData[pos2:pos2+p] = mappmap[pos1:pos1+p] / valOfNorm | ||
newData[pos2+4*p:pos2+6*p] = mappmap[pos1+p:pos1+3*p] / valOfNorm | ||
|
||
valOfNorm = np.sqrt(partOfNorm[(i )*(sizeX + 2) + (j )] + | ||
partOfNorm[(i )*(sizeX + 2) + (j + 1)] + | ||
partOfNorm[(i - 1)*(sizeX + 2) + (j )] + | ||
partOfNorm[(i - 1)*(sizeX + 2) + (j + 1)]) + FLT_EPSILON | ||
newData[pos2+p:pos2+2*p] = mappmap[pos1:pos1+p] / valOfNorm | ||
newData[pos2+6*p:pos2+8*p] = mappmap[pos1+p:pos1+3*p] / valOfNorm | ||
|
||
valOfNorm = np.sqrt(partOfNorm[(i )*(sizeX + 2) + (j )] + | ||
partOfNorm[(i )*(sizeX + 2) + (j - 1)] + | ||
partOfNorm[(i + 1)*(sizeX + 2) + (j )] + | ||
partOfNorm[(i + 1)*(sizeX + 2) + (j - 1)]) + FLT_EPSILON | ||
newData[pos2+2*p:pos2+3*p] = mappmap[pos1:pos1+p] / valOfNorm | ||
newData[pos2+8*p:pos2+10*p] = mappmap[pos1+p:pos1+3*p] / valOfNorm | ||
|
||
valOfNorm = np.sqrt(partOfNorm[(i )*(sizeX + 2) + (j )] + | ||
partOfNorm[(i )*(sizeX + 2) + (j - 1)] + | ||
partOfNorm[(i - 1)*(sizeX + 2) + (j )] + | ||
partOfNorm[(i - 1)*(sizeX + 2) + (j - 1)]) + FLT_EPSILON | ||
newData[pos2+3*p:pos2+4*p] = mappmap[pos1:pos1+p] / valOfNorm | ||
newData[pos2+10*p:pos2+12*p] = mappmap[pos1+p:pos1+3*p] / valOfNorm | ||
return newData | ||
|
||
@jit | ||
def func4(mappmap, p, sizeX, sizeY, pp, yp, xp, nx, ny): | ||
newData = np.zeros((sizeX*sizeY*pp), np.float32) | ||
for i in xrange(sizeY): | ||
for j in xrange(sizeX): | ||
pos1 = (i*sizeX + j) * p | ||
pos2 = (i*sizeX + j) * pp | ||
|
||
for jj in xrange(2 * xp): # 2*9 | ||
newData[pos2 + jj] = np.sum(mappmap[pos1 + yp*xp + jj : pos1 + 3*yp*xp + jj : 2*xp]) * ny | ||
for jj in xrange(xp): # 9 | ||
newData[pos2 + 2*xp + jj] = np.sum(mappmap[pos1 + jj : pos1 + jj + yp*xp : xp]) * ny | ||
for ii in xrange(yp): # 4 | ||
newData[pos2 + 3*xp + ii] = np.sum(mappmap[pos1 + yp*xp + ii*xp*2 : pos1 + yp*xp + ii*xp*2 + 2*xp]) * nx | ||
return newData | ||
|
||
|
||
|
||
def getFeatureMaps(image, k, mapp): | ||
kernel = np.array([[-1., 0., 1.]], np.float32) | ||
|
||
height = image.shape[0] | ||
width = image.shape[1] | ||
assert(image.ndim==3 and image.shape[2]) | ||
numChannels = 3 #(1 if image.ndim==2 else image.shape[2]) | ||
|
||
sizeX = width / k | ||
sizeY = height / k | ||
px = 3 * NUM_SECTOR | ||
p = px | ||
stringSize = sizeX * p | ||
|
||
mapp['sizeX'] = sizeX | ||
mapp['sizeY'] = sizeY | ||
mapp['numFeatures'] = p | ||
mapp['map'] = np.zeros((mapp['sizeX']*mapp['sizeY']*mapp['numFeatures']), np.float32) | ||
|
||
dx = cv2.filter2D(np.float32(image), -1, kernel) # np.float32(...) is necessary | ||
dy = cv2.filter2D(np.float32(image), -1, kernel.T) | ||
|
||
arg_vector = np.arange(NUM_SECTOR+1).astype(np.float32) * np.pi / NUM_SECTOR | ||
boundary_x = np.cos(arg_vector) | ||
boundary_y = np.sin(arg_vector) | ||
|
||
''' | ||
### original implementation | ||
r, alfa = func1(dx, dy, boundary_x, boundary_y, height, width, numChannels) #func1 without @jit ### | ||
### 40x speedup | ||
magnitude = np.sqrt(dx**2 + dy**2) | ||
r = np.max(magnitude, axis=2) | ||
c = np.argmax(magnitude, axis=2) | ||
idx = (np.arange(c.shape[0])[:,np.newaxis], np.arange(c.shape[1]), c) | ||
x, y = dx[idx], dy[idx] | ||
dotProd = x[:,:,np.newaxis] * boundary_x[np.newaxis,np.newaxis,:] + y[:,:,np.newaxis] * boundary_y[np.newaxis,np.newaxis,:] | ||
dotProd = np.concatenate((dotProd, -dotProd), axis=2) | ||
maxi = np.argmax(dotProd, axis=2) | ||
alfa = np.dstack((maxi % NUM_SECTOR, maxi)) ### | ||
''' | ||
### 200x speedup | ||
r, alfa = func1(dx, dy, boundary_x, boundary_y, height, width, numChannels) #with @jit | ||
### ~0.001s | ||
|
||
nearest = np.ones((k), np.int) | ||
nearest[0:k/2] = -1 | ||
|
||
w = np.zeros((k, 2), np.float32) | ||
a_x = np.concatenate((k/2 - np.arange(k/2) - 0.5, np.arange(k/2,k) - k/2 + 0.5)).astype(np.float32) | ||
b_x = np.concatenate((k/2 + np.arange(k/2) + 0.5, -np.arange(k/2,k) + k/2 - 0.5 + k)).astype(np.float32) | ||
w[:, 0] = 1.0 / a_x * ((a_x*b_x) / (a_x+b_x)) | ||
w[:, 1] = 1.0 / b_x * ((a_x*b_x) / (a_x+b_x)) | ||
|
||
''' | ||
### original implementation | ||
mapp['map'] = func2(dx, dy, boundary_x, boundary_y, r, alfa, nearest, w, k, height, width, sizeX, sizeY, p, stringSize) #func2 without @jit ### | ||
''' | ||
### 500x speedup | ||
mapp['map'] = func2(dx, dy, boundary_x, boundary_y, r, alfa, nearest, w, k, height, width, sizeX, sizeY, p, stringSize) #with @jit | ||
### ~0.001s | ||
|
||
return mapp | ||
|
||
|
||
def normalizeAndTruncate(mapp, alfa): | ||
sizeX = mapp['sizeX'] | ||
sizeY = mapp['sizeY'] | ||
|
||
p = NUM_SECTOR | ||
xp = NUM_SECTOR * 3 | ||
pp = NUM_SECTOR * 12 | ||
|
||
''' | ||
### original implementation | ||
partOfNorm = np.zeros((sizeY*sizeX), np.float32) | ||
for i in xrange(sizeX*sizeY): | ||
pos = i * mapp['numFeatures'] | ||
partOfNorm[i] = np.sum(mapp['map'][pos:pos+p]**2) ### | ||
''' | ||
### 50x speedup | ||
idx = np.arange(0, sizeX*sizeY*mapp['numFeatures'], mapp['numFeatures']).reshape((sizeX*sizeY, 1)) + np.arange(p) | ||
partOfNorm = np.sum(mapp['map'][idx] ** 2, axis=1) ### ~0.0002s | ||
|
||
sizeX, sizeY = sizeX-2, sizeY-2 | ||
|
||
|
||
''' | ||
### original implementation | ||
newData = func3(partOfNorm, mapp['map'], sizeX, sizeY, p, xp, pp) #func3 without @jit ### | ||
### 30x speedup | ||
newData = np.zeros((sizeY*sizeX*pp), np.float32) | ||
idx = (np.arange(1,sizeY+1)[:,np.newaxis] * (sizeX+2) + np.arange(1,sizeX+1)).reshape((sizeY*sizeX, 1)) # much faster than it's List Comprehension counterpart (see next line) | ||
#idx = np.array([[i*(sizeX+2) + j] for i in xrange(1,sizeY+1) for j in xrange(1,sizeX+1)]) | ||
pos1 = idx * xp | ||
pos2 = np.arange(sizeY*sizeX)[:,np.newaxis] * pp | ||
valOfNorm1 = np.sqrt(partOfNorm[idx] + partOfNorm[idx+1] + partOfNorm[idx+sizeX+2] + partOfNorm[idx+sizeX+2+1]) + FLT_EPSILON | ||
valOfNorm2 = np.sqrt(partOfNorm[idx] + partOfNorm[idx+1] + partOfNorm[idx-sizeX-2] + partOfNorm[idx+sizeX-2+1]) + FLT_EPSILON | ||
valOfNorm3 = np.sqrt(partOfNorm[idx] + partOfNorm[idx-1] + partOfNorm[idx+sizeX+2] + partOfNorm[idx+sizeX+2-1]) + FLT_EPSILON | ||
valOfNorm4 = np.sqrt(partOfNorm[idx] + partOfNorm[idx-1] + partOfNorm[idx-sizeX-2] + partOfNorm[idx+sizeX-2-1]) + FLT_EPSILON | ||
map1 = mapp['map'][pos1 + np.arange(p)] | ||
map2 = mapp['map'][pos1 + np.arange(p,3*p)] | ||
newData[pos2 + np.arange(p)] = map1 / valOfNorm1 | ||
newData[pos2 + np.arange(4*p,6*p)] = map2 / valOfNorm1 | ||
newData[pos2 + np.arange(p,2*p)] = map1 / valOfNorm2 | ||
newData[pos2 + np.arange(6*p,8*p)] = map2 / valOfNorm2 | ||
newData[pos2 + np.arange(2*p,3*p)] = map1 / valOfNorm3 | ||
newData[pos2 + np.arange(8*p,10*p)] = map2 / valOfNorm3 | ||
newData[pos2 + np.arange(3*p,4*p)] = map1 / valOfNorm4 | ||
newData[pos2 + np.arange(10*p,12*p)] = map2 / valOfNorm4 ### | ||
''' | ||
### 30x speedup | ||
newData = func3(partOfNorm, mapp['map'], sizeX, sizeY, p, xp, pp) #with @jit | ||
### | ||
|
||
# truncation | ||
newData[newData > alfa] = alfa | ||
|
||
mapp['numFeatures'] = pp | ||
mapp['sizeX'] = sizeX | ||
mapp['sizeY'] = sizeY | ||
mapp['map'] = newData | ||
|
||
return mapp | ||
|
||
|
||
def PCAFeatureMaps(mapp): | ||
sizeX = mapp['sizeX'] | ||
sizeY = mapp['sizeY'] | ||
|
||
p = mapp['numFeatures'] | ||
pp = NUM_SECTOR * 3 + 4 | ||
yp = 4 | ||
xp = NUM_SECTOR | ||
|
||
nx = 1.0 / np.sqrt(xp*2) | ||
ny = 1.0 / np.sqrt(yp) | ||
|
||
''' | ||
### original implementation | ||
newData = func4(mapp['map'], p, sizeX, sizeY, pp, yp, xp, nx, ny) #func without @jit ### | ||
### 7.5x speedup | ||
newData = np.zeros((sizeX*sizeY*pp), np.float32) | ||
idx1 = np.arange(2*xp).reshape((2*xp, 1)) + np.arange(xp*yp, 3*xp*yp, 2*xp) | ||
idx2 = np.arange(xp).reshape((xp, 1)) + np.arange(0, xp*yp, xp) | ||
idx3 = np.arange(0, 2*xp*yp, 2*xp).reshape((yp, 1)) + np.arange(xp*yp, xp*yp+2*xp) | ||
for i in xrange(sizeY): | ||
for j in xrange(sizeX): | ||
pos1 = (i*sizeX + j) * p | ||
pos2 = (i*sizeX + j) * pp | ||
newData[pos2 : pos2+2*xp] = np.sum(mapp['map'][pos1 + idx1], axis=1) * ny | ||
newData[pos2+2*xp : pos2+3*xp] = np.sum(mapp['map'][pos1 + idx2], axis=1) * ny | ||
newData[pos2+3*xp : pos2+3*xp+yp] = np.sum(mapp['map'][pos1 + idx3], axis=1) * nx ### | ||
### 120x speedup | ||
newData = np.zeros((sizeX*sizeY*pp), np.float32) | ||
idx01 = (np.arange(0,sizeX*sizeY*pp,pp)[:,np.newaxis] + np.arange(2*xp)).reshape((sizeX*sizeY*2*xp)) | ||
idx02 = (np.arange(0,sizeX*sizeY*pp,pp)[:,np.newaxis] + np.arange(2*xp,3*xp)).reshape((sizeX*sizeY*xp)) | ||
idx03 = (np.arange(0,sizeX*sizeY*pp,pp)[:,np.newaxis] + np.arange(3*xp,3*xp+yp)).reshape((sizeX*sizeY*yp)) | ||
idx11 = (np.arange(0,sizeX*sizeY*p,p)[:,np.newaxis] + np.arange(2*xp)).reshape((sizeX*sizeY*2*xp, 1)) + np.arange(xp*yp, 3*xp*yp, 2*xp) | ||
idx12 = (np.arange(0,sizeX*sizeY*p,p)[:,np.newaxis] + np.arange(xp)).reshape((sizeX*sizeY*xp, 1)) + np.arange(0, xp*yp, xp) | ||
idx13 = (np.arange(0,sizeX*sizeY*p,p)[:,np.newaxis] + np.arange(0, 2*xp*yp, 2*xp)).reshape((sizeX*sizeY*yp, 1)) + np.arange(xp*yp, xp*yp+2*xp) | ||
newData[idx01] = np.sum(mapp['map'][idx11], axis=1) * ny | ||
newData[idx02] = np.sum(mapp['map'][idx12], axis=1) * ny | ||
newData[idx03] = np.sum(mapp['map'][idx13], axis=1) * nx ### | ||
''' | ||
### 190x speedup | ||
newData = func4(mapp['map'], p, sizeX, sizeY, pp, yp, xp, nx, ny) #with @jit | ||
### | ||
|
||
mapp['numFeatures'] = pp | ||
mapp['map'] = newData | ||
|
||
return mapp |
Oops, something went wrong.