-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapi.py
249 lines (206 loc) · 10.5 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import time
import json
from numpy import set_printoptions
import requests
import zipfile
from io import BytesIO
import shutil
import torch
from torch.utils.data import DataLoader
from transformers import BertTokenizer
from tqdm import tqdm
try:
from opencc import OpenCC
except:
pass
import numpy as np
from g2pw.module import G2PW
from g2pw.dataset import prepare_data, TextDataset, TextData, get_phoneme_labels, get_char_phoneme_labels
from g2pw.utils import load_config
MODEL_URL = 'https://storage.googleapis.com/esun-ai/g2pW/G2PWModel-v2.zip'
def download_model(model_dir):
os.makedirs(model_dir, exist_ok=True)
r = requests.get(MODEL_URL, allow_redirects=True)
zip_file = zipfile.ZipFile(BytesIO(r.content))
for member in zip_file.namelist():
filename = os.path.basename(member)
# skip directories
if not filename:
continue
# copy file (taken from zipfile's extract)
source = zip_file.open(member)
target = open(os.path.join(model_dir, filename), "wb")
with source, target:
shutil.copyfileobj(source, target)
curdir = os.path.dirname(os.path.abspath(__file__))
model_source_provide = os.path.join(curdir, '../bert-base-chinese/')
class G2PWConverter:
def __init__(self, model_dir='G2PWModel/', style='bopomofo', model_source=model_source_provide, use_cuda=False, num_workers=None, batch_size=None,
turnoff_tqdm=True, enable_non_tradional_chinese=False,use_g2pw_once=False):
if not os.path.exists(os.path.join(model_dir, 'best_accuracy.pth')):
download_model(model_dir)
self.config = load_config(os.path.join(model_dir, 'config.py'), use_default=True)
self.num_workers = num_workers if num_workers else self.config.num_workers
self.batch_size = batch_size if batch_size else self.config.batch_size
self.model_source = model_source if model_source else self.config.model_source
self.turnoff_tqdm = turnoff_tqdm
self.enable_opencc = enable_non_tradional_chinese
self.use_g2pw_once = use_g2pw_once
self.device = torch.device('cuda' if use_cuda else 'cpu')
self.tokenizer = BertTokenizer.from_pretrained(self.config.model_source)
polyphonic_chars_path = os.path.join(model_dir, 'POLYPHONIC_CHARS.txt')
monophonic_chars_path = os.path.join(model_dir, 'MONOPHONIC_CHARS.txt')
self.polyphonic_chars = [line.split('\t') for line in open(polyphonic_chars_path).read().strip().split('\n')]
self.monophonic_chars = [line.split('\t') for line in open(monophonic_chars_path).read().strip().split('\n')]
self.non_polyphonic = {
'一', '不', '和', '咋', '嗲', '剖', '差', '攢', '倒', '難', '奔', '勁', '拗',
'肖', '瘙', '誒', '泊'
}
self.non_monophonic = {'似', '攢'}
self.monophonic_chars_dict = {
char: phoneme
for char, phoneme in self.monophonic_chars
}
# for char in self.non_monophonic:
# if char in self.monophonic_chars_dict:
# self.monophonic_chars_dict.pop(char)
self.labels, self.char2phonemes = get_char_phoneme_labels(self.polyphonic_chars) if self.config.use_char_phoneme else get_phoneme_labels(self.polyphonic_chars)
self.chars = sorted(list(self.char2phonemes.keys()))
self.polyphonic_chars_new = set(self.chars)
for char in self.non_polyphonic:
if char in self.polyphonic_chars_new:
self.polyphonic_chars_new.remove(char)
self.pos_tags = TextDataset.POS_TAGS
self.model = G2PW.from_pretrained(
self.model_source,
labels=self.labels,
chars=self.chars,
pos_tags=self.pos_tags,
use_conditional=self.config.use_conditional,
param_conditional=self.config.param_conditional,
use_focal=self.config.use_focal,
param_focal=self.config.param_focal,
use_pos=self.config.use_pos,
param_pos=self.config.param_pos
)
checkpoint = os.path.join(model_dir, 'best_accuracy.pth')
self.model.load_state_dict(torch.load(checkpoint, map_location=self.device))
self.model.to(self.device)
self.model.eval()
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)),
'bopomofo_to_pinyin_wo_tune_dict.json'), 'r') as fr:
self.bopomofo_convert_dict = json.load(fr)
self.style_convert_func = {
'bopomofo': lambda x: x,
'pinyin': self._convert_bopomofo_to_pinyin,
}[style]
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)),
'char_bopomofo_dict.json'), 'r') as fr:
self.char_bopomofo_dict = json.load(fr)
if self.enable_opencc:
self.cc = OpenCC('s2tw')
def predict(self, dataloader):
# model.eval()
all_preds = []
all_confidences = []
if dataloader == None and self.use_g2pw_once:
return all_preds, all_confidences
with torch.no_grad():
if self.use_g2pw_once:
# input_ids, token_type_ids, attention_mask, phoneme_mask, char_ids, position_ids = \
# [data[name].to(self.device) for name in ('input_ids', 'token_type_ids', 'attention_mask', 'phoneme_mask', 'char_ids', 'position_ids')]
input_ids, phoneme_mask, char_ids, position_ids = \
[dataloader[name].to(self.device) for name in ('input_ids', 'phoneme_mask', 'char_ids', 'position_ids')]
token_type_ids, attention_mask = None, None
probs = self.model(
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
phoneme_mask=phoneme_mask,
char_ids=char_ids,
position_ids=position_ids
)
max_probs, preds = map(lambda x: x.cpu().tolist(), probs.max(dim=-1))
all_preds += [self.labels[pred] for pred in preds]
all_confidences += max_probs
else:
generator = dataloader if self.turnoff_tqdm else tqdm(dataloader, desc='predict')
for data in generator:
# e1 = time.time()
# print(f"generator: {e1-s1}")
input_ids, token_type_ids, attention_mask, phoneme_mask, char_ids, position_ids = \
[data[name].to(self.device) for name in ('input_ids', 'token_type_ids', 'attention_mask', 'phoneme_mask', 'char_ids', 'position_ids')]
# input_ids, phoneme_mask, char_ids, position_ids = \
# [test_data[name].to(self.device) for name in ('input_ids', 'phoneme_mask', 'char_ids', 'position_ids')]
# token_type_ids, attention_mask = None, None
probs = self.model(
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
phoneme_mask=phoneme_mask,
char_ids=char_ids,
position_ids=position_ids
)
max_probs, preds = map(lambda x: x.cpu().tolist(), probs.max(dim=-1))
all_preds += [self.labels[pred] for pred in preds]
all_confidences += max_probs
return all_preds, all_confidences
def _convert_bopomofo_to_pinyin(self, bopomofo):
tone = bopomofo[-1]
assert tone in '12345'
component = self.bopomofo_convert_dict.get(bopomofo[:-1])
if component:
return component + tone
else:
return bopomofo
def __call__(self, sentences):
if isinstance(sentences, str):
sentences = [sentences]
if self.enable_opencc:
translated_sentences = []
for sent in sentences:
translated_sent = self.cc.convert(sent)
assert len(translated_sent) == len(sent)
translated_sentences.append(translated_sent)
sentences = translated_sentences
texts, query_ids, sent_ids, partial_results = self._prepare_data(sentences)
self.config.window_size = None
if self.use_g2pw_once:
td = TextData(self.tokenizer, self.labels, self.char2phonemes, self.chars, texts, query_ids,
use_mask=self.config.use_mask, use_char_phoneme=self.config.use_char_phoneme,
window_size=self.config.window_size, for_train=False)
dataloader = td.get_data()
else:
dataset = TextDataset(self.tokenizer, self.labels, self.char2phonemes, self.chars, texts, query_ids,
use_mask=self.config.use_mask, use_char_phoneme=self.config.use_char_phoneme,
window_size=self.config.window_size, for_train=False)
dataloader = DataLoader(
dataset=dataset,
batch_size=self.batch_size,
collate_fn=dataset.create_mini_batch,
num_workers=self.num_workers
)
with torch.no_grad():
preds, confidences = self.predict(dataloader)
if self.config.use_char_phoneme:
preds = [pred.split(' ')[1] for pred in preds]
results = partial_results
for sent_id, query_id, pred in zip(sent_ids, query_ids, preds):
results[sent_id][query_id] = self.style_convert_func(pred)
return results
def _prepare_data(self, sentences):
texts, query_ids, sent_ids, partial_results = [], [], [], []
for sent_id, sent in enumerate(sentences):
partial_result = [None] * len(sent)
for i, char in enumerate(sent):
if char in self.polyphonic_chars_new:
texts.append(sent)
query_ids.append(i)
sent_ids.append(sent_id)
elif char in self.monophonic_chars_dict:
partial_result[i] = self.style_convert_func(self.monophonic_chars_dict[char])
elif char in self.char_bopomofo_dict:
partial_result[i] = self.style_convert_func(self.char_bopomofo_dict[char][0])
partial_results.append(partial_result)
return texts, query_ids, sent_ids, partial_results