-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathsearch_parameter.py
85 lines (72 loc) · 2.97 KB
/
search_parameter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#!/usr/bin/env python
# coding: utf-8
import os
import sys
import copy
import yaml
import random
import argparse
from subprocess import check_call
PYTHON = sys.executable
parser = argparse.ArgumentParser()
parser.add_argument('--parent_dir', default='experiments/', required=True,
help='Directory containing params.yaml')
parser.add_argument('--random', action='store_true',
help='Random hyper-parameter search')
parser.add_argument('--ratio', type=float, default=0.5,
help='Random hyper-parameter search')
def launch_training_job(parent_dir, job_name, params):
model_dir = os.path.join(parent_dir, job_name)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
json_path = os.path.join(model_dir, 'params.yaml')
yaml.dump(params, open(json_path, 'w'), default_flow_style=False)
cmd = "{python} scripts/reader/train_bidaf.py --model-dir {model_dir}".format(python=PYTHON, model_dir=model_dir)
print(cmd)
check_call(cmd, shell=True)
def _format_name(ks, vs):
return '_'.join(['{}-{}'.format(k,v) for k,v in zip(ks, vs)])
def dfs_params(params, param_keys, param_values):
if len(param_keys) == len(param_values):
job_name = _format_name(param_keys, param_values)
run_params = copy.copy(basic_params)
run_params.update(dict(zip(param_keys, param_values)))
launch_training_job(args.parent_dir, job_name, run_params)
return
for param in params[param_keys[len(param_values)]]:
param_values.append(param)
dfs_params(params, param_keys, param_values)
param_values.pop()
def _count_cases(params):
rv = 1
for v in params.values():
rv *= len(v)
return rv
def random_params(params, param_keys, ratio=0.5):
total = _count_cases(params)
total = int(total * ratio)
tried = set()
while len(tried) < total:
param_values = []
for key in param_keys:
param_values.append(random.choice(params[key]))
if tuple(param_values) in tried:
continue
tried.add(tuple(param_values))
job_name = _format_name(param_keys, param_values)
run_params = copy.copy(basic_params)
run_params.update(dict(zip(param_keys, param_values)))
launch_training_job(args.parent_dir, job_name, run_params)
if __name__ == "__main__":
args = parser.parse_args()
param_path = os.path.join(args.parent_dir, 'params.yaml')
assert os.path.isfile(param_path), "No yaml configuration file found at {}".format(params_path)
basic_params = yaml.load(open(param_path))
tuned_param_path = os.path.join(args.parent_dir, 'tuned_params.yaml')
assert os.path.isfile(tuned_param_path), "No tuned params configuration file"
tuned_params = yaml.load(open(tuned_param_path))
param_keys = list(tuned_params.keys())
if not args.random:
dfs_params(tuned_params, param_keys, [])
else:
random_params(tuned_params, param_keys, ratio=args.ratio)