-
Notifications
You must be signed in to change notification settings - Fork 83
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
验证部分的代码是不是有问题?我的验证集mAP全部显示为-1 #73
Comments
第二个问题:在自己的数据集上微调时,冻结哪些模块可以获得不错的性能/训练速度?可以提供一些指示吗,感谢您 |
请问微调需要多少显存,然后耗时怎样的呢? |
请问这个评判标准是不是有问题。我用不同方法训练了两个模型,前者比后者AP要高,但是测图片实际效果后者反而更好 |
兄弟,问题解决了吗? |
遇到了同样的问题 |
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
训练过程是正常的,模型也是正常的,我用自己写的推理代码结果都是正常的,但是使用你的验证代码所有mAP都显示为-1,是什么问题呢?
The text was updated successfully, but these errors were encountered: