Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

验证部分的代码是不是有问题?我的验证集mAP全部显示为-1 #73

Open
Alan7ai opened this issue May 26, 2024 · 5 comments

Comments

@Alan7ai
Copy link

Alan7ai commented May 26, 2024

IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000

训练过程是正常的,模型也是正常的,我用自己写的推理代码结果都是正常的,但是使用你的验证代码所有mAP都显示为-1,是什么问题呢?

@Alan7ai
Copy link
Author

Alan7ai commented May 26, 2024

第二个问题:在自己的数据集上微调时,冻结哪些模块可以获得不错的性能/训练速度?可以提供一些指示吗,感谢您

@HZWHH
Copy link

HZWHH commented Jun 4, 2024

第二个问题:在自己的数据集上微调时,冻结哪些模块可以获得不错的性能/训练速度?可以提供一些指示吗,感谢您

请问微调需要多少显存,然后耗时怎样的呢?

@TaoTXiXi
Copy link

请问这个评判标准是不是有问题。我用不同方法训练了两个模型,前者比后者AP要高,但是测图片实际效果后者反而更好

@andynnnnn
Copy link

IoU metric: bbox Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000

训练过程是正常的,模型也是正常的,我用自己写的推理代码结果都是正常的,但是使用你的验证代码所有mAP都显示为-1,是什么问题呢?

兄弟,问题解决了吗?
请教下,如何做的

@nuanxinqing
Copy link

nuanxinqing commented Sep 17, 2024

遇到了同样的问题
我在一个custom 单类mini数据集上训练评测都是正常的
但是扩展多类大数据集后,eval就全部是-1了 @longzw1997 @BIGBALLON @SahilCarterr

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants