-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBLOCKQP4.SIF
168 lines (122 loc) · 3.36 KB
/
BLOCKQP4.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
***************************
* SET UP THE INITIAL DATA *
***************************
NAME BLOCKQP4
* Problem :
* *********
* A non-convex quadratic program with some structure.
* The objective function is of the form
*
* sum (i=1,n) (i/n) ( x_i y_i ) + sum(j=1,b) z_j^2
*
* There are n equality constraints of the form
*
* x_i - y_i + sum (j=1,b) z_j = b
*
* (cf BLOCKQP3.SIF where the constraint is x_i + y_i + .. )
* There is an inequality constraint of the form
*
* sum(i=1,n) x_i + y_i + sum(j=1,b) z_j >= b + 1
*
* Finally, there are simple bounds
*
* 1 <= x_i, y_i <= 1 (i=1,n)
* 0 <= z_j <= 2 (j=1,b)
* SIF input: Nick Gould, June 1994
* classification QLR2-AN-V-V
* The number of equality constraints
*IE N 10 $-PARAMETER
*IE N 100 $-PARAMETER
*IE N 1000 $-PARAMETER original value
IE N 5000 $-PARAMETER
*IE N 10000 $-PARAMETER
* The number of block-variables
*IE B 5 $-PARAMETER original value
IE B 10 $-PARAMETER
*IE B 50 $-PARAMETER
* Other useful values.
IE 1 1
RI RB B
RA RB+1 RB 1
RI RN N
VARIABLES
DO I 1 N
X X(I)
X Y(I)
ND
DO J 1 B
X Z(J)
ND
GROUPS
N OBJ
DO I 1 N
XG I X(I) 1.0 Y(I) 1.0
XE E(I) X(I) 1.0 Y(I) -1.0
ND
DO J 1 B
XG I Z(J) 1.0
DO I 1 N
XE E(I) Z(J) 1.0
ND
CONSTANTS
DO I 1 N
ZE BLOCKQP4 E(I) RB
ND
ZE BLOCKQP4 I RB+1
BOUNDS
DO I 1 N
XL BLOCKQP4 X(I) -1.0
XU BLOCKQP4 X(I) 1.0
XL BLOCKQP4 Y(I) -1.0
XU BLOCKQP4 Y(I) 1.0
ND
DO J 1 B
XL BLOCKQP4 Z(J) 0.0
XU BLOCKQP4 Z(J) 2.0
ND
START POINT
XV BLOCKQP4 'DEFAULT' 0.5
ELEMENT TYPE
EV SQ Z
EV PROD X Y
ELEMENT USES
DO I 1 N
XT P(I) PROD
ZV P(I) X X(I)
ZV P(I) Y Y(I)
ND
DO I 1 B
XT S(I) SQ
ZV S(I) Z Z(I)
ND
GROUP USES
DO I 1 N
RI RI I
R/ I/N RI RN
ZE OBJ P(I) I/N
ND
DO J 1 B
XE OBJ S(J)
ND
OBJECT BOUND
* Solution
*LO SOLTN -6.0D-1 $ (n=10,b=5)
*LO SOLTN -4.8082D+1 $ (n=100,b=5)
*LO SOLTN -4.98098D+2 $ (n=1000,b=5)
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS BLOCKQP4
INDIVIDUALS
T SQ
F 0.5 * Z * Z
G Z Z
H Z Z 1.0
T PROD
F X * Y
G X Y
G Y X
H X Y 1.0
ENDATA