-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBLOWEYA.SIF
303 lines (223 loc) · 7.1 KB
/
BLOWEYA.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
***************************
* SET UP THE INITIAL DATA *
***************************
NAME BLOWEYA
* Problem :
* *********
* A nonconvex quadratic program proposed by
* James Blowey (University of Durham)
* Given function v(s) and f(s) = v(s) + A(inv) v(s), s in [0,1],
* minimize
* (u(s) - v(s))(trans) ( A + A(inv) ) u(s) - (u(s) - v(s))(trans)f(s)
* where
* u(s) in [-1,1] and int[0,1] u(s) ds = int[0,1] v(s) ds
* and A is the
* "- Laplacian with Neumann boundary conditions on a uniform mesh"
* The troublesome term A(inv) u(s) is replaced by the additional
* variable w(s) and the constraint A w(s) = u(s)
* The function v(s) is chosen to be
0 a b c d 1
* 1 ---- ----
* \ /
* \ /
* \ /
* -1 ---
* Thus the problem is formulated as the nonconvex QP
* minimize
* u(s) (trans) A u(s) + u(s) (trans) w(s) -
* v(s)(trans) A u(s) - 2.0 v(s)(trans) w(s) -
* u(s)(trans) v(s) + constant (ignored)
* subject to A w(s) = u(s),
* u(s) in [-1,1],
* and int[0,1] u(s) ds = 1 + a + b - c - d
* Case A: a = 0.2, b = 0.4, c = 0.6 and d = 0.8.
* Source: a simplification of
* J.F. Blowey and C.M. Elliott,
* "The Cahn-Hilliard gradient theory for phase separation with
* non-smooth free energy Part II: Numerical analysis",
* European Journal of Applied Mathematics (3) pp 147-179, 1992.
* SIF input: Nick Gould, August 1996
* classification QLR2-MN-V-V
* The number of discretization intervals
*IE N 10 $-PARAMETER n = 22, m = 12
*IE N 100 $-PARAMETER n = 202, m = 102
*IE N 1000 $-PARAMETER n = 2002, m = 1002
IE N 2000 $-PARAMETER n = 4002, m = 2002
* Other useful values
IE 0 0
IE 1 1
IE 2 2
IE 3 3
IE 4 4
IE 5 5
RE ONE 1.0
RE -ONE -1.0
RE TWO 2.0
RE -TWO -2.0
RI RN N
R* N**2 RN RN
IA N-1 N -1
R/ 1/N**2 ONE N**2
R/ -1/N**2 -ONE N**2
RM -2/N**2 -1/N**2 2.0
RM 2N**2 N**2 2.0
RM -2N**2 N**2 -2.0
I/ N/5 N 5
I= NA N/5
RI A NA
R/ A A RN
IA NA+1 NA 1
I* NB N/5 2
RI B NB
R/ B B RN
IA NB+1 NB 1
I* NC N/5 3
RI C NC
R/ C C RN
IA NC+1 NC 1
I* ND N/5 4
RI D ND
R/ D D RN
IA ND+1 ND 1
R= INT ONE
R+ INT INT A
R+ INT INT B
R- INT INT C
R- INT INT D
R* INT INT RN
* The values of v
DO I 0 NA
AE V(I) 1.0
ND
R- STEP B A
R* STEP STEP RN
R/ STEP TWO STEP
DO I NA+1 NB
I- J I NA
RI RJ J
R* VAL RJ STEP
R- VAL ONE VAL
A= V(I) VAL
ND
DO I NB+1 NC
AE V(I) -1.0
ND
R- STEP D C
R* STEP STEP RN
R/ STEP TWO STEP
DO I NC+1 ND
I- J I NC
RI RJ J
R* VAL RJ STEP
R+ VAL -ONE VAL
A= V(I) VAL
ND
DO I ND N
AE V(I) 1.0
ND
VARIABLES
DO I 0 N
X U(I)
X W(I)
ND
GROUPS
* Objective function terms
DO I 0 N
A* VAL V(I) -1/N**2
ZN OBJ U(I) VAL
A* VAL V(I) -2/N**2
ZN OBJ W(I) VAL
ND
A- VAL V(1) V(0)
ZN OBJ U(0) VAL
DO I 1 N-1
IA I+1 I 1
IA I-1 I -1
AM VAL V(I) -2.0
A+ VAL VAL V(I-1)
A+ VAL VAL V(I+1)
ZN OBJ U(I) VAL
ND
A- VAL V(N-1) V(N)
ZN OBJ U(N) VAL
* Integral constraint using the trapezoidal rule
XE INT U(0) 0.5
* A w(s) = u(s) constraints
XE CON(0) U(0) 1.0 U(1) -1.0
ZE CON(0) W(0) -1/N**2
DO I 1 N-1
IA I+1 I 1
IA I-1 I -1
XE CON(I) U(I) 2.0
XE CON(I) U(I+1) -1.0 U(I-1) -1.0
ZE CON(I) W(I) -1/N**2
XE INT U(I) 1.0
ND
XE CON(N) U(N) 1.0 U(N-1) -1.0
ZE CON(N) W(N) -1/N**2
XE INT U(N) 0.5
CONSTANTS
ZE BLOWEYA INT 0.2 INT
BOUNDS
XR BLOWEYA 'DEFAULT'
DO I 0 N
XL BLOWEYA U(I) -1.0
XU BLOWEYA U(I) 1.0
ND
START POINT
XV BLOWEYA 'DEFAULT' 0.0
DO I 0 N
ZV BLOWEYA U(I) V(I)
ND
ELEMENT TYPE
EV SQ Z
EV PROD X Y
ELEMENT USES
DO I 0 N
XT C(I) PROD
ZV C(I) X U(I)
ZV C(I) Y W(I)
ND
DO I 0 N-1
IA I+1 I 1
XT D(I) SQ
ZV D(I) Z U(I)
XT O(I) PROD
ZV O(I) X U(I)
ZV O(I) Y U(I+1)
ND
XT D(N) SQ
ZV D(N) Z U(N)
GROUP USES
ZE OBJ O(0) -TWO
ZE OBJ D(0) ONE
DO I 1 N-1
ZE OBJ O(I) -TWO
ZE OBJ D(I) TWO
ND
ZE OBJ D(N) ONE
DO I 0 N
ZE OBJ C(I) 1/N**2
ND
OBJECT BOUND
* Solution
*XL SOLUTION -4.56932D+00 $ N = 10
*XL SOLUTION -4.55694D-01 $ N = 100
*XL SOLUTION -4.55629D-02 $ N = 1000
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS BLOWEYA
INDIVIDUALS
T SQ
F Z * Z
G Z Z + Z
H Z Z 2.0
T PROD
F X * Y
G X Y
G Y X
H X Y 1.0
ENDATA