-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBRYBND.SIF
256 lines (166 loc) · 5.1 KB
/
BRYBND.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
***************************
* SET UP THE INITIAL DATA *
***************************
NAME BRYBND
* Problem :
* *********
* Broyden banded system of nonlinear equations, considered in the
* least square sense.
* Source: problem 31 in
* J.J. More', B.S. Garbow and K.E. Hillstrom,
* "Testing Unconstrained Optimization Software",
* ACM Transactions on Mathematical Software, vol. 7(1), pp. 17-41, 1981.
* See also Buckley#73 (p. 41) and Toint#18
* SDIF input: Ph. Toint, Dec 1989.
* classification SUR2-AN-V-0
* N is the number of equations and variables (variable).
*IE N 10 $-PARAMETER original value
*IE N 50 $-PARAMETER
*IE N 100 $-PARAMETER
*IE N 500 $-PARAMETER
*IE N 1000 $-PARAMETER
IE N 5000 $-PARAMETER
*IE N 10000 $-PARAMETER
* Define some problem's parameters (see Buckley)
* Restriction: LB + 1 + UB .le. N
RE KAPPA1 2.0 $-PARAMETER
RE KAPPA2 5.0 $-PARAMETER
RE KAPPA3 1.0 $-PARAMETER
IE LB 5 $-PARAMETER LB + UB + 1 .le. N
IE UB 1 $-PARAMETER LB + UB + 1 .le. N
* Define useful parameters
IE 1 1
IM MLB LB -1
IM MUB UB -1
IA LB+1 LB 1
I+ N-UB N MUB
IA N-UB-1 N-UB -1
RM -KAPPA3 KAPPA3 -1.0
VARIABLES
DO I 1 N
X X(I)
ND
GROUPS
* Upper left corner
DO I 1 LB
IA I-1 I -1
IA I+1 I 1
I+ I+UB I UB
DO J 1 I-1
ZN G(I) X(J) -KAPPA3
OD J
ZN G(I) X(I) KAPPA1
DO J I+1 I+UB
ZN G(I) X(J) -KAPPA3
ND
* Main (middle) part
DO I LB+1 N-UB-1
I+ I-LB I MLB
IA I-1 I -1
IA I+1 I 1
I+ I+UB I UB
DO J I-LB I-1
ZN G(I) X(J) -KAPPA3
OD J
ZN G(I) X(I) KAPPA1
DO J I+1 I+UB
ZN G(I) X(J) -KAPPA3
ND
* Lower right corner
DO I N-UB N
I+ I-LB I MLB
IA I-1 I -1
IA I+1 I 1
DO J I-LB I-1
ZN G(I) X(J) -KAPPA3
OD J
ZN G(I) X(I) KAPPA1
DO J I+1 N
ZN G(I) X(J) -KAPPA3
ND
BOUNDS
FR BRYBND 'DEFAULT'
START POINT
XV BRYBND 'DEFAULT' 1.0
ELEMENT TYPE
EV SQ V
EV CB V
ELEMENT USES
XT 'DEFAULT' CB
DO I 1 N
XT E(I) SQ
ZV E(I) V X(I)
XT Q(I) CB
ZV Q(I) V X(I)
ND
GROUP TYPE
GV L2 GVAR
GROUP USES
XT 'DEFAULT' L2
* Upper left corner
DO I 1 LB
IA I-1 I -1
IA I+1 I 1
I+ I+UB I UB
DO J 1 I-1
ZE G(I) E(J) -KAPPA3
OD J
ZE G(I) Q(I) KAPPA2
DO J I+1 I+UB
ZE G(I) E(J) -KAPPA3
ND
* Main (middle) part
DO I LB+1 N-UB-1
I+ I-LB I MLB
IA I-1 I -1
IA I+1 I 1
I+ I+UB I UB
DO J I-LB I-1
ZE G(I) Q(J) -KAPPA3
OD J
ZE G(I) E(I) KAPPA2
DO J I+1 I+UB
ZE G(I) E(J) -KAPPA3
ND
* Lower right corner
DO I N-UB N
I+ I-LB I MLB
IA I-1 I -1
IA I+1 I 1
DO J I-LB I-1
ZE G(I) E(J) -KAPPA3
OD J
ZE G(I) Q(I) KAPPA2
DO J I+1 N
ZE G(I) E(J) -KAPPA3
ND
OBJECT BOUND
* Solution
*LO SOLTN 0.0
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS BRYBND
INDIVIDUALS
T SQ
F V * V
G V V + V
H V V 2.0
T CB
F V * V * V
G V 3.0 * V * V
H V V 6.0 * V
ENDATA
*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************
GROUPS BRYBND
INDIVIDUALS
T L2
F GVAR * GVAR
G GVAR + GVAR
H 2.0
ENDATA