-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCHNRSNBM.SIF
142 lines (96 loc) · 2.58 KB
/
CHNRSNBM.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
***************************
* SET UP THE INITIAL DATA *
***************************
NAME CHNRSNBM
* Problem :
* --------
* A variable dimension version of the chained Rosenbrock function (CHNROSNB)
* by Luksan et al.
* Source: problem 27 in
* L. Luksan, C. Matonoha and J. Vlcek
* Modified CUTE problems for sparse unconstraoined optimization
* Technical Report 1081
* Institute of Computer Science
* Academy of Science of the Czech Republic
* that is an extension of that proposed in
* Ph.L. Toint,
* "Some numerical results using a sparse matrix updating formula in
* unconstrained optimization",
* Mathematics of Computation, vol. 32(114), pp. 839-852, 1978.
* See also Buckley#46 (n = 25) (p. 45).
* SIF input: Ph. Toint, Dec 1989.
* this version Nick Gould, June, 2013
* classification SUR2-AN-V-0
* Number of variables ( at most 50)
*IE N 10 $-PARAMETER original value
*IE N 25 $-PARAMETER
IE N 50 $-PARAMETER
* other parameter definitions
IE 1 1
IE 2 2
VARIABLES
DO I 1 N
X X(I)
ND
GROUPS
DO I 2 N
IA I-1 I -1
XN SQ(I) X(I-1) 1.0
RI RI I
R( SINI SIN RI
RA ALPHA SINI 1.5
R* AI2 ALPHA ALPHA
RM 16AI2 AI2 16.0
RD SCL 16AI2 1.0
ZN SQ(I) 'SCALE' SCL
XN B(I) X(I) 1.0
ND
CONSTANTS
DO I 2 N
X CHNRSNBM B(I) 1.0
ND
BOUNDS
FR CHNRSNBM 'DEFAULT'
START POINT
XV CHNROSMB 'DEFAULT' -1.0
ELEMENT TYPE
EV ETYPE V1
ELEMENT USES
XT 'DEFAULT' ETYPE
DO I 2 N
ZV ELA(I) V1 X(I)
ND
GROUP TYPE
GV L2 GVAR
GROUP USES
XT 'DEFAULT' L2
DO I 2 N
XE SQ(I) ELA(I)
ND
OBJECT BOUND
LO CHNRSNBM 0.0
* Solution
*LO SOLTN 0.0
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS CHNRSNBM
INDIVIDUALS
T ETYPE
F - V1 ** 2
G V1 - 2.0 * V1
H V1 V1 - 2.0
ENDATA
*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************
GROUPS CHNRSNBM
INDIVIDUALS
T L2
F GVAR * GVAR
G GVAR + GVAR
H 2.0
ENDATA