-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDITTERT.SIF
333 lines (243 loc) · 6.71 KB
/
DITTERT.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
***************************
* SET UP THE INITIAL DATA *
***************************
NAME DITTERT
* Problem :
* *********
* Minimize the Dittert function.
* Source: See Minc, Linear and Multilinear Algebra 21, 1987
* SIF input: N. Gould, March 1992.
* minor correction by Ph. Shott, Jan 1995.
* classification OQR2-AN-V-V
* Size of matrix
*IE N 2 $-PARAMETER
*IE N 3 $-PARAMETER
*IE N 4 $-PARAMETER
*IE N 5 $-PARAMETER
*IE N 6 $-PARAMETER
*IE N 7 $-PARAMETER
*IE N 8 $-PARAMETER original value
*IE N 9 $-PARAMETER
IE N 10 $-PARAMETER
* Define constants
IE 0 0
IE 1 1
IE 2 2
RI RN N
IA N+1 N 1
* Compute the number of sub-permanents
IE 2**N 1
DO I 1 N
I- N-I+1 N+1 I
IA I-1 I - 1
RI R2**N 2**N
AA S(N-I+1) R2**N 0.1
AA T(I-1) R2**N 0.1
I* 2**N 2**N 2
ND
IA N-1 N - 1
IA 2**N-1 2**N - 1
VARIABLES
* Sub permanents
DO M 1 N-1
A= RK1 T(M)
IR K1 RK1
IM K2 K1 2
IA K1 K1 1
IA K2 K2 - 1
DO K K1 K2
X P(K)
ND
* Entries in the coefficient matrix
DO I 1 N
DO J 1 N
X A(I,J)
ND
* Row and column sums
DO I 1 N
X R(I)
X C(I)
ND
GROUPS
* Define objective function groups
XN ROWPROD
XN COLPROD
XN OBJ P(2**N-1) 1.0
* Linear terms in the sub-permanent constraints.
DO M 1 N-1
A= RK1 T(M)
IR K1 RK1
IM K2 K1 2
IA K1 K1 1
IA K2 K2 - 1
DO K K1 K2
XE PE(K) P(K) - 1.0
ND
* Row and column sum constraints.
DO I 1 N
DO J 1 N
XE R(I) A(I,J) 1.0
XE C(J) A(I,J) 1.0
ND
DO I 1 N
XE R(I) R(I) -1.0
XE C(I) C(I) -1.0
ND
* Constraint that the sum of all the entries is n.
DO I 1 N
XE SUM R(I) 1.0
ND
CONSTANTS
* Constraint that the sum of all the entries is n.
Z DITTERT SUM RN
BOUNDS
* Entries in the coefficient matrix.
DO I 1 N
XL DITTERT R(I) 1.0D-6
XL DITTERT C(I) 1.0D-6
DO J 1 N
XU DITTERT A(I,J) 1.0
ND
START POINT
ELEMENT TYPE
EV 2PR A P
EV LOG Y
ELEMENT USES
* Set up the elements associated with sub-permanent constraint K
DO M 1 N-1
A= RK1 T(M)
IR K1 RK1
IM K2 K1 2
IA K1 K1 1
IA K2 K2 - 1
DO K K1 K2
IE ID 0
IE PT 1
I= KK K
* Construct the I-th component of the binary representation of K.
DO I 1 N
A= SI S(I)
IR ISI SI
I/ BI KK ISI
I+ ID ID BI
I* BISI BI ISI
I- KK KK BISI
RI RI I
AA RNZ(PT) RI 0.1
I+ PT PT BI
OD I
* Associate elements with nonzero entries in the binary string
* This corresponds to finding the sub-permanents which occur
* in the usual expansion of the sub-permanent in terms of its
* sub-sub-permanents.
I= I1 0
I= I2 1
IA ID-2 ID - 2
DO I 1 ID-2
I= I1 ID
I= I2 0
OD I
DO I 1 I1
A= RJ RNZ(I)
IR J RJ
A= SI S(J)
IR ISI SI
I- IPP K ISI
XT E(K,I) 2PR
ZV E(K,I) A A(ID,J)
ZV E(K,I) P P(IPP)
OD I
DO I 1 I2
A= RJ RNZ(1)
IR J RJ
A= RJJ RNZ(2)
IR JJ RJJ
XT E(K,1) 2PR
ZV E(K,1) A A(2,J)
ZV E(K,1) P A(1,JJ)
XT E(K,2) 2PR
ZV E(K,2) A A(2,JJ)
ZV E(K,2) P A(1,J)
OD I
RI RD ID
AA D(K) RD 0.1
ND
DO I 1 N
XT LOGC(I) LOG
ZV LOGC(I) Y C(I)
XT LOGR(I) LOG
ZV LOGR(I) Y R(I)
ND
GROUP TYPE
GV EXP Z
GROUP USES
DO M 1 N-1
A= RK1 T(M)
IR K1 RK1
IM K2 K1 2
IA K1 K1 1
IA K2 K2 - 1
DO K K1 K2
A= RD D(K)
IR ID RD
DO I 1 ID
XE PE(K) E(K,I)
ND
DO I 1 N
XT ROWPROD EXP
XE ROWPROD LOGR(I)
XT COLPROD EXP
XE COLPROD LOGC(I)
ND
OBJECT BOUND
LO DITTERT 0.0
* Solution
*LO SOLTN(2) 5.0D-1
*LO SOLTN(3) 2.22222222D-1
*LO SOLTN(4) 9.375-2
*LO SOLTN(5) 3.84D-2
*LO SOLTN(6) 1.54321098D-2
*LO SOLTN(7) 6.11989902D-3
*LO SOLTN(8) 2.40325927D-3
*LO SOLTN(9) 9.36656708D-4
*LO SOLTN(10) 3.6288D-4
*LO SOLTN(11) 1.39905948D-4
*LO SOLTN(12) 5.37232170D-5
*LO SOLTN(13) 2.05596982D-5
*LO SOLTN(14) 7.84541375D-6
*LO SOLTN(15) 2.98628137D-6
*LO SOLTN(16) 1.13422671D-6
*LO SOLTN(17) 4.29968709D-7
*LO SOLTN(18) 1.62718123D-7
*LO SOLTN(19) 6.14859946D-8
*LO SOLTN(20) 2.32019615D-8
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS DITTERT
INDIVIDUALS
* product of A and P
T 2PR
F A * P
G A P
G P A
H A P 1.0
T LOG
F LOG( Y )
G Y 1.0 / Y
H Y Y - 1.0 / ( Y * Y )
ENDATA
GROUPS DITTERT
TEMPORARIES
R EXZ
M EXP
INDIVIDUALS
* exponential
T EXP
A EXZ - EXP( Z )
F EXZ
G EXZ
H EXZ
ENDATA