-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDIXMAANM.SIF
255 lines (188 loc) · 5.36 KB
/
DIXMAANM.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
***************************
* SET UP THE INITIAL DATA *
***************************
NAME DIXMAANM
* Problem :
* *********
* A variant on the Dixon-Maany test problem (version I)
* Source:
* L. Luksan, C. Matonoha and J. Vlcek
* Modified CUTE problems for sparse unconstraoined optimization
* Technical Report 1081
* Institute of Computer Science
* Academy of Science of the Czech Republic
* (problem 19) based on
* L.C.W. Dixon and Z. Maany,
* "A family of test problems with sparse Hessians for unconstrained
* optimization",
* TR 206, Numerical Optimization Centre, Hatfield Polytechnic, 1988.
* SIF input: Ph. Toint, Dec 1989.
* correction by Ph. Shott, January 1995.
* this version Nick Gould, June, 2013
* classification OUR2-AN-V-0
* M is equal to the third of the number of variables
*IE M 5 $-PARAMETER n = 15 original value
*IE M 30 $-PARAMETER n = 90
*IE M 100 $-PARAMETER n = 300
*IE M 500 $-PARAMETER n = 1500
IE M 1000 $-PARAMETER n = 3000
*IE M 3000 $-PARAMETER n = 9000
IE M 5 $-PARAMETER n = 15 original value
* N is the number of variables
IM N M 3
* Problem parameters
RE ALPHA 1.0
RE BETA 0.0
RE GAMMA 0.125
RE DELTA 0.125
* K-set 3
IE K1 2
IE K2 1
IE K3 1
IE K4 2
* Other parameters
RI RN N
IA N-1 N -1
I+ 2M M M
IE 1 1
VARIABLES
DO I 1 N
X X(I)
ND
GROUPS
N GA
N GB
N GC
N GD
CONSTANTS
DIXMAANM GA -1.0
BOUNDS
FR DIXMAANM 'DEFAULT'
START POINT
XV DIXMAANM 'DEFAULT' 2.0
ELEMENT TYPE
EV SQ X
EV SQB X Y
EV SQC X Y
EV 2PR X Y
ELEMENT USES
* First group
DO I 1 N
XT A(I) SQ
ZV A(I) X X(I)
ND
* Second group
DO I 1 N-1
IA I+1 I 1
XT B(I) SQB
ZV B(I) X X(I)
ZV B(I) Y X(I+1)
ND
* Third group
DO I 1 2M
I+ I+M I M
XT C(I) SQC
ZV C(I) X X(I)
ZV C(I) Y X(I+M)
ND
* Fourth group
DO I 1 M
I+ I+2M I 2M
XT D(I) 2PR
ZV D(I) X X(I)
ZV D(I) Y X(I+2M)
ND
GROUP USES
* First group
DO I 1 N
RI RI I
R/ I/N RI RN
RE TMP 1.0
DO J 1 K1
R* TMP TMP I/N
OD J
R* AI TMP ALPHA
ZE GA A(I) AI
ND
* Second group
DO I 1 N-1
RI RI I
R/ I/N RI RN
RE TMP 1.0
DO J 1 K2
R* TMP TMP I/N
OD J
R* BI TMP BETA
ZE GB B(I) BI
ND
* Third group
DO I 1 2M
RI RI I
R/ I/N RI RN
RE TMP 1.0
DO J 1 K3
R* TMP TMP I/N
OD J
R* CI TMP GAMMA
ZE GC C(I) CI
ND
* Fourth group
DO I 1 M
RI RI I
R/ I/N RI RN
RE TMP 1.0
DO J 1 K4
R* TMP TMP I/N
OD J
R* DI TMP DELTA
ZE GD D(I) DI
ND
OBJECT BOUND
LO DIXMAANM 0.0
* Solution
*LO SOLTN 1.0
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS DIXMAANM
TEMPORARIES
R F1
R F2
R DF2DY
INDIVIDUALS
* First type
T SQ
F X * X
G X X + X
H X X 2.0
* Second type
T SQB
A F1 X * X
A F2 Y + Y * Y
A DF2DY 1.0 + 2.0 * Y
F F1 * F2 * F2
G X 2.0 * X * F2 * F2
G Y 2.0 * F1 * F2 * DF2DY
H X X 2.0 * F2 * F2
H X Y 4.0 * X * DF2DY * F2
H Y Y 4.0 * F1 * F2 +
H+ 2.0 * F1 * DF2DY * DF2DY
* Third type
T SQC
A F1 X * X
A F2 Y**4
F F1 * F2
G X 2.0 * X * F2
G Y 4.0 * F1 * Y**3
H X X 2.0 * F2
H X Y 8.0 * X * Y**3
H Y Y 12.0 * F1 * Y**2
* Fourth type
T 2PR
F X * Y
G X Y
G Y X
H X Y 1.0
ENDATA