-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDRCAV3LQ.SIF
240 lines (175 loc) · 5.73 KB
/
DRCAV3LQ.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
***************************
* SET UP THE INITIAL DATA *
***************************
NAME DRCAV3LQ
* Problem :
* *********
* This system of nonlinear equations models the stream function
* corresponding to an incompressible fluid flow in a driven cavity
* (after elimination of the vorticity). The system is solved in the
* least-squares sense. The nonlinear system formulation is problem DRCAVTY3.
* The problem is nonconvex.
* It differs from the problems DRCAV1LQ and DRCAV2LQ by the value
* chosen for the Reynolds number.
* Source:
* P.N. Brown and Y. Saad,
* "Hybrid Krylov Methods for Nonlinear Systems of Equations",
* SIAM J. Sci. Stat. Comput. 11, pp. 450-481, 1990.
* The boundary conditions have been set according to
* I.E. Kaporin and O. Axelsson,
* "On a class of nonlinear equation solvers based on the residual norm
* reduction over a sequence of affine subspaces",
* SIAM J, Sci. Comput. 16(1), 1995.
* SIF input: Ph. Toint, Jan 1995.
* classification OXR2-MY-V-V
* Discretization mesh: n = (M+3)**2 - fixed variables
*IE M 10 $-PARAMETER n = 100 original value
*IE M 31 $-PARAMETER n = 961
IE M 63 $-PARAMETER n = 3969
*IE M 100 $-PARAMETER n = 10000
* Considered nondimensional Reynolds number
RE RE 4500.0 $-PARAMETER Reynolds number
IA M+2 M 2
RI RM+2 M+2
RD H RM+2 1.0
* Useful constants
IE -1 -1
IE 0 0
IE 1 1
IA M+1 M 1
RM H/2 H 0.5
RM -H/2 H/2 -1.0
RM RE/4 RE 0.25
RM -RE/4 RE/4 -1.0
VARIABLES
DO I -1 M+2
DO J -1 M+2
X Y(I,J)
OD J
OD I
GROUPS
DO I 1 M
IA I-2 I -2
IA I-1 I -1
IA I+1 I 1
IA I+2 I 2
DO J 1 M
IA J-2 J -2
IA J-1 J -1
IA J+1 J 1
IA J+2 J 2
XN E(I,J) Y(I,J) 20.0
XN E(I,J) Y(I-1,J) -8.0 Y(I+1,J) -8.0
XN E(I,J) Y(I,J-1) -8.0 Y(I,J+1) -8.0
XN E(I,J) Y(I-1,J+1) 2.0 Y(I+1,J-1) 2.0
XN E(I,J) Y(I-1,J-1) 2.0 Y(I+1,J+1) 2.0
XN E(I,J) Y(I-2,J) 1.0 Y(I+2,J) 1.0
XN E(I,J) Y(I,J-2) 1.0 Y(I,J+2) 1.0
OD J
OD I
BOUNDS
FR DRCAV3LQ 'DEFAULT'
* Bottom boundary
DO J -1 M+2
XX DRCAV3LQ Y(-1,J) 0.0
XX DRCAV3LQ Y(0,J) 0.0
OD J
* Left boundary
DO I 1 M
XX DRCAV3LQ Y(I,-1) 0.0
XX DRCAV3LQ Y(I,0) 0.0
OD I
* Right boundary
DO I 1 M
XX DRCAV3LQ Y(I,M+1) 0.0
XX DRCAV3LQ Y(I,M+2) 0.0
OD I
* Top boundary
DO J -1 M+2
ZX DRCAV3LQ Y(M+1,J) -H/2
ZX DRCAV3LQ Y(M+2,J) H/2
OD J
ELEMENT TYPE
EV IPR A1 A2
EV IPR B1 B2
EV IPR B3 B4
EV IPR B5 B6
EV IPR B7 B8
IV IPR AA BB
ELEMENT USES
XT 'DEFAULT' IPR
DO I 1 M
IA I-2 I -2
IA I-1 I -1
IA I+1 I 1
IA I+2 I 2
DO J 1 M
IA J-2 J -2
IA J-1 J -1
IA J+1 J 1
IA J+2 J 2
ZV X(I,J) A1 Y(I,J+1)
ZV X(I,J) A2 Y(I,J-1)
ZV X(I,J) B1 Y(I-2,J)
ZV X(I,J) B2 Y(I-1,J-1)
ZV X(I,J) B3 Y(I-1,J+1)
ZV X(I,J) B4 Y(I-1,J)
ZV X(I,J) B5 Y(I+1,J)
ZV X(I,J) B6 Y(I+1,J-1)
ZV X(I,J) B7 Y(I+1,J+1)
ZV X(I,J) B8 Y(I+2,J)
ZV Z(I,J) A1 Y(I+1,J)
ZV Z(I,J) A2 Y(I-1,J)
ZV Z(I,J) B1 Y(I,J-2)
ZV Z(I,J) B2 Y(I-1,J-1)
ZV Z(I,J) B3 Y(I+1,J-1)
ZV Z(I,J) B4 Y(I,J-1)
ZV Z(I,J) B5 Y(I,J+1)
ZV Z(I,J) B6 Y(I-1,J+1)
ZV Z(I,J) B7 Y(I+1,J+1)
ZV Z(I,J) B8 Y(I,J+2)
OD J
OD I
GROUP TYPE
GV L2 GVAR
GROUP USES
XT 'DEFAULT' L2
DO I 1 M
DO J 1 M
ZE E(I,J) X(I,J) RE/4
ZE E(I,J) Z(I,J) -RE/4
OD J
OD I
OBJECT BOUND
LO DRCAV3LQ 0.0
* Solution
*LO SOLTN 0.0
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS DRCAV3LQ
INDIVIDUALS
T IPR
R AA A1 1.0 A2 -1.0
R BB B1 1.0 B2 1.0
R BB B3 1.0 B4 -4.0
R BB B5 4.0 B6 -1.0
R BB B7 -1.0 B8 -1.0
F AA * BB
G AA BB
G BB AA
H AA BB 1.0
ENDATA
*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************
GROUPS DRCAV3LQ
INDIVIDUALS
T L2
F GVAR * GVAR
G GVAR + GVAR
H 2.0
ENDATA