-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDTOC1L.SIF
237 lines (176 loc) · 6.3 KB
/
DTOC1L.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
***************************
* SET UP THE INITIAL DATA *
***************************
NAME DTOC1L
* Problem :
* *********
* This is a discrete time optimal control (DTOC) problem.
* The system has N time periods, NX control variables and NY state variables.
* The parameter mu in the original problem formulation is set to zero,
* yielding linear transition functions, hence the L in the problem's name.
* The problem is convex.
* Sources: problem 1 (with mu = 0) in
* T.F. Coleman and A. Liao,
* "An Efficient Trust Region Method for Unconstrained Discret-Time Optimal
* Control Problems",
* Tech. Report, ctc93tr144, Advanced Computing Research Institute,
* Cornell University, 1992.
* L.Z. Liao and C.A. Shoemaker,
* "Advantages of differential dynamic programming over Newton's method for
* discrete-time optimal control problems",
* Tech. Report ctc92tr97, Advanced Computing Research Institute,
* Cornell University, 1992.
* SIF input: Ph. Toint, August 1993
* classification OLR2-AN-V-V
* Problem variants: they are identified by the values of
* the parameter vector ( N, NX, NY )
* The problem has (N-1)*NX+N*NY variables (of which NY are fixed),
* and (N-1)*NY constraints
*IE N 10 $-PARAMETER # periods } original value
*IE NX 2 $-PARAMETER # controls } n= 58, m= 36
*IE NY 4 $-PARAMETER # states }
*IE N 50 $-PARAMETER # periods }
*IE NX 2 $-PARAMETER # controls } n= 298, m= 196
*IE NY 4 $-PARAMETER # states }
*IE N 100 $-PARAMETER # periods }
*IE NX 2 $-PARAMETER # controls } n= 598, m= 396
*IE NY 4 $-PARAMETER # states }
*IE N 500 $-PARAMETER # periods }
*IE NX 2 $-PARAMETER # controls } n= 2998, m=1996
*IE NY 4 $-PARAMETER # states }
IE N 1000 $-PARAMETER # periods }
IE NX 2 $-PARAMETER # controls } n= 5998, m=3996
IE NY 4 $-PARAMETER # states }
*IE N 10 $-PARAMETER # periods }
*IE NX 5 $-PARAMETER # controls } n= 145, m= 90
*IE NY 10 $-PARAMETER # states }
*IE N 50 $-PARAMETER # periods }
*IE NX 5 $-PARAMETER # controls } n= 745, m= 490
*IE NY 10 $-PARAMETER # states }
*IE N 100 $-PARAMETER # periods }
*IE NX 5 $-PARAMETER # controls } n= 1495, m= 990
*IE NY 10 $-PARAMETER # states }
*IE N 500 $-PARAMETER # periods }
*IE NX 5 $-PARAMETER # controls } n= 7495, m=4990
*IE NY 10 $-PARAMETER # states }
*IE N 1000 $-PARAMETER # periods }
*IE NX 5 $-PARAMETER # controls } n=14995, m=9990
*IE NY 10 $-PARAMETER # states }
* Constants
IA N-1 N -1
IE 1 1
IE 2 2
IA NY-1 NY -1
I+ NX+NY NX NY
RI RXY NX+NY
RD 1/RXY RXY 1.0
* Build the transition matrix B
DO J 1 NX
DO I 1 NY
I- I-J I J
RI RI-J I-J
A* B(I,J) RI-J 1/RXY
OD J
OD I
VARIABLES
DO T 1 N-1
DO I 1 NX
X X(T,I)
OD I
OD T
DO T 1 N
DO I 1 NY
X Y(T,I)
OD I
OD T
GROUPS
* Objective function
DO T 1 N-1
DO I 1 NX
XN OX(T,I) X(T,I) 1.0
OD I
OD T
DO T 1 N
DO I 1 NY
XN OY(T,I) Y(T,I) 1.0
OD I
OD T
* Transition constraints
DO T 1 N-1
IA T+1 T 1
* First state
XE TT(T,1) Y(T+1,1) -1.0
XE TT(T,1) Y(T,1) 0.5 Y(T,2) 0.25
DO I 1 NX
ZE TT(T,1) X(T,I) B(1,I)
OD I
* Middle states
DO J 2 NY-1
IA J-1 J -1
IA J+1 J 1
XE TT(T,J) Y(T+1,J) -1.0 Y(T,J) 0.5
XE TT(T,J) Y(T,J-1) -0.25 Y(T,J+1) 0.25
DO I 1 NX
ZE TT(T,J) X(T,I) B(J,I)
OD I
OD J
* Last state
XE TT(T,NY) Y(T+1,NY) -1.0
XE TT(T,NY) Y(T,NY) 0.5 Y(T,NY-1) -0.25
DO I 1 NX
ZE TT(T,NY) X(T,I) B(NY,I)
OD I
OD T
CONSTANTS
DO T 1 N-1
DO I 1 NX
X DTOC1L OX(T,I) -0.5
OD I
OD T
DO T 1 N
DO I 1 NY
X DTOC1L OY(T,I) -0.25
OD I
OD T
BOUNDS
FR DTOC1L 'DEFAULT'
DO I 1 NY
XX DTOC1L Y(1,I) 0.0
OD I
GROUP TYPE
GV L4 GVAR
GROUP USES
DO T 1 N-1
DO I 1 NX
XT OX(T,I) L4
OD I
OD T
DO T 1 N
DO I 1 NY
XT OY(T,I) L4
OD I
OD T
OBJECT BOUND
LO DTOC1L 0.0
*LO SOLUTION( 10,2, 4) 0.0735931360
*LO SOLUTION( 50,2, 4) 0.2299411960
*LO SOLUTION( 100,2, 4) 0.4253681120
*LO SOLUTION( 500,2, 4) 1.9887794988
*LO SOLUTION(1000,2, 4) 3.9430507151
*LO SOLUTION( 10,5,10) 1.1498579294
*LO SOLUTION( 50,5,10) 6.1678479713
*LO SOLUTION( 100,5,10) 12.439954329
*LO SOLUTION( 500,5,10) 62.616843379
*LO SOLUTION(1000,5,10) 125.33793359
ENDATA
*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************
GROUPS DTOC1L
INDIVIDUALS
T L4
F GVAR**4
G 4.0 * GVAR**3
H 12.0 * GVAR**2
ENDATA