-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFLETBV3M.SIF
199 lines (136 loc) · 3.91 KB
/
FLETBV3M.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
***************************
* SET UP THE INITIAL DATA *
***************************
NAME FLETBV3M
* Problem :
* *********
* Variant of FLETCBV3, another boundary value problem, by Luksan et al
* Source: problem 30 in
* L. Luksan, C. Matonoha and J. Vlcek
* Modified CUTE problems for sparse unconstraoined optimization
* Technical Report 1081
* Institute of Computer Science
* Academy of Science of the Czech Republic
* based on a scaled version of the first problem given by
* R. Fletcher,
* "An optimal positive definite update for sparse Hessian matrices"
* Numerical Analysis report NA/145, University of Dundee, 1992.
* SIF input: Nick Gould, June, 2013
* classification OUR2-AN-V-0
* The number of variables is N.
*IE N 10 $-PARAMETER original value
*IE N 100 $-PARAMETER
*IE N 1000 $-PARAMETER
IE N 5000 $-PARAMETER
*IE N 10000 $-PARAMETER
* KAPPA a parameter.
RE KAPPA 1.0 $-PARAMETER
*RE KAPPA 0.0 $-PARAMETER
RE OBJSCALE 1.0D+8
* Define useful parameters
IE 0 0
IE 1 1
IE 2 2
RE 1.0 1.0
IA N-1 N -1
R/ P 1.0 OBJSCALE
IA N+1 N 1
RI RN+1 N+1
R/ H 1.0 RN+1
R* H2 H H
R* 1/H2 RN+1 RN+1
R* KAPPA/H2 1/H2 KAPPA
RM -KAPPA/H2 KAPPA/H2 -1.0
RM 2/H2 1/H2 2.0
RA 1+2/H2 2/H2 1.0
RM -1-2/H2 1+2/H2 -1.0
R* P*-1-2/H2 1+2/H2 P
VARIABLES
DO I 1 N
X X(I)
ND
GROUPS
N S
*ZN G(0) 'SCALE' OBJSCALE
XN G(0) X(1) 1.0
DO I 1 N-1
IA I+1 I 1
*ZN G(I) 'SCALE' OBJSCALE
XN G(I) X(I) 1.0 X(I+1) -1.0
ND
*ZN G(N) 'SCALE' OBJSCALE
XN G(N) X(N) 1.0
DO I 1 N
*ZN C(I) 'SCALE' OBJSCALE
ZN C(I)
ND
BOUNDS
FR FLETBV3M 'DEFAULT'
START POINT
*V FLETBV3M 'DEFAULT' 0.0
DO I 1 N
RI RI I
R* IH RI H
Z FLETBV3M X(I) IH
ND
ELEMENT TYPE
EV SIN V
EV COS V
EP COS P
ELEMENT USES
DO I 1 N
XT C(I) COS
ZV C(I) V X(I)
ZP C(I) P P
ND
DO I 1 N
XT S(I) SIN
ZV S(I) V X(I)
ND
GROUP TYPE
GV HALFL2 GVAR
GP HALFL2 P
GROUP USES
DO I 0 N
XT G(I) HALFL2
ZP G(I) P P
ND
DO I 1 N
ZE C(I) C(I) -KAPPA/H2
ND
DO I 1 N
ZE S S(I) P*-1-2/H2
ND
OBJECT BOUND
* Solution
*LO SOLTN ??
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS FLETBV3M
TEMPORARIES
M COS
M SIN
INDIVIDUALS
T COS
F P * COS( V )
G V - P * SIN( V )
H V V - P * COS( V )
T SIN
F 100.0 * SIN( 0.01 * V )
G V COS( 0.01 * V )
H V V - 0.01 * SIN( 0.01 * V )
ENDATA
*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************
GROUPS FLETBV3M
INDIVIDUALS
T HALFL2
F 5.0D-1 * P * GVAR * GVAR
G P * GVAR
H P
ENDATA