-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFLOSP2TM.SIF
324 lines (241 loc) · 8.73 KB
/
FLOSP2TM.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
***************************
* SET UP THE INITIAL DATA *
***************************
NAME FLOSP2TM
* Problem :
* *********
* A two-dimensional base flow problem in an inclined enclosure.
* Temperature constant y = +/- 1 boundary conditions
* Middling Reynold's number
* The flow is considered in a square of length 2, centered on the
* origin and aligned with the x-y axes. The square is divided into
* 4 n ** 2 sub-squares, each of length 1 / n. The differential
* equation is replaced by discrete nonlinear equations at each of
* the grid points.
* The differential equation relates the vorticity, temperature and
* a stream function.
*
* Source:
* J. N. Shadid
* "Experimental and computational study of the stability
* of Natural convection flow in an inclined enclosure",
* Ph. D. Thesis, University of Minnesota, 1989,
* problem SP2 (pp.128-130),
* SIF input: Nick Gould, August 1993.
* classification NQR2-MY-V-V
* Half the number of discretization intervals
* Number of variables = 3(2M+1)**2
*IE M 1 $-PARAMETER n=27
*IE M 2 $-PARAMETER n=75
*IE M 5 $-PARAMETER n=363 original value
*IE M 8 $-PARAMETER n=867
*IE M 10 $-PARAMETER n=1323
IE M 15 $-PARAMETER n=2883
* Define the Rayleigh number. NB: This determines the difficulty
* of the problem.
RE RA 1.0D+5 $-PARAMETER Rayleigh number
* Set pi.
RF PI/4 ARCTAN 1.0
RM PI PI/4 4.0
* Define other problem parameters
RE AX 1.0
RM THETA PI 0.5
* Case 1. Constant temperature at y = +/- 1
RE A1 0.0
RE A2 1.0
RE A3 0.0
RE B1 0.0
RE B2 1.0
RE B3 1.0
RE F1 1.0
RE F2 0.0
RE F3 0.0
RE G1 1.0
RE G2 0.0
RE G3 0.0
* Define a few helpful parameters
IA M-1 M -1
IM -M M -1
IM -M+1 M-1 -1
RI 1/H M
RM -1/H 1/H -1.0
RM 2/H 1/H 2.0
RM -2/H 1/H -2.0
RD H 1/H 1.0
R* H2 H H
R* 1/H2 1/H 1/H
RM -2/H2 1/H2 -2.0
RM 1/2H 1/H 0.5
RM -1/2H 1/H -0.5
R* AXX AX AX
R( SINTHETA SIN THETA
R( COSTHETA COS THETA
R* PI1 AX RA
R* PI1 PI1 COSTHETA
RM PI1 PI1 -0.5
RM -PI1 PI1 -1.0
R* PI2 AXX RA
R* PI2 PI2 SINTHETA
RM PI2 PI2 0.5
RM -PI2 PI2 -1.0
RM 2A1 A1 2.0
RM 2B1 B1 2.0
RM 2F1 F1 2.0
RM 2G1 G1 2.0
R/ 2F1/AX 2F1 AX
R/ 2G1/AX 2G1 AX
RM AX/2 AX 0.5
RM AXX/2 AXX 0.5
RM AXX/4 AXX 0.25
RM 2AX AX 2.0
RM 2AXX AXX 2.0
RD 2/AX AX 2.0
R/ 2/AXH 2/H AX
RM -2/AXH 2/AXH -1.0
R* PI1/2H PI1 1/2H
R* -PI1/2H PI1 -1/2H
R* PI2/2H PI2 1/2H
R* -PI2/2H PI2 -1/2H
R* 2A1/H 2A1 1/H
R* -2A1/H 2A1 -1/H
R* 2B1/H 2B1 1/H
R* -2B1/H 2B1 -1/H
R* 2F1/AXH 2F1/AX 1/H
R* -2F1/AXH 2F1/AX -1/H
R* 2G1/AXH 2G1/AX 1/H
R* -2G1/AXH 2G1/AX -1/H
R* AX/H2 AX 1/H2
RM -AX/H2 AX/H2 -1.0
RM AX/4H2 AX/H2 0.25
RM -AX/4H2 AX/H2 -0.25
R* AXX/H2 AXX 1/H2
RM -2AXX/H2 AXX/H2 -2.0
IE 1 1
IE 2 2
VARIABLES
* Define a vorticity(OM), temperature(PH) and stream function(PS)
* variable per discretized point in the square
DO J -M M
DO I -M M
X OM(I,J)
X PH(I,J)
X PS(I,J)
ND
GROUPS
* Define three equations per interior node
DO J -M+1 M-1
IA J+ J 1
IA J- J -1
DO I -M+1 M-1
IA I+ I 1
IA I- I -1
* The stream function equation(S) - linear (6.57a in the thesis).
ZE S(I,J) OM(I,J) -2/H2
ZE S(I,J) OM(I+,J) 1/H2
ZE S(I,J) OM(I-,J) 1/H2
ZE S(I,J) OM(I,J) -2AXX/H2
ZE S(I,J) OM(I,J+) AXX/H2
ZE S(I,J) OM(I,J-) AXX/H2
ZE S(I,J) PH(I+,J) -PI1/2H
ZE S(I,J) PH(I-,J) PI1/2H
ZE S(I,J) PH(I,J+) -PI2/2H
ZE S(I,J) PH(I,J-) PI2/2H
* The vorticity equation(V) - linear (6.57b in the thesis).
ZE V(I,J) PS(I,J) -2/H2
ZE V(I,J) PS(I+,J) 1/H2
ZE V(I,J) PS(I-,J) 1/H2
ZE V(I,J) PS(I,J) -2AXX/H2
ZE V(I,J) PS(I,J+) AXX/H2
ZE V(I,J) PS(I,J-) AXX/H2
ZE V(I,J) OM(I,J) AXX/4
* The thermal energy equation(E) - quadratic (6.57c in the thesis).
ZE E(I,J) PH(I,J) -2/H2
ZE E(I,J) PH(I+,J) 1/H2
ZE E(I,J) PH(I-,J) 1/H2
ZE E(I,J) PH(I,J) -2AXX/H2
ZE E(I,J) PH(I,J+) AXX/H2
ZE E(I,J) PH(I,J-) AXX/H2
ND
* Boundary conditions on the temperature.
DO K -M M
ZE T(K,M) PH(K,M) 2A1/H
ZE T(K,M) PH(K,M-1) -2A1/H
ZE T(K,M) PH(K,M) A2
ZE T(K,-M) PH(K,-M+1) 2B1/H
ZE T(K,-M) PH(K,-M) -2B1/H
ZE T(K,-M) PH(K,-M) B2
ZE T(M,K) PH(M,K) 2F1/AXH
ZE T(M,K) PH(M-1,K) -2F1/AXH
ZE T(M,K) PH(M,K) F2
ZE T(-M,K) PH(-M+1,K) 2G1/AXH
ZE T(-M,K) PH(-M,K) -2G1/AXH
ZE T(-M,K) PH(-M,K) G2
* Boundary conditions on the vorticity. NB: Steady state assumed
ZE V(K,M) PS(K,M) -2/H
ZE V(K,M) PS(K,M-1) 2/H
ZE V(K,-M) PS(K,-M+1) 2/H
ZE V(K,-M) PS(K,-M) -2/H
ZE V(M,K) PS(M,K) -2/AXH
ZE V(M,K) PS(M-1,K) 2/AXH
ZE V(-M,K) PS(-M+1,K) 2/AXH
ZE V(-M,K) PS(-M,K) -2/AXH
ND
CONSTANTS
DO K -M M
Z FLOSP2TM T(K,M) A3
Z FLOSP2TM T(K,-M) B3
Z FLOSP2TM T(M,K) F3
Z FLOSP2TM T(-M,K) G3
ND
BOUNDS
FR FLOSP2TM 'DEFAULT'
* Boundary conditions on the stream functions.
DO K -M M
XX FLOSP2TM PS(K,-M) 1.0
XX FLOSP2TM PS(-M,K) 1.0
XX FLOSP2TM PS(K,M) 1.0
XX FLOSP2TM PS(M,K) 1.0
ND
ELEMENT TYPE
EV PROD PSIM PSIP
EV PROD PHIM PHIP
IV PROD PSIDIF PHIDIF
ELEMENT USES
DO J -M+1 M-1
IA J+ J 1
IA J- J -1
DO I -M+1 M-1
IA I+ I 1
IA I- I -1
XT E(I,J) PROD
ZV E(I,J) PSIP PS(I,J+)
ZV E(I,J) PSIM PS(I,J-)
ZV E(I,J) PHIP PH(I+,J)
ZV E(I,J) PHIM PH(I-,J)
XT F(I,J) PROD
ZV F(I,J) PSIP PS(I+,J)
ZV F(I,J) PSIM PS(I-,J)
ZV F(I,J) PHIP PH(I,J+)
ZV F(I,J) PHIM PH(I,J-)
ND
GROUP USES
DO J -M+1 M-1
DO I -M+1 M-1
ZE E(I,J) E(I,J) -AX/4H2
ZE E(I,J) F(I,J) AX/4H2
ND
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS FLOSP2TM
INDIVIDUALS
T PROD
R PSIDIF PSIP 1.0 PSIM -1.0
R PHIDIF PHIP 1.0 PHIM -1.0
F PSIDIF * PHIDIF
G PSIDIF PHIDIF
G PHIDIF PSIDIF
H PSIDIF PHIDIF 1.0
ENDATA