-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGLIDER.SIF
516 lines (372 loc) · 12.6 KB
/
GLIDER.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
***************************
* SET UP THE INITIAL DATA *
***************************
NAME GLIDER
* Problem :
* *********
* Maximize the final horizontal position of a hang glider in the presence
* of a thermal updraft.
* This is problem 11 in the COPS (Version 2) collection of
* E. Dolan and J. More'
* see "Benchmarking Optimization Software with COPS"
* Argonne National Labs Technical Report ANL/MCS-246 (2000)
* SIF input: Nick Gould, December 2000
* classification OOR2-AN-V-V
* The number of subintervals
*IE NH 50 $-PARAMETER
*IE NH 100 $-PARAMETER
*IE NH 200 $-PARAMETER
IE NH 400 $-PARAMETER
* Initial position and velocity of the glider
RE X0 0.0
RE Y0 1000.0
RE VX0 13.23
RE VY0 -1.288
* Final position and velocity of the glider
RE YF 900.0
RE VXF 13.23
RE VYF -1.288
* Parameters for the model
RE UC 2.5
RE R0 100.0
RE C0 0.034
RE C1 0.069662
RE M 100.0
RE S 14.0
RE RHO 1.13
RE G 9.81
RE CLMIN 0.0
RE CLMAX 1.4
* Other useful values
IE 0 0
IE 1 1
RE ONE 1.0
RI NH NH
RD 1/NH NH 1.0
RD 1/M M 1.0
RM -1/M 1/M -1.0
RM CLI CLMAX 0.5
RM 2.5R0 R0 2.5
R* R02 R0 R0
RD 1/R02 R02 1.0
R/ DXI VX0 NH
R- YF-Y0 YF Y0
R/ DYI YF-Y0 NH
R* RHOS RHO S
RM RHOS/2 RHOS 0.5
R* C0RHOS/2 RHOS/2 C0
R* C1RHOS/2 RHOS/2 C1
VARIABLES
* Step size
X STEP
DO I 0 NH
* State variables
X X(I)
X Y(I)
X VX(I)
X VY(I)
* Controls
X CL(I)
* Other variables
X R(I)
X U(I)
X W(I)
X V(I)
X D(I)
X L(I)
X VX.(I)
X VY.(I)
ND
GROUPS
* Objective function: maximize final x
XN XF X(NH) -1.0
* The linear parts of the x, y, vx, vy constraints {j in 1..nh}:
DO J 1 NH
IA J-1 J -1
* - x[j] + x[j-1] + .5*step*(vx[j] + vx[j-1]) = 0
XE X(J) X(J-1) 1.0 X(J) -1.0
* - y[j] + y[j-1] + .5*step*(vy[j] + vy[j-1]) = 0
XE Y(J) Y(J-1) 1.0 Y(J) -1.0
* - vx[j] + vx[j-1] + .5*step*(vx_dot[j] + vx_dot[j-1]) = 0
XE VX(J) VX(J-1) 1.0 VX(J) -1.0
* - vy[j] + vy[j-1] + .5*step*(vy_dot[j] + vy_dot[j-1]) = 0
XE VY(J) VY(J-1) 1.0 VY(J) -1.0
ND
* The linear parts of the r, u, w, v, d, l,
* vx. and vy. constraints {i in 0..nh}:
DO I 0 NH
* - r[i] + (x[i]/r_0 - 2.5)^2 = 0
XE R(I) R(I) -1.0
* - u[i] + u_c*(1-r[i])*exp(-r[i]) = 0
XE U(I) U(I) -1.0
* - w[i] + vy[i] - u[i] = 0
XE W(I) W(I) -1.0 U(I) -1.0
XE W(I) VY(I) 1.0
* - v[i] + sqrt(vx[i]^2 + w[i]^2) = 0
XE V(I) V(I) -1.0
* - d[i] + .5*(c0+c1*cL[i]^2)*rho*S*v[i]^2 = 0
XE D(I) D(I) -1.0
* - l[i] + .5*cL[i]*rho*S*v[i]^2 = 0
XE L(I) L(I) -1.0
* - vx.[i] + (-L[i]*(w[i]/v[i]) - D[i]*(vx[i]/v[i]))/m = 0
XE VX.(I) VX.(I) -1.0
* - vy.[i] + (L[i]*(vx[i]/v[i]) - D[i]*(w[i]/v[i]))/m - g = 0
XE VY.(I) VY.(I) -1.0
ND
CONSTANTS
DO I 0 NH
Z GLIDER VY.(I) G
ND
BOUNDS
XR GLIDER 'DEFAULT'
XL GLIDER STEP 0.0
DO I 0 NH
ZL GLIDER CL(I) CLMIN
ZU GLIDER CL(I) CLMAX
XL GLIDER X(I) 0.0
XL GLIDER VX(I) 0.0
ND
ZX GLIDER X(0) X0
ZX GLIDER Y(0) Y0
ZX GLIDER Y(NH) YF
ZX GLIDER VX(0) VX0
ZX GLIDER VY(0) VY0
ZX GLIDER VX(NH) VXF
ZX GLIDER VY(NH) VYF
START POINT
Z GLIDER STEP 1/NH
R= XI X0
R= YI Y0
R= VXI VX0
R= VYI VY0
DO I 0 NH
RI I I
Z GLIDER X(I) XI
Z GLIDER Y(I) YI
Z GLIDER VX(I) VXI
Z GLIDER VY(I) VYI
Z GLIDER CL(I) CLI
* r[i] = (x[i]/r_0 - 2.5)^2
R/ TEMP XI R0
RA TEMP TEMP -2.5
R* RI TEMP TEMP
Z GLIDER R(I) RI
* u[i] = u_c*(1-r[i])*exp(-r[i])
RM UI RI -1.0
R( UI EXP UI
R- TEMP ONE RI
R* TEMP TEMP UI
R* UI TEMP UC
Z GLIDER U(I) UI
* w[i] = vy[i] - u[i]
R- WI VYI UI
Z GLIDER W(I) WI
* v[i] = sqrt(vx[i]^2 + w[i]^2)
R* TEMP VXI VXI
R* VI WI WI
R+ VI VI TEMP
R( VI SQRT VI
Z GLIDER V(I) VI
* d[i] = .5*(c0+c1*cL[i]^2)*rho*S*v[i]^2
R* TEMP CLI CLI
R* TEMP TEMP C1
R+ DI C0 TEMP
R* DI DI RHOS/2
R* DI DI VI
R* DI DI VI
Z GLIDER D(I) DI
* l[i] = .5*cL[i]*rho*S*v[i]^2
R* LI CLI RHOS/2
R* LI LI VI
R* LI LI VI
Z GLIDER L(I) LI
* vx.[i] = (-L[i]*(w[i]/v[i]) - D[i]*(vx[i]/v[i]))/m
R/ TEMP WI VI
R* TEMP TEMP LI
AM TEMP(I) TEMP -1.0
R/ VX.I VXI VI
A* VX.I(I) VX.I DI
A- VX.I TEMP(I) VX.I(I)
R/ VX.I VX.I M
Z GLIDER VX.(I) VX.I
* vy.[i] = (L[i]*(vx[i]/v[i]) - D[i]*(w[i]/v[i]))/m - g
R/ TEMP WI VI
R* TEMP TEMP DI
RM TEMP TEMP -1.0
R/ VY.I VXI VI
R* VY.I VY.I LI
R+ VY.I TEMP VY.I
R/ VY.I VY.I M
R- VY.I VY.I G
Z GLIDER VY.(I) VY.I
R+ XI XI DXI
R+ YI YI DYI
ND
Z GLIDER X(0) X0
Z GLIDER Y(0) Y0
Z GLIDER Y(NH) YF
Z GLIDER VX(0) VX0
Z GLIDER VY(0) VY0
Z GLIDER VX(NH) VXF
Z GLIDER VY(NH) VYF
ELEMENT TYPE
EV PROD X Y
EV SHIFTSQR X
EP SHIFTSQR P
EV EXPFUN R
EV ROOT X Y
EV SQR V
EV LINSQR V C
EV SQRSQR V C
EV RATIO X Y
EV RATIO Z
ELEMENT USES
DO I 0 NH
XT SVX(I) PROD
ZV SVX(I) X STEP
ZV SVX(I) Y VX(I)
XT SVY(I) PROD
ZV SVY(I) X STEP
ZV SVY(I) Y VY(I)
XT SVX.(I) PROD
ZV SVX.(I) X STEP
ZV SVX.(I) Y VX.(I)
XT SVY.(I) PROD
ZV SVY.(I) X STEP
ZV SVY.(I) Y VY.(I)
XT R(I) SHIFTSQR
ZV R(I) X X(I)
ZP R(I) P 2.5R0
XT U(I) EXPFUN
ZV U(I) R R(I)
XT V(I) ROOT
ZV V(I) X VX(I)
ZV V(I) Y W(I)
XT C0(I) SQR
ZV C0(I) V V(I)
XT C1(I) LINSQR
ZV C1(I) V V(I)
ZV C1(I) C CL(I)
XT C2(I) SQRSQR
ZV C2(I) V V(I)
ZV C2(I) C CL(I)
XT VA.(I) RATIO
ZV VA.(I) X L(I)
ZV VA.(I) Y W(I)
ZV VA.(I) Z V(I)
XT VB.(I) RATIO
ZV VB.(I) X D(I)
ZV VB.(I) Y VX(I)
ZV VB.(I) Z V(I)
XT VC.(I) RATIO
ZV VC.(I) X L(I)
ZV VC.(I) Y VX(I)
ZV VC.(I) Z V(I)
XT VD.(I) RATIO
ZV VD.(I) X D(I)
ZV VD.(I) Y W(I)
ZV VD.(I) Z V(I)
ND
GROUP USES
DO J 1 NH
IA J-1 J -1
* The nonlinear parts of the x, y, vx, vy constraints {j in 1..nh}:
* - x[j] + x[j-1] + .5*step*(vx[j] + vx[j-1]) = 0
XE X(J) SVX(J-1) 0.5 SVX(J) 0.5
* - y[j] + y[j-1] + .5*step*(vy[j] + vy[j-1]) = 0
XE Y(J) SVY(J-1) 0.5 SVY(J) 0.5
* - vx[j] + vx[j-1] + .5*step*(vx_dot[j] + vx_dot[j-1]) = 0
XE VX(J) SVX.(J-1) 0.5 SVX.(J) 0.5
* - vy[j] + vy[j-1] + .5*step*(vy_dot[j] + vy_dot[j-1]) = 0
XE VY(J) SVY.(J-1) 0.5 SVY.(J) 0.5
ND
* The nonlinear parts of the r, u, w, v, d, l,
* vx. and vy. constraints {i in 0..nh}:
DO I 0 NH
* - r[i] + (x[i] - 2.5*r_0)^2 / r_0^2 = 0
ZE R(I) R(I) 1/R02
* - u[i] + u_c*(1-r[i])*exp(-r[i]) = 0
ZE U(I) U(I) UC
* - v[i] + sqrt(vx[i]^2 + w[i]^2) = 0
XE V(I) V(I) 1.0
* - d[i] + .5*c0*rho*S*v[i]^2 + .5*c1*rho*S*cL[i]^2*v[i]^2 = 0
ZE D(I) C0(I) C0RHOS/2
ZE D(I) C2(I) C1RHOS/2
* - l[i] + .5*rho*S*cL[i]*v[i]^2 = 0
ZE L(I) C1(I) RHOS/2
* - vx.[i] - 1/m * L[i]*w[i]/v[i] - 1/m*D[i]*vx[i]/v[i] = 0
ZE VX.(I) VA.(I) -1/M
ZE VX.(I) VB.(I) -1/M
* - vy.[i] + 1/m*L[i]*vx[i]/v[i] - 1/m*D[i]*w[i]/v[i]) - g = 0
ZE VY.(I) VC.(I) 1/M
ZE VY.(I) VD.(I) -1/M
ND
OBJECT BOUND
* Solution
*LO SOLUTION -1.1282D+03 $ (NH=50)
*LO SOLUTION -1.2546D+03 $ (NH=100)
*LO SOLUTION -1.2489D+03 $ (NH=200)
*LO SOLUTION -1.2480D+03 $ (NH=400)
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS GLIDER
TEMPORARIES
R EXPMR
R ROOTSQ
R ROOT3
M EXP
M SQRT
INDIVIDUALS
T PROD
F X * Y
G X Y
G Y X
H X Y 1.0
T SHIFTSQR
F ( X - P ) ** 2
G X 2.0 * ( X - P )
H X X 2.0
T EXPFUN
A EXPMR EXP( - R )
F ( 1.0 - R ) * EXPMR
G R ( R - 2.0 ) * EXPMR
H R R ( 3.0 - R ) * EXPMR
T ROOT
A ROOTSQ SQRT( X * X + Y * Y )
A ROOT3 ROOTSQ ** 3
F ROOTSQ
G X X / ROOTSQ
G Y Y / ROOTSQ
H X X - X ** 2 / ROOT3 + 1.0 / ROOTSQ
H X Y - X * Y / ROOT3
H Y Y - Y ** 2 / ROOT3 + 1.0 / ROOTSQ
T SQR
F V * V
G V V + V
H V V 2.0
T LINSQR
F V * V * C
G V ( V + V ) * C
G C V * V
H V V 2.0 * C
H V C V + V
T SQRSQR
F V * V * C * C
G V ( V + V ) * C * C
G C ( C + C ) * V * V
H V V 2.0 * C * C
H C C 2.0 * V * V
H V C ( C + C ) * ( V + V )
T RATIO
F X * Y / Z
G X Y / Z
G Y X / Z
G Z - X * Y / Z ** 2
H X Y 1.0 / Z
H X Z - Y / Z ** 2
H Y Z - X / Z ** 2
H Z Z 2.0 * X * Y / Z ** 3
ENDATA