-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGOULDQP1.SIF
269 lines (215 loc) · 6.28 KB
/
GOULDQP1.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
***************************
* SET UP THE INITIAL DATA *
***************************
NAME GOULDQP1
* Problem :
* *********
* Source: problem 118 in
* W. Hock and K. Schittkowski,
* "Test examples for nonlinear programming codes",
* Lectures Notes in Economics and Mathematical Systems 187, Springer
* Verlag, Heidelberg, 1981, as modified by N.I.M. Gould in "An algorithm
* for large-scale quadratic programming", IMA J. Num. Anal (1991),
* 11, 299-324, problem class 1.
* SIF input: B Baudson, Jan 1990 modified by Nick Gould, Jan, 2011
* classification QLR2-AN-32-17
* Other useful parameters
IE 0 0
IE 1 1
IE 4 4
IE 5 5
IE 8 8
IE 12 12
IE 15 15
IE 17 17
VARIABLES
DO I 1 15
X X(I)
ND
DO K 1 4
X AS(K)
ND
DO K 1 4
X CS(K)
ND
DO K 1 4
X BS(K)
ND
DO K 1 5
X DS(K)
ND
GROUPS
* Objective function
DO K 0 4
IM 3K K 3
IA 3K+1 3K 1
IA 3K+2 3K 2
IA 3K+3 3K 3
XN OBJ X(3K+1) 2.3 X(3K+2) 1.7
XN OBJ X(3K+3) 2.2
ND
* Constraints
DO K 1 4
IM 3K K 3
IA 3K+1 3K 1
IA 3K+2 3K 2
IA 3K+3 3K 3
IA 3K-2 3K -2
IA 3K-1 3K -1
XE A(K) X(3K+1) 1.0 X(3K-2) -1.0
XE A(K) AS(K) -1.0
XE B(K) X(3K+3) 1.0 X(3K) -1.0
XE B(K) BS(K) -1.0
XE C(K) X(3K+2) 1.0 X(3K-1) -1.0
XE C(K) CS(K) -1.0
ND
E D1 X1 1.0 X2 1.0
E D1 X3 1.0 DS1 -1.0
E D2 X4 1.0 X5 1.0
E D2 X6 1.0 DS2 -1.0
E D3 X7 1.0 X8 1.0
E D3 X9 1.0 DS3 -1.0
E D4 X10 1.0 X11 1.0
E D4 X12 1.0 DS4 -1.0
E D5 X13 1.0 X14 1.0
E D5 X15 1.0 DS5 -1.0
CONSTANTS
DO K 1 4
X GOULDQP1 A(K) -7.0
X GOULDQP1 B(K) -7.0
X GOULDQP1 C(K) -7.0
ND
GOULDQP1 D1 60.0
GOULDQP1 D2 50.0
GOULDQP1 D3 70.0
GOULDQP1 D4 85.0
GOULDQP1 D5 100.0
BOUNDS
LO GOULDQP1 X1 8.0
UP GOULDQP1 X1 21.0
LO GOULDQP1 X2 43.0
UP GOULDQP1 X2 57.0
LO GOULDQP1 X3 3.0
UP GOULDQP1 X3 16.0
DO K 1 4
IM 3K K 3
IA 3K+1 3K 1
IA 3K+2 3K 2
IA 3K+3 3K 3
XU GOULDQP1 X(3K+1) 90.0
XU GOULDQP1 X(3K+2) 120.0
XU GOULDQP1 X(3K+3) 60.0
ND
DO K 1 4
XL GOULDQP1 AS(K) 0.0
XU GOULDQP1 AS(K) 13.0
XL GOULDQP1 BS(K) 0.0
XU GOULDQP1 BS(K) 13.0
XL GOULDQP1 CS(K) 0.0
XU GOULDQP1 CS(K) 14.0
ND
LO GOULDQP1 DS1 0.0
LO GOULDQP1 DS2 0.0
LO GOULDQP1 DS3 0.0
LO GOULDQP1 DS4 0.0
LO GOULDQP1 DS5 0.0
UP GOULDQP1 DS1 60.0
UP GOULDQP1 DS2 50.0
UP GOULDQP1 DS3 70.0
UP GOULDQP1 DS4 85.0
UP GOULDQP1 DS5 100.0
START POINT
XV GOULDQP1 'DEFAULT' 20.0
GOULDQP1 X2 55.0
GOULDQP1 X3 15.0
GOULDQP1 X5 60.0
GOULDQP1 X8 60.0
GOULDQP1 X11 60.0
GOULDQP1 X14 60.0
GOULDQP1 AS1 7.0
GOULDQP1 BS1 12.0
GOULDQP1 CS1 12.0
GOULDQP1 AS2 7.0
GOULDQP1 BS2 7.0
GOULDQP1 CS2 7.0
GOULDQP1 AS3 7.0
GOULDQP1 BS3 7.0
GOULDQP1 CS3 7.0
GOULDQP1 AS4 7.0
GOULDQP1 BS4 7.0
GOULDQP1 CS4 7.0
GOULDQP1 DS1 30.0
GOULDQP1 DS2 50.0
GOULDQP1 DS3 30.0
GOULDQP1 DS4 15.0
GOULDQP1 DS5 0.0
SOLUTION X1 2.1000E+01
SOLUTION X2 4.3000E+01
SOLUTION X3 3.0000E+00
SOLUTION X4 2.7000E+01
SOLUTION X5 3.6000E+01
SOLUTION X6 4.5469E-07
SOLUTION X7 3.3000E+01
SOLUTION X8 3.7000E+01
SOLUTION X9 6.7853E-07
SOLUTION X10 3.9000E+01
SOLUTION X11 4.4000E+01
SOLUTION X12 2.0000E+00
SOLUTION X13 4.1000E+01
SOLUTION X14 5.1000E+01
SOLUTION X15 8.0000E+00
SOLUTION AS1 6.0000E+00
SOLUTION BS1 -3.0000E+00
SOLUTION CS1 -7.0000E+00
SOLUTION AS2 6.0000E+00
SOLUTION BS2 2.2384E-07
SOLUTION CS2 1.0000E+00
SOLUTION AS3 6.0000E+00
SOLUTION BS3 2.0000E+00
SOLUTION CS3 7.0000E+00
SOLUTION AS4 2.0000E+00
SOLUTION BS4 6.0000E+00
SOLUTION CS4 7.0000E+00
SOLUTION DS1 6.7000E+01
SOLUTION DS2 6.3000E+01
SOLUTION DS3 7.0000E+01
SOLUTION DS4 8.5000E+01
SOLUTION DS5 1.0000E+02
ELEMENT TYPE
EV SQ X
ELEMENT USES
DO I 1 15
XT E(I) SQ
ZV E(I) X X(I)
ND
GROUP USES
XE OBJ E1 -1.0
XE OBJ E2 0.0001
XE OBJ E3 0.00015
XE OBJ E4 -0.0001
XE OBJ E5 0.0001
XE OBJ E6 10.0
XE OBJ E7 -0.0001
XE OBJ E8 0.0001
XE OBJ E9 25.0
XE OBJ E10 -2.5
XE OBJ E11 0.0001
XE OBJ E12 0.00015
XE OBJ E13 -0.0001
XE OBJ E14 0.0001
XE OBJ E15 0.00015
OBJECT BOUND
* Solution
*LO SOLTN -3.485333E+3
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS GOULDQP1
INDIVIDUALS
T SQ
F X * X
G X X + X
H X X 2.0
ENDATA