-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGRIDNETB.SIF
326 lines (226 loc) · 7.37 KB
/
GRIDNETB.SIF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
***************************
* SET UP THE INITIAL DATA *
***************************
NAME GRIDNETB
* Problem :
* *********
* A nonlinear network problem on a square grid,
* Source:
* Ph.L. Toint and D. Tuyttens,
* "On large scale nonlinear network optimization",
* Mathematical Programming B, vol. 48(1), pp.125-159, 1990.
* This version: bounds corresponding to i = 0 and a = 0 and r = 0.1.
* The number of variables is N = 2*NS*(NS-1), where NS = 2*L+2.
* SIF input: Ph. Toint, March 1990.
* minor correction by Ph. Shott, Jan 1995.
* classification QNR2-AN-V-V
* Problem parameters: number of horizontal and vertical cycles
*IE L 2 $-PARAMETER n = 60 original value
*IE L 4 $-PARAMETER n = 180
*IE L 8 $-PARAMETER n = 612
*IE L 10 $-PARAMETER n = 924
*IE L 20 $-PARAMETER n = 3444
IE L 30 $-PARAMETER n = 7564
*IE L 40 $-PARAMETER n = 13284
* Other problem parameters
RE C 2.0 $-PARAMETER log of condition number
RE R 0.1 $-PARAMETER bound parameter
* Constants
IE 1 1
IE 2 2
IE 3 3
IE 4 4
RE LN10 2.302585093
* Computed parameters
IA L-1 L -1
IM 2L L 2
IA NS 2L 2
IA NS-1 NS -1
IM 2NS NS 2
IA P 2NS -1
IM 2P P 2
IM -P P -1
IA P-1 P -1
IA P-2 P -2
RI RL-1 L-1
RD 1/L-1 RL-1 1.0
R* CLN10 LN10 C
R* BETA CLN10 1/L-1
VARIABLES
* Define two variables per node in the grid.
* The first corresponds to flow from the current node to the
* node on the right; the second corresponds to that to the node
* above.
IE N 0
DO I 1 NS-1
DO J 1 NS-1
IA N N 1
X X(N) $ flow to the right
IA N N 1
X X(N) $ flow to above
OD J
IA N N 1
X X(N) $ flow to above
ND
DO J 1 NS-1
IA N N 1
X X(N) $ flow to the right
ND
GROUPS
* Objective is nonlinear
N OBJ
* Network constraints for the bottom row
XE C(1,1) X(1) 1.0 X(2) 1.0
IE K 2
DO J 2 NS-1
IA K K 2
IA K-1 K -1
IA K-3 K -3
XE C(1,J) X(K-1) 1.0 X(K) 1.0
XE C(1,J) X(K-3) -1.0
OD J
IA K K 1
IA K-2 K -2
XE C(1,NS) X(K) 1.0
XE C(1,NS) X(K-2) -1.0
* Network constraints for the middle rows
DO I 2 NS-1
IA K K 2
IA K-1 K -1
I+ K-P K -P
XE C(I,1) X(K-1) 1.0 X(K) 1.0
XE C(I,1) X(K-P) -1.0
DO J 2 NS-1
IA K K 2
IA K-1 K -1
IA K-3 K -3
I+ K-P K -P
XE C(I,J) X(K-1) 1.0 X(K) 1.0
XE C(I,J) X(K-3) -1.0 X(K-P) -1.0
OD J
IA K K 1
IA K-2 K -2
I+ K-P K -P
XE C(I,NS) X(K) 1.0
XE C(I,NS) X(K-2) -1.0 X(K-P) -1.0
ND
* Network constraints for the top row
IA K K 1
IA K-1 K -1
IA -Q -P 1
I+ TW K -Q
XE C(NS,1) X(K) 1.0
XE C(NS,1) X(TW) -1.0
DO J 2 NS-1
IA K K 1
IA K-1 K -1
IA -Q -Q 1
I+ K-Q K -Q
XE C(NS,J) X(K) 1.0
XE C(NS,J) X(K-1) -1.0 X(K-Q) -1.0
ND
IA K K 1
IA K-1 K -1
I+ TE K -Q
XE C(NS,NS) X(K-1) -1.0 X(TE) -1.0
CONSTANTS
X GRIDNETB C(1,1) 10.0
X GRIDNETB C(NS,NS) -10.0
BOUNDS
FR GRIDNETB 'DEFAULT'
START POINT
XV GRIDNETB 'DEFAULT' 0.0
ELEMENT TYPE
EV SQ X
ELEMENT USES
XT 'DEFAULT' SQ
DO K 1 N
ZV E(K) X X(K)
ND
GROUP USES
* Bottom row outside the cycles
DO J 1 P-2
DI J 4
XE OBJ E(J) 0.01
ND
* Side rows outside the cycles
DO IW 2 TW
DI IW 2P
I+ IE IW P-2
XE OBJ E(IE) 0.01 E(IW) 0.01
ND
* Top row outside the cycles
I+ HTW TW P-1
DO J HTW N
DI J 2
XE OBJ E(J) 0.01
ND
* Cycles
DO JK 1 L
* Compute the cycle coefficient
IA JK-1 JK -1
RI RJK-1 JK-1
R* EX RJK-1 BETA
R( AK EXP EX
RM AS AK 0.01
* Set starting arcs for the vertical and horizontal cycles
IM VW JK 4
IA IW VW 0
IM 2JK JK 2
IA 2JK-1 2JK -1
I* P2JK-1 2JK-1 P
IA HB P2JK-1 1
IA IB HB 0
* Loop on the long sides of both cycles
DO K 1 NS-1
* West side of the JKth vertical cycle
ZE OBJ E(IW) AS
* East side of the JKth vertical cycle
IA IE IW 2
ZE OBJ E(IE) AS
* Bottom side of the JKth horizontal cycle
ZE OBJ E(IB) AS
* Top side of the JKth horizontal cycle
I+ IT IB P
ZE OBJ E(IT) AS
* Increment
I+ IW IW P
IA IB IB 2
* End the loop on the long sides
OD K
* Bottom side of the JKth vertical cycle
IA VW-1 VW -1
ZE OBJ E(VW-1) AS
* Top side of the JKth vertical cycle
IA TE HTW -1
I+ TS TE 2JK
ZE OBJ E(TS) AS
* West side of the JKth horizontal cycle
IA KW HB 1
ZE OBJ E(KW) AS
* East side of the JKth horizontal cycle
I+ KE P2JK-1 P
ZE OBJ E(KE) AS
ND
OBJECT BOUND
LO GRIDNETB 0.0
* Solution
*LO SOLTN(2) 37.997157
*LO SOLTN(4) 47.268233
*LO SOLTN(8) 67.357051
*LO SOLTN(10) 75.758368
*LO SOLTN(20) 1.0675D+02
*LO SOLTN(30) 1.2761D+02
*LO SOLTN(40) 3.8641D+01
ENDATA
***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************
ELEMENTS GRIDNETB
INDIVIDUALS
T SQ
F X * X
G X X + X
H X X 2.0
ENDATA